1
|
Meng KJ, Xiong K, Hussain I, Tian M, Ma X, Li Y, Yan QL, Zhang K. In Situ Assembly of 3-(Tetrazol-5-yl)triazole Complexes with Ammonium Perchlorate for High-Performance Energetic Composites. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5391-5400. [PMID: 39792369 DOI: 10.1021/acsami.4c20164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Advanced energetic composites possess promising properties and wide-ranging applications in explosives and propellants. Nonetheless, most metal-based energetic composites present significant challenges due to surface oxidation and low-pressure output. This study introduces a facile in situ method to develop energetic composites Cutztr@AP through the intermolecular assembly of nitrogen-rich energetic coordination polymers and high-energy oxidant ammonium perchlorate (AP). Morphological analysis reveals the unique structure of Cutztr@AP, where Cutztr is distributed throughout the interior and surface of the AP particles. The nonisothermal thermodynamic analysis reveals a heat release of 2378.2 J g-1 for Cutztr@AP2, outperforming the Cutztr/AP2 achieved through ultrasonic mixing (2000 J g-1). Notably, Cutztr@AP2 exhibits promising combustion and pressure output performances, including a significantly shorter duration, a larger flame area, and higher pressure values. This novel and facile preparation technique and microstructure design approach holds significant promise for high-performance propellants, gas generators, and other related applications.
Collapse
Affiliation(s)
- Ke-Juan Meng
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Kunyu Xiong
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Momang Tian
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Xinwen Ma
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Yuxiang Li
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| | - Qi-Long Yan
- State Key Laboratory on Solid Rocket Propulsion, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China
| |
Collapse
|
2
|
Xu Z, Ma X, He F, Lu M, Zhang J, Wang S, Dong P, Zhao C. In situ generated iron oxide nanosheet on iron foam electrode for enhanced electro-Fenton performance toward pharmaceutical wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133193. [PMID: 38103298 DOI: 10.1016/j.jhazmat.2023.133193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Electro-Fenton (EF) is considered to be an effective technology for the purification of organic wastewater containing antibiotics, but the construction of accessible and efficient heterogeneous EF catalytic materials still faces challenges. In this study, an iron foam-derived electrode (FeOx/if-400) was prepared by a simple method (chemical oxidation combined heat treatment). The fabricated electrode presented great EF degradation efficiency under wide pH range (almost completely removing 50 mg L-1 TNZ within 60 min) and maintained great stability after consecutive operation (>95% removal after six cycles). Also, the FeOx/if-400 electrode showed good purification ability for pharmaceutical wastewater as evaluated by the quadrupole time-of-flight mass spectrometry and the three-dimensional excitation-emission matrix fluorescence spectroscopy. Based on experimental results, characterization analysis, and density functional theory (DFT) calculations, the EF reaction mechanism of FeOx/if-400 electrode and the organics degradation pathways in simulated and real matrices were proposed. Significantly, the biotoxicity assessment of the degradation intermediate products was revealed by ECOSAR software and relative inhibition of E. coli, which fully proved the environmental friendliness of the EF process by the FeOx/if-400 cathode. This work provides a green and effective EF system, showing a promising application potential in the field of organic wastewater treatment containing antibiotic contaminants.
Collapse
Affiliation(s)
- Zhenzhan Xu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiaolin Ma
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Fengting He
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Mingjie Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Jinqiang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shuaijun Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pei Dong
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
3
|
Miao J, Liang S, Shi H, Wang S, He J, Xu Z. Boosting Potassium Storage via Multifunctional Interface with High Lattice-Matching. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306220. [PMID: 37727068 DOI: 10.1002/smll.202306220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Indexed: 09/21/2023]
Abstract
Atomic-scale interface engineering is a prominent strategy to address the large volume expansions and sluggish redox kinetics for reinforcing K-storage. Here, to accelerate charge transport and lower the activation energy, dual carbon-modified interfacial regions are synthesized with high lattice-matching degree, which is formed from a CoSe2 /FeSe2 heterostructure coated onto hollow carbon fibers. State-of-the-art characterization techniques and theoretical analysis, including ex-situ soft X-ray absorption spectroscopy, synchrotron X-ray tomography, ultrasonic transmission mapping, and density functional theory, are conducted to probe local atomic structure evolution, mechanical degradation mechanisms, and ion/electron migration pathways. The results suggest that the heterostructure composed of the same crystal system and space group can sharply regulate the redox kinetics of transition metal selenium and dual carbon-modified approach can tailor physicochemical degradation. Overall, this work presents the design of a stable heterojunction synergistic superior hollow carbon substrate, inspiring a pathway of interface engineering strategy toward high-performance electrode.
Collapse
Affiliation(s)
- Junping Miao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shuaitong Liang
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Haiting Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shuo Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jianxin He
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
4
|
Wu W, Yan Y, Yu Y, Wang X, Xu T, Li X. A self-sacrificing template strategy: In-situ construction of bimetallic MOF-derived self-supported CuCoSe nanosheet arrays for high-performance supercapacitors. J Colloid Interface Sci 2023; 650:358-368. [PMID: 37413870 DOI: 10.1016/j.jcis.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Transition metal selenides (TMSs) are viewed as a prospective high-capacity electrode material for asymmetric supercapacitors (ASCs). However, the inability to expose sufficient active sites due to the limitation of the area involved in the electrochemical reaction severely limits their inherent supercapacitive properties. Herein, a self-sacrificing template strategy is developed to prepare self-supported CuCoSe (CuCoSe@rGO-NF) nanosheet arrays by in situ construction of copper-cobalt bimetallic organic framework (CuCo-MOF) on rGO-modified nickel foam (rGO-NF) and rational design of Se2- exchange process. Nanosheet arrays with high specific surface area are considered to be ideal platforms for accelerating electrolyte penetration and exposing rich electrochemical active sites. As a result, the CuCoSe@rGO-NF electrode delivers a high specific capacitance of 1521.6 F/g at 1 A/g, good rate performance and an excellent capacitance retention of 99.5% after 6000 cycles. The assembled ASC device has a high energy density of 19.8 Wh kg-1 at 750 W kg-1 and an ideal capacitance retention of 86.2% after 6000 cycles. This proposed strategy offers a viable strategy for designing and constructing electrode materials with superior energy storage performance.
Collapse
Affiliation(s)
- Wenrui Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yue Yan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yingsong Yu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xing Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tao Xu
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Xianfu Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
5
|
Wu ZX, Fan LQ, Chen JJ, Deng XG, Tang T, Huang YF, Wu JH. Amorphous Co-Mo-S nanospheres fabricated via room-temperature vulcanization for asymmetric supercapacitors. J Colloid Interface Sci 2023; 649:880-889. [PMID: 37390535 DOI: 10.1016/j.jcis.2023.06.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Ternary metal sulfides employed in supercapacitors exhibit better electrochemical performances than their counterpart oxides due to their superior conductivity. However, the insertion/extraction of electrolyte ions can lead to a significant volume change in electrode materials, which can result in poor cycling stability. Herein, novel amorphous Co-Mo-S nanospheres were fabricated through a facile room-temperature vulcanization method. It involves the conversion of crystalline CoMoO4 by reacting it with Na2S at room temperature. In addition to the conversion of the crystalline state into an amorphous structure with more grain boundaries, which is beneficial for the transport of electron/ion and can accommodate the volume change generated by the insertion/extraction of electrolyte ions, the production of more pores led to an increased specific surface area. The electrochemical results indicate that the as-prepared amorphous Co-Mo-S nanospheres had a specific capacitance of up to 2049.7F/g@1 A/g together with good rate capability. The amorphous Co-Mo-S nanospheres can be used as the cathode of supercapacitors and assembled with an activated carbon anode into an asymmetric supercapacitor possessing a satisfactory energy density of 47.6 Wh kg-1@1012.9 W kg-1. One of the prominent features exhibited by this asymmetric device is its remarkable cyclic stability, with a capacitance retention of 107% after 10,000 cycles.
