1
|
Luo Z, Gong J, Li Q, Wei F, Liu B, Taylor Isimjan T, Yang X. Geometric and Electronic Engineering in Co/VN Nanoparticles to Boost Bifunctional Oxygen Electrocatalysis for Aqueous/Flexible Zn-Air Batteries. Chemistry 2024; 30:e202303943. [PMID: 38288675 DOI: 10.1002/chem.202303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 02/21/2024]
Abstract
Modulating metal-metal and metal-support interactions is one of the potent tools for augmenting catalytic performance. Herein, highly active Co/VN nanoparticles are well dispersed on three-dimensional porous carbon nanofoam (Co/VN@NC) with the assistance of dicyandiamide. Studies certify that the consequential disordered carbon substrate reinforces the confinement of electrons, while the coupling of diverse components optimizes charge redistribution among species. Besides, theoretical analyses confirm that the regulated electron configuration can significantly tune the binding strength between the active sites and intermediates, thus optimizing reaction energy barriers. Therefore, Co/VN@NC exhibits a competitive potential difference (ΔE, 0.65 V) between the half-wave potential of ORR and OER potential at 10 mA cm-2, outperforming Pt/C+RuO2 (0.67 V). Further, catalyst-based aqueous/flexible ZABs present superior performances with peak power densities of 156 and 85 mW cm-2, superior to Pt/C-based counterparts (128 and 73 mW cm-2). This research provides a pivotal foundation for the evolution of bifunctional catalysts in the energy sector.
Collapse
Affiliation(s)
- Zuyang Luo
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Junlin Gong
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qiuxia Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fengli Wei
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Baofa Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
2
|
Wan L, Chen J, Zhang Y, Du C, Xie M, Hu S. High-mass-loading cobalt iron phosphide@nickel vanadium layered double hydroxide heterogeneous nanosheet arrays for hybrid supercapacitors. J Colloid Interface Sci 2024; 654:539-549. [PMID: 37862803 DOI: 10.1016/j.jcis.2023.10.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Designing multidimensional heterostructures on flexible substrates is an efficient approach to resolve the low energy density of supercapacitors. Herein, a three-dimensional (3D) porous cobalt iron phosphide (CoFeP)@nickel vanadium-layered double hydroxide (NiV-LDH) heterostructure has been prepared anchored on carbon cloth (CC) substrate. In this nanoarchitecture, NiV-LDH nanosheets are densely wrapped on the surface of CoFeP nanosheets, which forms a hierarchically porous framework with an enlarged surface area and accessible pore channels. Benefiting from the strong interaction and synergistic effect between CoFeP and NiV-LDH, the well-defined heterostructure can realize simultaneously rich redox active sites, rapid reaction dynamics, and good structural stability. Thus, the binder-free CoFeP@NiV-LDH electrode with a high mass loading of 6.47 mg cm-2 displays a significantly increased specific capacity of 903.1C g-1 (2.35C cm-2) at 1 A g-1 and enhanced rate capability when compared to pristine CoFeP and NiV-LDH. Additionally, the assembled hybrid supercapacitor (HSC) yields an energy density of 77.9 Wh kg-1/0.98 Wh cm-2 and excellent long-term stability. This research proposes a rational route for designing heterogeneous micro-/nanoarchitectures with commercial-level mass loading for the practical application of high-energy-density supercapacitors.