Collapse
Affiliation(s)
- Zheng-Xue Wu
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Le-Qing Fan
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Jiao-Juan Chen
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xu-Geng Deng
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Tao Tang
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yun-Fang Huang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Ji-Huai Wu
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China.
| |
Collapse
|
6
|
Zhang A, Zhang Q, Fu H, Zong H, Guo H. Metal-Organic Frameworks and Their Derivatives-Based Nanostructure with Different Dimensionalities for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303911. [PMID: 37541305 DOI: 10.1002/smll.202303911] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Indexed: 08/06/2023]
Abstract
With the urgent demand for the achievement of carbon neutrality, novel nanomaterials, and environmentally friendly nanotechnologies are constantly being explored and continue to drive the sustainable development of energy storage and conversion installations. Among various candidate materials, metal-organic frameworks (MOFs) and their derivatives with unique nanostructures have attracted increasing attention and intensive investigation for the construction of next generation electrode materials, benefitting from their unique intrinsic characteristics such as large specific surface area, high porosity, and chemical tunability as well as the interconnected channels. Nevertheless, the poor electrochemical conductivity severely limits their application prospects, hence a variety of nanocomposites with multifarious structures have been designed and proposed from different dimensionalities. In this review, recent advances based on MOFs and their derivatives in different dimensionalities ranging from 1D nanopowders to 2D nanofilms and 3D aerogels, as well as 4D self-supporting electrodes for supercapacitors are summarized and highlighted. Furthermore, the key challenges and perspectives of MOFs and their derivatives-based materials for the practical and sustainable electrochemical energy conversion and storage applications are also briefly discussed, which may be served as a guideline for the design of next-generation electrode materials from different dimensionalities.
Collapse
Affiliation(s)
- Aitang Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Quan Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hucheng Fu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hanwen Zong
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hanwen Guo
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
7
|
Guo T, Zheng D, Xu G, Ding Y, Liu D. Two birds with one stone: facile fabrication of an iron-cobalt bimetallic sulfide nanosheet-assembled nanosphere for efficient energy storage and hydrogen evolution. Dalton Trans 2023; 52:14896-14903. [PMID: 37795943 DOI: 10.1039/d3dt02257a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Transition metal sulfides are widely regarded as the most promising electrode materials for supercapacitors. Herein, we utilized a straightforward electrodeposition method to prepare an iron-cobalt bimetallic sulfide nanosheet-assembled nanosphere on nickel foam (FeCo2S4/NF). The synergistic effect between bimetals and the unique three-dimensional structure significantly improved its capacitive performance. As a result, it demonstrated a remarkable specific capacitance, brilliant long-term stability and acceptable rate capability. Moreover, FeCo2S4/NF and active carbon (AC) were used to assemble an asymmetric supercapacitor (ASC), and FeCo2S4//AC displays a maximum energy density of 29.4 W h kg-1 at 800 W kg-1. Moreover, when adopted as an electrocatalyst for the hydrogen evolution reaction (HER), FeCo2S4/NF exhibited excellent catalytic properties (η10 = 165 mV). Our research provides a valuable insight into the multidisciplinary integration of high-performance energy materials.
Collapse
Affiliation(s)
- Tong Guo
- School of Chemistry and Environmental Engineering, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P.R. China.
| | - Dawei Zheng
- School of Chemistry and Environmental Engineering, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P.R. China.
| | - Guangyu Xu
- School of Chemistry and Environmental Engineering, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P.R. China.
| | - Yigang Ding
- School of Chemistry and Environmental Engineering, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P.R. China.
| | - Dong Liu
- School of Chemistry and Environmental Engineering, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P.R. China.
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| |
Collapse
|
8
|
Patil AM, Moon S, Roy SB, Ha J, Chodankar NR, Dubal DP, Jadhav AA, Guan G, Kang K, Jun SC. Electronic Structure Engineered Heteroatom Doped All Transition Metal Sulfide Carbon Confined Heterostructure for Extrinsic Pseudocapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301153. [PMID: 37154199 DOI: 10.1002/smll.202301153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Ultra-high energy density battery-type materials are promising candidates for supercapacitors (SCs); however, slow ion kinetics and significant volume expansion remain major barriers to their practical applications. To address these issues, hierarchical lattice distorted α-/γ-MnS@Cox Sy core-shell heterostructure constrained in the sulphur (S), nitrogen (N) co-doped carbon (C) metal-organic frameworks (MOFs) derived nanosheets (α-/γ-MnS@Cox Sy @N, SC) have been developed. The coordination bonding among Cox Sy , and α-/γ-MnS nanoparticles at the interfaces and the π-π stacking interactions developed across α-/γ-MnS@Cox Sy and N, SC restrict volume expansion during cycling. Furthermore, the porous lattice distorted heteroatom-enriched nanosheets contain a sufficient number of active sites to allow for efficient electron transportation. Density functional theory (DFT) confirms the significant change in electronic states caused by heteroatom doping and the formation of core-shell structures, which provide more accessible species with excellent interlayer and interparticle conductivity, resulting in increased electrical conductivity. . The α-/γ-MnS@Cox Sy @N, SC electrode exhibits an excellent specific capacity of 277 mA hg-1 and cycling stability over 23 600 cycles. A quasi-solid-state flexible extrinsic pseudocapacitor (QFEPs) assembled using layer-by-layer deposited multi-walled carbon nanotube/Ti3 C2 TX nanocomposite negative electrode. QFEPs deliver specific energy of 64.8 Wh kg-1 (1.62 mWh cm-3 ) at a power of 933 W kg-1 and 92% capacitance retention over 5000 cycles.
Collapse
Affiliation(s)
- Amar M Patil
- Nano-Electro-Mechanical Device Laboratory School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Sunil Moon
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sanjib Baran Roy
- Nano-Electro-Mechanical Device Laboratory School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Jisang Ha
- Nano-Electro-Mechanical Device Laboratory School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Nilesh R Chodankar
- Mechanical Engineering Department, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, 4000, Australia
| | - Arti A Jadhav
- Department of Physics, Shivaji University, Kolhapur, Maharashtra, 416004, India
| | - Guoqing Guan
- Section of Renewable Energy, Institute of Regional Innovation, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Keonwook Kang
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong Chan Jun
- Nano-Electro-Mechanical Device Laboratory School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| |
Collapse
|
9
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Alzaid M, Iqbal MZ, Alqahtani B, Alanazi R, Alsohaimi IH, Mohamed WS, Hadia NMA. Tailoring the interfacial surfaces of tungsten and molybdenum tungsten disulfide electrodes for hybrid supercapacitors. RSC Adv 2023; 13:15575-15585. [PMID: 37228682 PMCID: PMC10204074 DOI: 10.1039/d3ra00847a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
The layered structures of tungsten disulfide (WS2) and molybdenum tungsten disulfide (MoWS2) are considered as the most promising electrode materials for energy storage devices. Herein, MS (magnetron sputtering) is required for the deposition of WS2 and MoWS2 on the surface of the current collector to attain an optimized layer thickness. The structural morphology and topological behavior of the sputtered material were examined via X-ray diffraction and atomic force microscopy. Three-electrode assembly was used to start the electrochemical investigations to identify the most optimal and effective sample among WS2 and MoWS2. CV (cyclic voltammetry), GCD (galvanostatic charging discharging), and EIS (electro-impedance spectroscopy) techniques were employed to analyze the samples. After preparing WS2 with optimized thickness as the superior performing sample, a hybrid device was designed as WS2//AC (activated carbon). With a remarkable cyclic stability of 97% after 3000 continuous cycles, the hybrid supercapacitor generated a maximum energy density (Es) value of 42.5 W h kg-1 and 4250 W kg-1 of power density (Ps). Besides, the capacitive and diffusive contribution during the charge-discharge process and b-values were calculated by Dunn's model, which lay in the 0.5-1.0 range and the fabricated WS2 hybrid device was found to have a hybrid nature. The outstanding outcomes of WS2//AC make it suitable for future energy storage applications.
Collapse
Affiliation(s)
- Meshal Alzaid
- Department of Physics, College of Science, Jouf University P.O. Box 2014 Al-Jouf Sakaka Saudi Arabia
| | - Muhammad Zahir Iqbal
- Nanotechnology Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
- ZENTECH Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Bandar Alqahtani
- Department of Physics, College of Science, Jouf University P.O. Box 2014 Al-Jouf Sakaka Saudi Arabia
| | - Rakan Alanazi
- Department of Physics, College of Science, Jouf University P.O. Box 2014 Al-Jouf Sakaka Saudi Arabia
| | - Ibrahim Hotan Alsohaimi
- Department of Chemistry, College of Science, Jouf University Al-Jouf Sakaka P.O. Box 2014 Saudi Arabia
| | - W S Mohamed
- Department of Physics, College of Science, Jouf University P.O. Box 2014 Al-Jouf Sakaka Saudi Arabia
| | - N M A Hadia
- Department of Physics, College of Science, Jouf University P.O. Box 2014 Al-Jouf Sakaka Saudi Arabia
| |
Collapse
|
11
|
Dennyson Savariraj A, Justin Raj C, Kale AM, Kim BC. Road Map for In Situ Grown Binder-Free MOFs and Their Derivatives as Freestanding Electrodes for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207713. [PMID: 36799137 DOI: 10.1002/smll.202207713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Indexed: 05/18/2023]
Abstract
Among several electrocatalysts for energy storage purposes including supercapacitors, metal-organic frameworks (MOFs), and their derivatives have spurred wide spread interest owing to their structural merits, multifariousness with tailor-made functionalities and tunable pore sizes. The electrochemical performance of supercapacitors can be further enhanced using in situ grown MOFs and their derivatives, eliminating the role of insulating binders whose "dead mass" contribution hampers the device capability otherwise. The expulsion of binders not only ensures better adhesion of catalyst material with the current collector but also facilitates the transport of electron and electrolyte ions and remedy cycle performance deterioration with better chemical stability. This review systematically summarizes different kinds of metal-ligand combinations for in situ grown MOFs and derivatives, preparation techniques, modification strategies, properties, and charge transport mechanisms as freestanding electrode materials in determining the performance of supercapacitors. In the end, the review also highlights potential promises, challenges, and state-of-the-art advancement in the rational design of electrodes to overcome the bottlenecks and to improve the capability of MOFs in energy storage applications.
Collapse
Affiliation(s)
- Antonysamy Dennyson Savariraj
- Department of Advanced Components and Materials Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jeollanamdo, 57922, Republic of Korea
| | - Chellan Justin Raj
- Physics Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu, 600 127, India
| | - Amol Marotrao Kale
- Department of Advanced Components and Materials Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jeollanamdo, 57922, Republic of Korea
| | - Byung Chul Kim
- Department of Advanced Components and Materials Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jeollanamdo, 57922, Republic of Korea
| |
Collapse
|
12
|
Prussian Blue-derived hollow carbon-wrapped Fe-doped CoS2 nanocages as durable electrocatalyst for efficient hydrogen evolution. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
13
|
Chen L, Zhao J, Meng A, Sun C, Wang L, Li G, Xie H, Hu M, Li Z. High capacity and stability induced by sandwich-like structure and metal–O configuration for CoNi2S4/Ti3C2Tx heterostructure electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Zn–Co–S coatings with a rough and porous nano-dendrite structure for high-performance asymmetric supercapacitors without binder. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Zhang Y, Liang CM, Lu M, Yu H, Wang GS. Skillful Introduction of Urea during the Synthesis of MOF-Derived FeCoNi-CH/p-rGO with a Spindle-Shaped Substrate for Hybrid Supercapacitors. ACS OMEGA 2022; 7:33019-33030. [PMID: 36157736 PMCID: PMC9494635 DOI: 10.1021/acsomega.2c02712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
A composite (FeCoNi-CH/p-rGO) with a spindle-shaped substrate is controllably prepared by combining FeCoNi carbonate hydroxide (FeCoNi-CH) and partially reduced graphite oxide (p-rGO) using a novel chemical strategy. In the synthetic process, urea is introduced as the precipitant and reducing agent. MIL-88A as a self-template is converted into a ternary-metal CH composite, maintaining the original morphology by the metal ion etching and coprecipitation method, and graphite oxide is reduced to rGO with stronger conductivity partially at the same time. The electrochemical performance of the FeCoNi-CH/p-rGO is superior to FeCoNi-CH, with a high specific capacitance (1346 F g-1 at 0.5 A g-1) and rate capability (55.5% at 10 A g-1). The better electrochemical performance of the FeCoNi-CH/p-rGO composite is attributed to the pseudocapacitive energy storage capacity caused by the synergistic action of ternary-metal CH and the high conductivity of p-rGO. Meanwhile, the uniform mixture of FeOOH/activated carbon (AC) is fabricated as an anode to instead of the pure FeOOH or AC, which leads to the balancing energy density and high cycle stability of the hybrid supercapacitor (HSC). The corresponding assembled FeCoNi-CH/p-rGO//FeOOH/AC HSC exhibits a high energy density of 46.93 W h kg-1 at 400 W kg-1 power density and a cycle stability of 66.7% after 3000 cycles. In addition, this work also provides a facile method to fabricate metal-organic framework-derived ternary-metal CH/p-rGO composite materials, which could be applied in the fields of supercapacitors and other fields.