Collapse
Affiliation(s)
- Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Shunxuan Hu
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Lu F, Yao J, Ji Y, Shi D, Zhang P, Zhang S. Mixed solvent-assisted synthesis of high mass loading amorphous NiCo-MOF as a promising electrode material for supercapacitors. Dalton Trans 2023; 52:13395-13404. [PMID: 37691555 DOI: 10.1039/d3dt02354k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The pursuit of high mass loading metal-organic framework (MOF) materials via a simple method is crucial to achieve high-performance supercapacitors. Herein, an amorphous NiCo-MOF material with a high mass loading of up to 10.3 mg cm-2 was successfully prepared using a mixed solvent system of ethanol and water. In addition, by adjusting the volume ratio of ethanol to water, amorphous NiCo-MOFs with three different morphologies including nanospheres, nanopores, and ultra-thick plates were obtained. It was found that the different solvent systems not only affected the growth rate of MOFs, but also controlled their nucleation rate by changing the coordination environment of the metal ions, and thus achieved morphology and mass loading regulation, thereby influencing their energy storage behavior. Notably, the optimum NiCo-MOF exhibited the superior specific capacitance of up to 9.7 F cm-2 (941.8 F g-1) at a current density of 5 mA cm-2 and high-rate capability of 71.1% even at 20 mA cm-2. Moreover, the corresponding assembled solid-state supercapacitor exhibited an excellent energy density of 0.65 mW h cm-2 at a power density of 2 mW cm-2 and capacity retention of 84.7% after 8000 cycles at 30 mA cm-2. Overall, this work proposes a feasible and effective strategy to achieve high mass loading NiCo-MOFs, impacting their ultimate electrochemical performance, which can possibly be further extended to other MOFs with superior capacitance.
Collapse
Affiliation(s)
- Faxue Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Junnan Yao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Yajun Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Dong Shi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Pengcheng Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Shixiong Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| |
Collapse
|
4
|
Lv S, Shang W, Chi Y, Wang H, Chu X, Wu B, Geng P, Wang C, Yang J, Cheng Z, Yang X. Achieving Self-Supported Hierarchical Cu(OH) 2/Nickel-Cobalt Sulfide Electrode for Electrochemical Energy Storage. MICROMACHINES 2023; 14:125. [PMID: 36677186 PMCID: PMC9865068 DOI: 10.3390/mi14010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Herein, nickel-cobalt sulfide (NCS) nanoflakes covering the surface of Cu(OH)2 nanorods were achieved by a facile two-step electrodeposition strategy. The effect of CH4N2S concentration on formation mechanism and electrochemical behavior is investigated and optimized. Thanks to the synergistic effect of the selected composite components, the Cu(OH)2/NCS composite electrode can deliver a high areal specific capacitance (Cs) of 7.80 F cm-2 at 2 mA cm-2 and sustain 5.74 F cm-2 at 40 mA cm-2. In addition, coulombic efficiency was up to 84.30% and cyclic stability remained 82.93% within 5000 cycles at 40 mA cm-2. This innovative work provides an effective strategy for the design and construction of hierarchical composite electrodes for the development of energy storage devices.
Collapse
Affiliation(s)
- Sa Lv
- Correspondence: (S.L.); (X.Y.); Tel.: +86-0431-8456-6181 (S.L.)
| | | | | | | | | | | | | | | | | | | | - Xiaotian Yang
- Correspondence: (S.L.); (X.Y.); Tel.: +86-0431-8456-6181 (S.L.)
| |
Collapse
|
5
|
Henríquez R, Mestra-Acosta AS, Grez P, Muñoz E, Sessarego G, Navarrete-Astorga E, Dalchiele EA. High-performance asymmetric supercapacitor based on a CdCO 3/CdO/Co 3O 4 composite supported on Ni foam – part II: a three-electrode electrochemical study †. RSC Adv 2023; 13:10068-10081. [PMID: 37006367 PMCID: PMC10052401 DOI: 10.1039/d3ra00499f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