Collapse
Affiliation(s)
- Yu Zhang
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin 132000, China
| | - Chen-Ming Liang
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin 132000, China
| | - Min Lu
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin 132000, China
| | - Hao Yu
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin 132000, China
| | | |
Collapse
|
16
|
Abbas Q, Mateen A, Khan AJ, Eldesoky GE, Idrees A, Ahmad A, Eldin ET, Das HT, Sajjad M, Javed MS. Binder-Free Zinc-Iron Oxide as a High-Performance Negative Electrode Material for Pseudocapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3154. [PMID: 36144942 PMCID: PMC9504540 DOI: 10.3390/nano12183154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The interaction between cathode and anode materials is critical for developing a high-performance asymmetric supercapacitor (SC). Significant advances have been made for cathode materials, while the anode is comparatively less explored for SC applications. Herein, we proposed a high-performance binder-free anode material composed of two-dimensional ZnFe2O4 nanoflakes supported on carbon cloth (ZFO-NF@CC). The electrochemical performance of ZFO-NF@CC as an anode material for supercapacitor application was examined in a KOH solution via a three-electrode configuration. The ZFO-NF@CC electrode demonstrated a specific capacitance of 509 F g-1 at 1.5 A g-1 and was retained 94.2% after 10,000 GCD cycles. The ZFO-NF@CC electrode showed exceptional charge storage properties by attaining high pseudocapacitive-type storage. Furthermore, an asymmetric SC device was fabricated using ZFO-NF@CC as an anode and activated carbon on CC (AC@CC) as a cathode with a KOH-based aqueous electrolyte (ZFO-NF@CC||AC@CC). The ZFO-NF@CC||AC@CC yielded a high specific capacitance of 122.2 F g-1 at a current density of 2 A g-1, a high energy density of 55.044 Wh kg-1 at a power density of 1801.44 W kg-1, with a remarkable retention rate of 96.5% even after 4000 cycles was attained. Thus, our results showed that the enhanced electrochemical performance of ZFO-NF@CC used as an anode in high-performance SC applications can open new research directions for replacing carbon-based anode materials.
Collapse
Affiliation(s)
- Qasim Abbas
- Department of Intelligent Manufacturing, Yibin University, Yibin 644000, China
| | - Abdul Mateen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Department of Physics, Beijing Normal University, Beijing 100084, China
| | - Abdul Jabbar Khan
- College of Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Gaber E. Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asim Idrees
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, E14014 Cordoba, Spain
| | - Elsayed Tag Eldin
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt
| | - Himadri Tanaya Das
- Centre of Excellence for Advance Materials and Applications, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Muhammad Sajjad
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Zeng J, Devarayapalli KC, Li C, Vattikuti SVP, Shim J. Pseudocapacitive features of freestanding nickel-zinc organometallic nanostructured arrays for high-energy density coin-cell asymmetric supercapacitors. Chem Asian J 2022; 17:e202200685. [PMID: 36052888 DOI: 10.1002/asia.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/02/2022] [Indexed: 11/11/2022]
Abstract
Binder-free two-dimensional mesh-like structure of nickel-zinc metal-organic framework on in-situ-coated carbon cloth (Ni-Zn MOF/CC) and Ni-Zn MOF powder were developed via a solvo-hydrothermal reaction for electrochemical storage application. The electrochemical properties of these electrodes show that the electrodes self-assembled on carbon cloth substrates exhibit remarkably excellent performance. The Ni-Zn MOF/CC electrode exhibited a capacitance of 653.54 F/g at 1 A/g through a capacity retaining of 87.65 % after 10000 cycles. Furthermore, the Ni-Zn MOF//AC coin-cell asymmetric supercapacitor device (CASD) exhibited remarkable energy and power densities of 54.31 Wh/kg and 825 W/kg, respectively, with adequate capacitance retention up to 94.63% over 5000 cycles at 1.5 V. The CASD also exhibited a significant power density of 4950 W/kg at 19.67 W h/kg, which suggests that these in-situ developed MOF-based electrodes may discover application in energy storage devices.
Collapse
Affiliation(s)
- Jie Zeng
- Yeungnam University, School of Mechanical Engineering, KOREA, REPUBLIC OF
| | | | - Changping Li
- Hunan University of Science and Technology, college of Mechanical and electrical engineering, CHINA
| | - S V Prabhakar Vattikuti
- Yeungnam University, School of Mechanical Engineering, lab 512, 412427, Daegu, KOREA, REPUBLIC OF
| | - Jaesool Shim
- Yeungnam University, School of Mechanical Engineering, KOREA, REPUBLIC OF
| |
Collapse
|
18
|
Cao Z, Momen R, Tao S, Xiong D, Song Z, Xiao X, Deng W, Hou H, Yasar S, Altin S, Bulut F, Zou G, Ji X. Metal-Organic Framework Materials for Electrochemical Supercapacitors. NANO-MICRO LETTERS 2022; 14:181. [PMID: 36050520 PMCID: PMC9437182 DOI: 10.1007/s40820-022-00910-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems. Metal-organic frameworks (MOFs), as a new type of porous material, show the advantages of large specific surface area, high porosity, low density, and adjustable pore size, exhibiting a broad application prospect in the field of electrocatalytic reactions, batteries, particularly in the field of supercapacitors. This comprehensive review outlines the recent progress in synthetic methods and electrochemical performances of MOF materials, as well as their applications in supercapacitors. Additionally, the superiorities of MOFs-related materials are highlighted, while major challenges or opportunities for future research on them for electrochemical supercapacitors have been discussed and displayed, along with extensive experimental experiences.
Collapse
Affiliation(s)
- Ziwei Cao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Roya Momen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Shusheng Tao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Dengyi Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Zirui Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Xuhuan Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Sedat Yasar
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Battalgazi, Malatya, Turkey
| | - Sedar Altin
- Physics Department, Inonu University, 44280, Malatya, Turkey
| | - Faith Bulut
- Physics Department, Inonu University, 44280, Malatya, Turkey
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
19
|
Wu ZX, Fan LQ, Chen JJ, Deng XG, Tang T, Huang YF, Wu JH. Two-step hydrothermal synthesis of a fireworks-like amorphous Co3S4 for asymmetric supercapacitors with superior cycling stability. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Xiao Z, Yan L, Hu Q, Xiang B, Wang Y, Hao J, Zou X, Li W, Wei S. Doping-driven electronic structure and conductivity modification of nickel sulfide. Dalton Trans 2022; 51:8318-8326. [PMID: 35583114 DOI: 10.1039/d2dt00363e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lack of electrical conductivity limits the electrochemical kinetic rate of the electrode material, resulting in the inability to reach its theoretical capacity. A facile method is adopted to improve the intrinsic conductivity of binary NiS2/Ni3S4 hybrid nickel sulfide, with the doping of transition metal atoms Co, Mn and Ag. Through the introduction of heteroatoms, the electronic structure of the electrode material is modified and the electrical conductivity is significantly improved, thus enhancing its electrochemical performance. The improvement of conductivity is attributed to the formation of intermediate bands of transition metals and the redistribution of electrons, and the result is demonstrated by experimental and density functional theory (DFT) calculations. As a result, the NiS2/Ni3S4 hybrid nickel sulfide after 0.5% amount of Co-doping reaches the highest specific capacitance of 2874 F g-1 at 1 A g-1, increasing specific capacitance of 653 F g-1 as 29.4% of the specific capacitance of non-doped nickel sulfide. The Co doped nickel sulfide also exhibits remarkable cycling stability compared with non-doped nickel sulfide. The assembled 2% Co-doped nickel sulfide//rGO, 0.5% Mn-doped nickel sulfide//rGO and 0.5% Ag-doped nickel sulfide//rGO asymmetric supercapacitors show a specific energy density of 36.6, 36.1 and 36.0 W h kg-1 at a power density of 800 W kg-1. This study provides a useful insight into the fabrication of high performance pseudocapacitive materials.