A binder-free CdCO3/CdO/Co3O4 compound with a micro-cube-like morphology on a nickel foam (NF) made via a facile two-step hydrothermal + annealing procedure has been developed. The morphological, structural and electrochemical behavior of both the single compounds constituting this final product and the final product itself has been studied. The synergistic contribution effect of the single compounds in the final compounded resulting specific capacitance values are presented and discussed. The CdCO3/CdO/Co3O4@NF electrode exhibits excellent supercapacitive performance with a high specific capacitance (CS) of 1.759 × 103 F g−1 at a current density of 1 mA cm−2 and a CS value of 792.3 F g−1 at a current density of 50 mA cm−2 with a very good rate capability. The CdCO3/CdO/Co3O4@NF electrode also demonstrates a high coulombic efficiency of 96% at a current density as high as 50 mA cm−2 and also exhibits a good cycle stability with capacitance retention of ca. 100% after 1000 cycles at a current density of 10 mA cm−2 along with a potential window of 0.4 V. The obtained results suggest that the facilely synthesized CdCO3/CdO/Co3O4 compound has great potential in high-performance electrochemical supercapacitor devices. Schematic illustration of the two-step process involved in the preparation of the different chemical compounds supported on the nickel foam substrates.![]()
Collapse
Affiliation(s)
- Rodrigo Henríquez
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de ValparaísoCasilla 4059ValparaísoChile+56 32 2274921
| | - Alifhers S. Mestra-Acosta
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de ValparaísoCasilla 4059ValparaísoChile+56 32 2274921
| | - Paula Grez
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de ValparaísoCasilla 4059ValparaísoChile+56 32 2274921
| | - Eduardo Muñoz
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de ValparaísoCasilla 4059ValparaísoChile+56 32 2274921
| | - Gustavo Sessarego
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de ValparaísoCasilla 4059ValparaísoChile+56 32 2274921
| | - Elena Navarrete-Astorga
- Universidad de Málaga, Departamento de Física Aplicada I, Laboratorio de Materiales y Superficies (Unidad asociada al CSIC)E29071 MálagaSpain
| | - Enrique A. Dalchiele
- Instituto de Física, Facultad de IngenieríaHerrera y Reissig 565, C. C. 3011000 MontevideoUruguay
| |
Collapse
|
6
|
Quispe-Garrido LV, Monje IE, López EO, Gonçalves JM, Martins CS, Planes GÁ, Ruiz-Montoya JG, Baena-Moncada AM. Influence of the Molar Ratio of Co and V in Bimetallic Oxides on Their Pseudocapacitive Properties. ACS OMEGA 2022; 7:43522-43530. [PMID: 36506126 PMCID: PMC9730493 DOI: 10.1021/acsomega.2c04126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Bimetallic oxides have significant attraction as supercapacitor electrode materials due to their highly reversible redox processes, which are commonly associated with their surface chemistry and morphological features. Here, we report the synthesis, characterization, and electrochemical evaluation of bimetallic oxides with different molar compositions of Co and V (Co0.6V0.4, Co0.64V0.36, Co0.68V0.32, and Co0.7V0.3 denoted as S1, S2, S3, and S4 samples, respectively). The materials were synthesized by a modified solvothermal method using glycerol as a stabilizing agent, characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, N2 adsorption isotherms, cyclic voltammetry, and galvanostatic charged/discharged in a three-electrode cell. The role of the CoV oxide compositions on the pseudocapacitive properties was studied through the analysis of the energy storage mechanism following the power law and Dunn's methodology to obtain the b values. An important finding of this work is that CoV oxides exhibited electrochemical characteristics of a pseudocapacitive electrode material even though the charge storage occurs in bulk. This behavior is consistent with the pseudocapacitance generated by redox processes, showing b values of 0.67, 0.53, 0.75, and 0.84, with a capacitive current contribution of 74, 74, 63, and 70% analyzed at a scan rate of 1 mV s-1, for S4, S3, S2, and S1 samples, respectively. Co0.7V0.3 (S4) oxide presented the highest specific capacitance of 299 F g-1 at 0.5 A g-1 with a Coulombic efficiency of 93% tested at 4 A g-1. The better electrochemical performance of this sample was attributed to the synergistic effect of the Co and V atoms since a minimum amount of V in the structure may distort the crystal lattice and improve the electrolyte diffusion, in addition to the formation of several oxidation states due to reduction of V5+, including V3+ and V4+ as well as to the formation of the metastable V4O9.
Collapse
Affiliation(s)
- Lady V. Quispe-Garrido
- Laboratorio
de Investigación de Electroquímica Aplicada, Facultad
de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Peru
| | - Ivonne E. Monje
- Laboratorio
de Investigación de Electroquímica Aplicada, Facultad
de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Peru
| | - Elvis O. López
- Department
of Experimental Low Energy Physics, Brazilian
Center for Research in Physics (CBPF), Rio de Janeiro 22290-180, Brazil
| | - Josué M. Gonçalves
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP 05508-000, Brazil
| | - Cleonice S. Martins
- Department
of Experimental Low Energy Physics, Brazilian
Center for Research in Physics (CBPF), Rio de Janeiro 22290-180, Brazil
| | - Gabriel Ángel Planes
- Instituto
de Investigación en Tecnologías Energéticas y
Materiales Avanzados (IITEMA), CONICET, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Córdoba, Argentina
| | - José G. Ruiz-Montoya
- Laboratorio
de Investigación de Electroquímica Aplicada, Facultad
de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Peru
| | - Angélica Maria Baena-Moncada
- Laboratorio
de Investigación de Electroquímica Aplicada, Facultad
de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Peru
| |
Collapse
|
7
|
Ultrafast synthesizing nanoflower-like composites of metal carbides and metal oxyhydroxides towards high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Hierarchical Design of Co(OH)2/Ni3S2 Heterostructure on Nickel Foam for Energy Storage. Processes (Basel) 2022. [DOI: 10.3390/pr10071255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we rationally designed a facile stepwise route and successfully synthesized a Co(OH)2/Ni3S2 heterostructure supported on nickel foam (NF) as a binder-free electrode for energy storage. Galvanostatic deposition was first applied to produce uniform Co(OH)2 nanoflakes on NF. Then, Ni3S2 was applied to its surface by potentiostatic deposition to form a Co(OH)2/Ni3S2 heterostructure at room temperature. The added Co(OH)2 not only functions as a practical electrochemically active component but also provides support for the growth of Ni3S2, and the deposition amount of Ni3S2 is controlled by adjusting the electrodeposition duration of Ni3S2. Then, the electrochemical behaviors of the Co(OH)2/Ni3S2 composite can be optimized. A maximum areal specific capacitance (Cs) of 5.73 F cm−2 at 2 mA cm−2 was achieved, and the coulombic efficiency was as high as 94.14%. A capacitance retention of 84.38% was measured after 5000 charge–discharge cycles.
Collapse
|
9
|
Li Y, Ma J, Wu Z, Wang Z. Direct Electron Transfer Coordinated by Oxygen Vacancies Boosts Selective Nitrate Reduction to N 2 on a Co-CuO x Electroactive Filter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8673-8681. [PMID: 35575637 DOI: 10.1021/acs.est.1c05841] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic hydrogen (H*) is used as an important mediator for electrochemical nitrate reduction; however, the Faradaic efficiency (FE) and selective reduction to N2 are likely compromised due to the side reactions (e.g., ammonia generation and hydrogen evolution reactions). This work reports a Co-CuOx electrochemical filter with CoOx nanoclusters rooted on vertically aligned CuOx nanowalls for selective nitrate reduction to N2, utilizing the direct electron transfer between oxygen vacancies and nitrate to suppress the contribution by H*. At a cathodic potential of -1.1 V (vs Ag/AgCl), the Co-CuOx filter showed 95.2% nitrate removal and 96.0% N2 selectivity at an influent nitrate concentration of 20 N-mg L-1. Meanwhile, the energy consumption and FE were 0.60 kW h m-3 and 53.5%, respectively, at a permeate flux of 60 L m-2 h-1. The presence of abundant oxygen vacancies on Co-CuOx was due to the change in the electron density of the Cu atom and a decrease of the coordination numbers of Cu-O via cobalt doping. Theoretical calculations and electrochemical tests showed that the oxygen vacancies coordinated nitrate adsorption and subsequent reduction reactions, thus suppressing the contribution of H* to nitrate reduction and leading to a thermodynamically favorable process to N2 via direct electron transfer.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| |
Collapse
|
10
|
Lei L, Yin Z, Huang D, Chen Y, Chen S, Cheng M, Du L, Liang Q. Metallic Co and crystalline Co-Mo oxides supported on graphite felt for bifunctional electrocatalytic hydrogen evolution and urea oxidation. J Colloid Interface Sci 2022; 612:413-423. [PMID: 34999546 DOI: 10.1016/j.jcis.2021.12.149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022]
Abstract
Oxygen evolution reaction (OER) and urea oxidation reaction (UOR) play important roles in the field of hydrogen energy preparation and pollution treatment. In this work, by merging bimetallic Co-Mo oxides with metallic Co on the graphite felt (GF), we effectively manufacture a 3D bifunctional and highly efficient electrocatalyst (CoMoO@Co/GF) with multi-site functionality for the simultaneous reduction of water and the oxidation of urea in an alkaline medium. The presence of metallic Co causes Co-Mo oxides to evolve from amorphous to crystalline structures. The coupling interface produced between metallic Co and Co-Mo oxides is proven to facilitate electron transport in addition to extensively accessible and highly electroactive Co-Mo oxide nanoflower architecture. The experimental results reveal that the overpotentials for OER and UOR in the CoMoO@Co/GF electrode require only 269 and 115 mV to obtain a current density of 10 mA cm-2, respectively. Furthermore, with the aid of urea, the overpotential for HER at the current density of 10 mA cm-2 is lowered to 155 mV. Most notably, the constructed CoMoO@Co/GF-based electrolytic cell only requires a 1.5 V dry battery to achieve effective H2 evolution and noteworthy stability, outperforming the commercial catalyst-based device and many previous results. The combination of experiments and theoretical calculations further clarifies the active sites in the catalyst. What's more, the pathway of electron transfer in the catalytic process is defined.