Collapse
Affiliation(s)
- Zhenyun Xiao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P.R. China. .,National-municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing 400044, P.R. China
| | - Lijin Yan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P.R. China. .,National-municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing 400044, P.R. China
| | - Qin Hu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P.R. China. .,National-municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing 400044, P.R. China
| | - Bin Xiang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P.R. China. .,National-municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing 400044, P.R. China
| | - Yu Wang
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P.R. China
| | - Jiangyu Hao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P.R. China. .,National-municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing 400044, P.R. China
| | - Xuefeng Zou
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, P.R. China.
| | - Weining Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P.R. China. .,National-municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing 400044, P.R. China
| | - Shicheng Wei
- National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, P.R. China.
| |
Collapse
|
21
|
Ye W, Ye P, Wang H, Chen F, Zhong Y, Hu Y. Engineering hierarchical porous ternary Co-Mn-Cu-S nanodisk arrays for ultra-high-capacity hybrid supercapacitors. J Colloid Interface Sci 2022; 612:298-307. [PMID: 34998190 DOI: 10.1016/j.jcis.2021.12.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/19/2023]
Abstract
Transition-metal sulfides have been recognized as one of the promising electrodes for high-performance hybrid supercapacitors (HSCs). However, the poor rate performance and short cycle life heavily impede their practical applications. Herein, an advanced electrode based on hierarchical porous cobalt-manganese-copper sulfide nanodisk arrays (Co-Mn-Cu-S HPNDAs) on Ni foam is fabricated for high-capacity HSCs, using metal-organic frameworks as the self-sacrificial template. The synergistic effects of ternary Co-Mn-Cu sulfides and the hierarchical porous structure endow the as-obtained electrode with fast redox reaction kinetics. As expected, the resultant Co-Mn-Cu-S HPNDAs electrode delivers an ultrahigh specific capacity of 536.8 mAh g-1 (3865 F g-1) at 2 A g-1 with a superb rate performance of 63% capacity retention at 30 A g-1. Remarkably, an energy density of 63.8 W h kg-1 at a power density of 743 W kg-1 with a long cycle life is also achieved with the quasi-solid-state Co-Mn-Cu-S HPNDAs//ZIF-8-derived carbon HSC. This work offers a new pathway to fabricate high-performance multiple transition-metal-sulfide-based electrode materials for energy storage devices.
Collapse
Affiliation(s)
- Wuquan Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Pengcheng Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Fang Chen
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China; Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China.
| |
Collapse
|
22
|
Karuppasamy K, Vikraman D, Hussain S, Santhoshkumar P, Bose R, Sivakumar P, Alfantazi A, Jung J, Kim HS. Unveiling the Redox Electrochemistry of MOF-Derived fcc-NiCo@GC Polyhedron as an Advanced Electrode Material for Boosting Specific Energy of the Supercapattery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107284. [PMID: 35199455 DOI: 10.1002/smll.202107284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Metal organic frameworks (MOFs), which constitute a new class of porous organic-inorganic hybrid materials, have gained considerable attention in the fields of electrochemical energy storage and conversion devices owing to their open topological structures, large surface areas, tunable morphologies, and extreme redox activity. A synthesis protocol that comprises coprecipitation followed by controlled calcination processes to design a battery-type electrode is used. This electrode consists of three-dimensional (3D), ant cave-like polyhedrons of nickel-cobalt alloy on graphitic carbon (GC; NiCo@GC) nanostructures; trimesic acid is used as a potential MOF-linker. The developed NiCo@GC sample exhibits mesoporous characteristics with the maximum surface area of 94.08 m2 g-1 at 77 K. In addition, the redox activity at different sweep rates reveals the battery-type charge storage behavior of the NiCo@GC electrode; its three-electrode assembly provides 444 C g-1 specific capacity at 2 A g-1 with long-term capacity retention. The constructed supercapattery (SC) devices (i.e., AC//NiCo@GC) achieved capacity, specific energy, and specific power are 74.3 mAh g-1 , 39.5 Wh kg-1 , and 665 W kg-1 , respectively. Owing to its reasonable electrochemical characteristics, the prepared NiCo@GC material is a promising candidate for supercapattery electrodes for portable electronic devices.
Collapse
Affiliation(s)
- K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - P Santhoshkumar
- Millimeter-Wave Innovation Technology (MINT) Research Center, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Ranjith Bose
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - P Sivakumar
- Department of Chemistry, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Jongwan Jung
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| |
Collapse
|
23
|
Zhao X, Tao K, Han L. Self-supported metal-organic framework-based nanostructures as binder-free electrodes for supercapacitors. NANOSCALE 2022; 14:2155-2166. [PMID: 35107472 DOI: 10.1039/d1nr08284a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs), an interesting class of functional inorganic materials, have recently emerged as suitable electrode materials or templates/precursors of electrode materials for supercapacitors (SCs). The key in utilizing MOF-based electrode materials is to address the low electronic conductivity and poor stability issues. Therefore, the rational design and fabrication of self-supported binder-free electrodes is considered the most promising strategy to address these challenges. In this review, we summarize the recent advances in the design and manufacture of self-supported MOF-based nanostructures and their use as binderless electrodes for SCs, especially over the last five years. The synthesis strategies for constructing pristine MOFs, MOF composites and MOF derivative arrays are overviewed. By highlighting the advantages and challenges of each class of electrode materials, we hope that this review will provide some insights into the rational design of MOF-based electrode materials to promote the future development of this highly exciting field.
Collapse
Affiliation(s)
- Xueyan Zhao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
24
|
Wang X, Zhai X, Yu Q, Liu X, Meng X, Wang X, Wang L. Strategies of designing electrocatalysts for seawater splitting. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Yan J, Liu T, Liu X, Yan Y, Huang Y. Metal-organic framework-based materials for flexible supercapacitor application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214300] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Yu Y, Han Y, Cui J, Wang C. Cobalt-based metal-organic framework electrodeposited on nickel foam as a binder-free electrode for high-performance supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01870e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-based metal-organic framework (Co-MOF) has been in-situ grown on nickel foam (NF) by cathodic electrodeposition using highly active cobalt surface modifier to enable uniform nucleation and tight growth of Co-MOF....
Collapse
|
27
|
Gao Y, Bai J, Zhou T, Gong Y. Ir-doped Co(OH)2 Nanosheets as Efficient Electrocatalyst for Oxygen Evolution Reaction. Dalton Trans 2022; 51:8832-8839. [DOI: 10.1039/d2dt01366e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, Co-based metal-organic frameworks (Co-MOFs) have received significant research interest because of their large specific surface area, high porosity, tunable structure and topological flexibility. However, the comparatively weak...
Collapse
|
28
|
Zhang Z, Yao Z, Jiang Z. Fast self-assembled microfibrillated cellulose@MXene film with high-performance energy storage and superior mechanical strength. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
A Comparative Study of Cerium- and Ytterbium-Based GO/g-C3N4/Fe2O3 Composites for Electrochemical and Photocatalytic Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The design of sustainable and efficient materials for efficient energy storage and degradation of environmental pollutants (specifically organic dyes) is a matter of major interest these days. For this purpose, cerium- and ytterbium-based GO/g-C3N4/Fe2O3 composites have been synthesized to explore their properties, especially in charge storage devices such as supercapacitors, and also as photocatalysts for the degradation of carcinogenic dyes from the environment. Physicochemical studies have been carried out using XRD, FTIR, SEM, and BET techniques. Electrochemical techniques (cyclic voltammetry, galvanic charge discharge, and electrochemical impedance spectroscopy) have been employed to measure super-capacitance and EDLC properties. Results show that the gravimetric capacitance calculated from GCD results is 219 Fg−1 for ytterbium- and 169 Fg−1 for cerium-based nanocomposites at the current density of 1 A/g and scan rate of 2 mV/sec. The specific capacitance calculated for the ytterbium-based nanocomposite is 189 Fg−1 as compared to 125 Fg−1 for the cerium-based material. EIS results pointed to an enhanced resistance offered by cerium-based nanocomposites as compared to that of ytterbium, which can be assumed with the difference in particle size, as confirmed from structural studies including XRD. From obtained results, ytterbium oxide-based GO/g-C3N4/Fe2O3 is proven to be a better electro-catalyst as compared to cerium-based nanocomposites. Photocatalytic results are also in agreement with electrochemical results, as the degradation efficiency of ytterbium oxide-based GO/g-C3N4/Fe2O3 (67.11 and 83.50% for rhodamine B and methylene blue dyes) surpasses values observed for cerium-based GO/g-C3N4/Fe2O3 (63.08 and 70.61%).
Collapse
|
30
|
Anand S, Ahmad MW, Fatima A, Kumar A, Bharadwaj A, Yang DJ, Choudhury A. Flexible nickel disulfide nanoparticles-anchored carbon nanofiber hybrid mat as a flexible binder-free cathode for solid-state asymmetric supercapacitors. NANOTECHNOLOGY 2021; 32:495403. [PMID: 34433156 DOI: 10.1088/1361-6528/ac20fd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Nickel disulfide nanoparticles (NiS2NPs)-anchored carbon nanofibers (NiS2NPs@CNF) hybrid mats were fabricated via the sequential process of stabilization and carbonization of electrospun polyacrylonitrile-based fibers followed by hydrothermal growth of NiS2NPs on the porous surface of CNFs. The vertical growth of NiS2NPs on entire surfaces of porous CNFs appeared in the SEM images of hybrid mat. The hierarchical NiS2NPs@CNF core-shell hybrid nanofibers with 3D interconnected network architecture can endow continuous channels for easy and rapid ionic diffusion to access the electroactive NiS2NPs. The conductive and interconnected CNF core could facilitate electron transfer to the NiS2shell. Moreover, the porous CNF as a buffering matrix can resist volumetric deformation during the long-term charge-discharge process. The NiS2NPs@CNF electrode can yield high specific capacitance (916.3 F g-1at 0.5 A g-1) and reveal excellent cycling performances. The solid-state asymmetric supercapacitor (ASC) was fabricated with NiS2NPs@CNF mat as a binder-free positive electrode and activated carbon cloth as a negative electrode. As-assembled ASC not only produce high specific capacitance (364.8 F g-1at 0.5 A g-1) but also exhibit excellent cycling stability (∼92.8% after 5000 cycles). The ASC delivered a remarkably high energy density of 129.7 Wh kg-1at a power density of 610 W kg-1. These encouraging results could make this NiS2NPs@CNF hybrid mat a good choice of cathode material for the fabrication of flexible solid-state ASC for various flexible/wearable electronics.
Collapse
Affiliation(s)
- Surbhi Anand
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi 835215, India
| | - Md Wasi Ahmad
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, PO Box 2509, Postal Code 211, Oman
| | - Atiya Fatima
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, PO Box 2509, Postal Code 211, Oman
| | - Anupam Kumar
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi 835215, India
| | - Arvind Bharadwaj
- Centre for Converging Technologies, University of Rajasthan, J.L.N. Marg, Jaipur 302004, India
| | - Duck-Joo Yang
- Department of Chemistry and the Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States of America
| | - Arup Choudhury
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi 835215, India
| |
Collapse
|
31
|
Lyu L, Hooch Antink W, Kim YS, Kim CW, Hyeon T, Piao Y. Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101974. [PMID: 34323350 DOI: 10.1002/smll.202101974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Flexible and stretchable supercapacitors (FS-SCs) are promising energy storage devices for wearable electronics due to their versatile flexibility/stretchability, long cycle life, high power density, and safety. Transition metal compounds (TMCs) can deliver a high capacitance and energy density when applied as pseudocapacitive or battery-like electrode materials owing to their large theoretical capacitance and faradaic charge-storage mechanism. The recent development of TMCs (metal oxides/hydroxides, phosphides, sulfides, nitrides, and selenides) as electrode materials for FS-SCs are discussed here. First, fundamental energy-storage mechanisms of distinct TMCs, various flexible and stretchable substrates, and electrolytes for FS-SCs are presented. Then, the electrochemical performance and features of TMC-based electrodes for FS-SCs are categorically analyzed. The gravimetric, areal, and volumetric energy density of SC using TMC electrodes are summarized in Ragone plots. More importantly, several recent design strategies for achieving high-performance TMC-based electrodes are highlighted, including material composition, current collector design, nanostructure design, doping/intercalation, defect engineering, phase control, valence tuning, and surface coating. Integrated systems that combine wearable electronics with FS-SCs are introduced. Finally, a summary and outlook on TMCs as electrodes for FS-SCs are provided.
Collapse
Affiliation(s)
- Lulu Lyu
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Wytse Hooch Antink
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Seong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Chae Won Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuanzhe Piao
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| |
Collapse
|
32
|
A synergistic strategy combing amorphous Ni3S4 quantum dots and zeolite imidazole framework nanosheets for enhanced supercapacitor performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Boosting supercapacitive performance of flexible carbon via surface engineering. J Colloid Interface Sci 2021; 602:636-645. [PMID: 34147754 DOI: 10.1016/j.jcis.2021.06.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/29/2021] [Accepted: 06/06/2021] [Indexed: 11/20/2022]
Abstract
The relatively low specific capacitance of flexible carbons hinders their practical application for fabricating high-performance flexible supercapacitors. In this work, a surface engineering method is proposed to boost the supercapacitive performance of the flexible carbon. In this method, a flexible carbon was fabricated from carbon felt via co-activation with potassium argininate and potassium hydroxide (KOH) as activators, and the resulting material is abbreviated as AKCF. Unlike traditional KOH activation processes, the addition of potassium argininate can produce a micro-graphitized carbon layer to be the outer layer of AKCF fibers for achieving better electronic transfer. Due to the improved conductivity and lower charge transfer resistance endowed by a thin micro-graphitized carbon layer, the capacitance of the AKCF-0.1 (0.1 M arginine was used) electrode obtained by the co-activation process is elevated to a 1.8-fold higher value of 403 C·g-1 (2583 mC·cm-2) relative to the AKCF-0 (0 M arginine was used) electrode prepared by KOH activation alone (222 C·g-1 or 1369 mC·cm-2). Moreover, this AKCF-0.1 electrode also displays satisfactory rate capability (66% capacitance retention after a 20-fold current increase) and highly stable cycling performance (no capacitance decline after 20,000 cycles). In addition, the asymmetric supercapacitors constructed with this AKCF-0.1 electrode as the flexible negative electrode expresses high energy densities of 68.4 Wh·kg-1 and 0.139 mWh·cm-2 in aqueous and gel electrolytes, respectively.