Collapse
Affiliation(s)
- Lei Lei
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhuo Yin
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| | - Danlian Huang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Yashi Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Li Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
11
|
Wang Z, Liu Z, Wang L, Zhao K, Sun X, Jia D, Liu J. Construction of core‐shell heterostructured nanoarrays of Cu(OH)2@NiFe‐layered double hydroxide via facile potentiostatic electrodeposition for highly efficient supercapacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zihao Wang
- Qingdao University College of Materials Science and Engineering CHINA
| | - Zhiqiang Liu
- Qingdao University College of Materials Science and Engineering CHINA
| | - Lei Wang
- Qingdao University College of Materials Science and Engineering CHINA
| | - Kai Zhao
- Qingdao University College of Materials Science and Engineering CHINA
| | - Xiaolin Sun
- Qingdao University College of Materials Science and Engineering CHINA
| | - Dedong Jia
- Qingdao University College of Materials Science and Engineering CHINA
| | | |
Collapse
|
12
|
Chang HW, Chen SC, Chen PW, Liu FJ, Tsai YC. Constructing Morphologically Tunable Copper Oxide-Based Nanomaterials on Cu Wire with/without the Deposition of Manganese Oxide as Bifunctional Materials for Glucose Sensing and Supercapacitors. Int J Mol Sci 2022; 23:3299. [PMID: 35328716 PMCID: PMC8955748 DOI: 10.3390/ijms23063299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 01/30/2023] Open
Abstract
Morphologically tunable copper oxide-based nanomaterials on Cu wire have been synthesized through a one-step alkali-assisted surface oxidation process for non-enzymatic glucose sensing. Subsequently, copper oxide-based nanomaterials on Cu wire as a supporting matrix to deposit manganese oxide for the construction of heterostructured Mn-Cu bimetallic oxide architectures through spontaneous redox reaction in the KMnO4 solution for supercapacitors. Field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) confirmed that morphological and phase transformation from Cu(OH)2 to CuO occurred in copper oxide-based nanomaterials on Cu wire with different degrees of growth reaction. In non-enzymatic glucose sensing, morphologically tunable copper oxide-based nanomaterials owned the high tunability of electrocatalytically active sites and intrinsic catalytic activity to meet efficient glucose electrooxidation for obtaining promoted non-enzymatic glucose sensing performances (sensitivity of 2331 μA mM-1 cm-2 and the limit of detection of 0.02 mM). In the supercapacitor, heterostructured Mn-Cu bimetallic oxide-based nanomaterials delivered abundant redox-active sites and continuous conductive network to optimize the synergistic effect of Mn and Cu redox species for boosting the pseudo-capacitance performance (areal capacitance value of 79.4 mF cm-2 at 0.2 mA cm-2 current density and capacitance retention of 74.9% after 1000 cycles). It concluded that morphologically tunable copper oxide-based nanomaterials on Cu wire with/without deposition of manganese oxide could be good candidates for the future design of synergistic multifunctional materials in electrochemical techniques.
Collapse
Affiliation(s)
- Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan; (S.-C.C.); (P.-W.C.); (F.-J.L.)