Collapse
|
34
|
Zhang Y, Wang Y, Zhu J, Zhang X, Cai W. Regulating the core/shell electric structure of Co 3O 4@Ni-Co layered double hydroxide on Ni foam through electrodeposition for a quasi-solid-state supercapacitor. NANOTECHNOLOGY 2021; 32:345702. [PMID: 33503607 DOI: 10.1088/1361-6528/abe074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
A flower-like structured electrode material of Co3O4@Ni-Co layered double hydroxide (LDH) grown on Ni foam (Co3O4@Ni-Co LDH/NF) was prepared via anin situgrowth, annealing and electrodeposition process. The Co3O4@Ni-Co LDH/NF electrode was prepared with the optimized conditions of annealing temperature 300 °C, deposition time 20 min and Ni/Co ratio 1:1. The results showed that the as-prepared electrode material exhibited an excellent specific capacitance and great cycling stability. Furthermore, an quasi-solid-state supercapacitor was assembled using the prepared Co3O4@Ni-Co LDH/NF as the positive electrode and activated carbon on Ni foam (AC/NF) as the negative electrode. The as-assembled device presented a high energy density and power density.
Collapse
Affiliation(s)
- Yuqiang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Yan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Jiahui Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Xubin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Wangfeng Cai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
35
|
CuO@NiCoFe-S core-shell nanorod arrays based on Cu foam for high performance energy storage. J Colloid Interface Sci 2021; 599:34-45. [PMID: 33933795 DOI: 10.1016/j.jcis.2021.04.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/23/2022]
Abstract
Growing electroactive materials directly on a three-dimensional conductive substrate can effectively reduce the "ineffective area" of the electrode during the electrochemical reaction, increase the utilization rate of the material, and thus increase the energy density of the device. Using the network structure of the three-dimensional conductive substrate to design electrode materials with unique microstructures can also improve the stability of the materials. In this work, we obtained different copper-based materials on the copper foam (CF) by in-situ growth method, and designed an independent three-dimensional layered CuO@NiCoFe-S (CuO@NCFS) core-shell nanostructure composite material. CuO@NCFS exhibits excellent electrochemical performance, reaching a specific capacitance of 4551 mF cm-2 at a current density of 1 mA cm-2 with good cycle stability (94.2% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) uses CuO@NCFS as the positive electrode and rGO as the negative electrode, which can provide an energy rate density of 4.5 mW cm-2 at a high energy density of 99.9 μWh cm-2. The findings provide some insight into rational design of electrode materials for high performance energy storage.
Collapse
|
36
|
Fish bone-derived N, S co-doped interconnected carbon nanofibers network coupled with (Fe, Co, Ni)9S8 nanoparticles as efficient bifunctional electrocatalysts for rechargeable and flexible all-solid-state Zn-air battery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Dang Q, Li Y, Zhang W, Kaneti YV, Hu M, Yamauchi Y. Spatial-controlled etching of coordination polymers. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.04.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Wu W, Wang C, Zhao C, Wang L, Zhu J, Xu Y. Rational design of hierarchical FeCo2O4 nanosheets@NiO nanowhiskers core-shell heterostructure as binder-free electrodes for efficient pseudocapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Sun P, Wang L, Zhang J, Huang J, Wang P, Hou J, Zhang J, Li C, Yao Z, Yang Y, Xiong J. Metal-organic frameworks derived copper doped cobalt phosphide nanosheet arrays with boosted electrochemical performance for hybrid supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Shi X, Yang Z, Liu Y, Tang Y, Liu Y, Gao S, Yang Y, Chen X, Zhong Y, Wu Z, Guo X, Zhong B. Three‐Dimensional SnS
2
Nanoarrays with Enhanced Lithium‐Ion Storage Properties. ChemElectroChem 2020. [DOI: 10.1002/celc.202001175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xinyu Shi
- School of Chemical Engineering Sichuan University, Chengdu 610065 Sichuan PR China
- School of Chemical and Environmental Engineering Hubei Minzu University, Enshi 445000 Hubei PR China
| | - Zuguang Yang
- School of Chemical Engineering Sichuan University, Chengdu 610065 Sichuan PR China
| | - Yumei Liu
- School of Chemical Engineering Sichuan University, Chengdu 610065 Sichuan PR China
| | - Yi Tang
- National Engineering Laboratory for Clean Technology of Leather Manufacture Sichuan University Chengdu 610065 Sichuan PR China
| | - Yuxia Liu
- The Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University, Qufu 273165 Shandong China
| | - Shuyan Gao
- School of Materials Science and Engineering Henan Normal University, Xinxiang 453007 Henan China
| | - Yan Yang
- School of Chemical and Environmental Engineering Hubei Minzu University, Enshi 445000 Hubei PR China
| | - Xianyong Chen
- School of Chemical and Environmental Engineering Hubei Minzu University, Enshi 445000 Hubei PR China
| | - Yanjun Zhong
- School of Chemical Engineering Sichuan University, Chengdu 610065 Sichuan PR China
| | - Zhenguo Wu
- School of Chemical Engineering Sichuan University, Chengdu 610065 Sichuan PR China
| | - Xiaodong Guo
- School of Chemical Engineering Sichuan University, Chengdu 610065 Sichuan PR China
| | - Benhe Zhong
- School of Chemical Engineering Sichuan University, Chengdu 610065 Sichuan PR China
| |
Collapse
|
41
|
Binder-free CuS/ZnS/sodium alginate/rGO nanocomposite hydrogel electrodes for enhanced performance supercapacitors. Int J Biol Macromol 2020; 162:310-319. [DOI: 10.1016/j.ijbiomac.2020.06.169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
|
42
|
Sun Z, Wu X, Qu K, Huang Z, Liu S, Dong M, Guo Z. Bimetallic metal-organic frameworks anchored corncob-derived porous carbon photocatalysts for synergistic degradation of organic pollutants. CHEMOSPHERE 2020; 259:127389. [PMID: 32590175 DOI: 10.1016/j.chemosphere.2020.127389] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) are promising for photocatalysis owing to their excellent structure and performance. Unfortunately, poor stability in both aqueous solutions and high temperatures and lack of adsorption centers during reactions limit their practical applications. Herein, a bimetallic MOF anchored corncob calcined derived activated carbon (CCAC) was successfully prepared by a one-step solvothermal method. Benefiting from unique structures and synergetic effect, the porous carbon provided a high specific surface area for stable MOF support and served as an organic pollutant buffer-reservoir, which was advantageous for efficient photocatalytic degradation of organic pollutants. The optimized MOF/CCAC-5 samples possessed excellent visible light degradation rate, i.e., 100% for Rh B, more than 96% for six mixed dyes, and 98% for tetracycline. This prominent photocatalytic activity was caused by active species, including photoelectrons (e-), photo-holes (h+) and superoxide free radicals (•O2-). The transient photocurrent response and electrochemical impedance tests showed that MOF/CCAC-5 exhibited a relatively high charge separation and low carrier recombination rate. Cyclic and simulation experiments indicated high reusability, stability and universality of the composite photocatalysts. These exciting results provide new pathways for the fabrication of MOFs anchored porous carbon materials.
Collapse
Affiliation(s)
- Zhe Sun
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoliang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Keqi Qu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China.
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China; Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| | - Zhanhua Guo
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
43
|
Ball mill assisted synthesis of cobalt–iron sulfide/N-doped carbon for high performance asymmetric supercapacitors. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01466-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Iron oxide loaded biochar/polyaniline nanocomposite: Synthesis, characterization and electrochemical analysis. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Liu X, Shao Q, Wang Y, Zheng Y, Song H, Wang J, Liu H, Guo Z. One-pot In Situ Microwave Hydrothermally Grown Zeolitic Imidazolate Framework-8 on ZnIn-Layered Double Oxides toward Enhanced Methylene Blue Photodegradation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaoxiao Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yingming Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yuanpeng Zheng
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Song
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Junxiang Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hu Liu
- Key Laboratory of Materials Processing and Mold , Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
46
|
Wang Y, Ge S, Cheng W, Hu Z, Shao Q, Wang X, Lin J, Dong M, Wang J, Guo Z. Microwave Hydrothermally Synthesized Metal-Organic Framework-5 Derived C-doped ZnO with Enhanced Photocatalytic Degradation of Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9658-9667. [PMID: 32787068 DOI: 10.1021/acs.langmuir.0c00395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
C-doped ZnO particles have been successfully prepared by the calcination using microwave hydrothermally prepared metal-organic framework-5 (MOF-5) as the precursor. MOF-5 was turned into C-doped ZnO through calcination at 500 °C, and its cubic shape was well-maintained. X-ray photoelectron spectroscopic studies confirmed the C-doping in the ZnO. The as-prepared C-doped ZnO demonstrated a Rhodamine B (RhB) degradation efficiency of 98% in 2 h under an solar-simulated light irradiation, much higher than that of C-doped ZnO derived from MOF-5 synthesized by the ordinary hydrothermal method. The trapping experiment revealed that the crucial factors in the RhB removal were photogenerated h+ and •O2-.
Collapse
Affiliation(s)
- Yingming Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Shengsong Ge
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Wei Cheng
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Zunju Hu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Xiaojing Wang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Jing Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Junxiang Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
47
|
Zhang K, Ye X, Shen Y, Cen Z, Xu K, Yang F. Interface engineering of Co 3O 4 nanowire arrays with ultrafine NiO nanowires for high-performance rechargeable alkaline batteries. Dalton Trans 2020; 49:8582-8590. [PMID: 32542272 DOI: 10.1039/d0dt01556c] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interface engineering multi-component core-shell nanostructures with highly efficient and reversible faradaic reactions for energy conversion storage devices is still a challenge. Here, Co3O4 nanowires@NiO ultrafine nanowires on Ni foam were well fabricated via coating the NiO ultrafine nanowires on porous Co3O4 nanowire arrays. The combination of structural and compositional advantages endows the Co3O4@NiO core-shell composites with excellent electrochemical performance, such as a favorable specific capacity of 0.71 mA h cm-2 at 3 mA cm-2, excellent rate capability and 85% retention rate up to 10,000 cycles. Rechargeable alkaline batteries with the Co3O4@NiO core-shell composites and AC as cathode and anode, respectively, had a high specific capacity of 0.51 mA h cm-2 and stable cycling ability (81% retention after 5000 cycles). The hierarchical core-shell heterostructure electrode exhibits excellent electrochemical performance, making it a very promising material for next-generation energy storage device applications.
Collapse
Affiliation(s)
- Ke Zhang
- College of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | | | | | | | | | | |
Collapse
|
48
|
Zhang Y, Jiang J, An Y, Wu L, Dou H, Zhang J, Zhang Y, Wu S, Dong M, Zhang X, Guo Z. Sodium-ion capacitors: Materials, Mechanism, and Challenges. CHEMSUSCHEM 2020; 13:2522-2539. [PMID: 32045509 DOI: 10.1002/cssc.201903440] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/19/2020] [Indexed: 05/12/2023]
Abstract
Sodium-ion capacitors (SICs), designed to attain high energy density, rapid energy delivery, and long lifespan, have attracted much attention because of their comparable performance to lithium-ion capacitors (LICs), alongside abundant sodium resources. Conventional SIC design is based on battery-like anodes and capacitive cathodes, in which the battery-like anode materials involve various reactions, such as insertion, alloying, and conversion reactions, and the capacitive cathode materials usually depend on activated carbon (AC). However, researchers have attempted to construct SICs based on battery-like cathodes and capacitive anodes or a combination of both in recent years. In this Minireview, charge storage mechanisms and material design strategies for SICs are summarized, with a focus on the battery-like anode materials from both inorganic and organic sources. Additionally, the challenges in the fabrication of SICs and future research directions are discussed.
Collapse
Affiliation(s)
- Yadi Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
- Integrated Composites Laboratory, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jiangmin Jiang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Yufeng An
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Langyuan Wu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Jiaoxia Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P.R. China
- Integrated Composites Laboratory, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Yu Zhang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P.R. China
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, P.R. China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001, P.R. China
- Integrated Composites Laboratory, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Zhanhu Guo
- Integrated Composites Laboratory, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
49
|
Xu S, Liu R, Shi X, Ma Y, Hong M, Chen X, Wang T, Li F, Hu N, Yang Z. A dual CoNi MOF nanosheet/nanotube assembled on carbon cloth for high performance hybrid supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136124] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Jin QQ, Zhang CY, Wang WN, Chen BJ, Ruan J, Qian HS. Recent Development on Controlled Synthesis of Metal Sulfides Hollow Nanostructures via Hard Template Engaged Strategy: A Mini-Review. CHEM REC 2020; 20:882-892. [PMID: 32319734 DOI: 10.1002/tcr.202000033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 02/01/2023]
Abstract
In this mini-review, we highlighted the recent progresses in the controlled synthesis of metal sulfides hollow nanostructures via hard template technique. After a brief introduction about the formation mechanism of the inorganic hollow nanostructures via hard template technique, the discussions primarily focused on the emerging development of metal sulfides hollow nanostructures. Various synthetic strategies were summarized concerning the use of the hard template engaged strategies to fabricate various metal sulfides hollow nanostructures, such as hydrothermal method, solvothermal method, ion-exchange, sulfidation or calcination etc. Finally, the perspectives and summaries have been presented to demonstrate that a facile synthetic technique would be widely used to fabricate metal sulfides hollow nanostructures with multi-shells and components.
Collapse
Affiliation(s)
- Qian-Qian Jin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Chen-Yang Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Wan-Ni Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ben-Jin Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Juan Ruan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hai-Sheng Qian
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China.,Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|