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Song-Chi Chen
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan; (S.-C.C.); (P.-W.C.); (F.-J.L.)
| | - Pei-Wei Chen
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan; (S.-C.C.); (P.-W.C.); (F.-J.L.)
| | - Feng-Jiin Liu
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan; (S.-C.C.); (P.-W.C.); (F.-J.L.)
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Yu-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
13
|
Design and Construction of Cu(OH)2/Ni3S2 Composite Electrode on Cu Foam by Two-Step Electrodeposition. MICROMACHINES 2022; 13:mi13020237. [PMID: 35208361 PMCID: PMC8878843 DOI: 10.3390/mi13020237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023]
Abstract
A Cu(OH)2/Ni3S2 composite has been designed and in situ constructed on Cu foam substrate by facile two-step electrodeposition. Cu(OH)2 is achieved on Cu foam by galvanostatic electrodeposition, and the subsequent coating of Ni3S2 is realized by cyclic voltammetric (CV) electrodeposition. The introduction of Cu(OH)2 provides skeleton support and a large specific surface area for the Ni3S2 electrodeposition. Benefiting from the selection of different components and preparation technology, the Cu(OH)2/Ni3S2 composite exhibits enhanced electrochemical properties with a high specific capacitance of 4.85 F cm−2 at 2 mA cm−2 and long-term cyclic stability at 80.84% (4000 cycles).
Collapse
|
14
|
Yang H, Guo H, Li X, Ren W, Song R. Regulation effects of Co 2+ on the construction of a Cu-Ni(OH) 2@CoO nanoflower cluster heterojunction: a critical factor in obtaining a high-performance battery-type hybrid supercapacitor. NANOSCALE 2021; 13:18182-18191. [PMID: 34705004 DOI: 10.1039/d1nr04668c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrode materials with a hierarchical nanostructure derived from transition metal-based compounds is an important branch of energy storage materials and have attracted widespread attention in recent years. Herein, a Cu-Ni(OH)2@CoO nanoflower cluster (Cu-Ni(OH)2@CoO NFCs) heterojunction was successfully constructed by a simple two-step hydrothermal method in the presence of Co2+. The optimized Cu-Ni(OH)2@CoO NFCs presented a high capacitive performance and outstanding cycle stability when used as a battery-type supercapacitive electrode material. In particular, an ultra-high areal specific capacitance of 5.8 F cm-2 (354.8 mA h g-1) at 1 mA cm-2 was obtained in 3 M KOH electrolyte. Even after 10 000 cycles, the capacitance still remained 98.4% of its initial value. All the experimental characterization results indicate that the excellent performance of the Cu-Ni(OH)2@CoO NFC self-supporting electrode can be attributed to the regulatory effect of Co2+ on the morphology and electronic structure, which is induced by the second hydrothermal process. More specifically, the transformations in the morphology and electronic structure will expose more active sites and accelerate charge transfer during the electrochemical reaction. Besides, the rapid oxidation reactions of multivalent transition metal ions and enhanced hydrophilicity promote the electrochemical reaction kinetics processes on the Cu-Ni(OH)2@CoO NFC electrode. This study provides a promising strategy for exploring low-cost and efficient electrode materials based on transition metal compounds for electrochemical energy storage.
Collapse
Affiliation(s)
- Huifang Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| | - Haoran Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| | - Xinpan Li
- Institute of Chemistry, Chinese Academy of Sciences (CAS), 2 Zhongguancun North Road, Haidian District, Beijing, 100190, PR China
| | - Wenlu Ren
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| | - Rui Song
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| |
Collapse
|
15
|
Qiao H, Yu Y, Song K, Liu Z, Hu X. High mass loading NiCo-OH nanothorns coated CuO nanowire arrays for high-capacity nickel-zinc battery. NANOTECHNOLOGY 2021; 32:505404. [PMID: 34479223 DOI: 10.1088/1361-6528/ac238e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The rational design of cathode materials with core-shell heterostructures is significant to develop a Ni//Zn battery with both high gravimetric and areal energy density under high mass loading. In this work, the NiCo-OH nanothorns with a mass loading of 11.6 mg cm-2were coated on CuO nanowire arrays via a chemical bath deposition method. Thanks to the construction of 3D core-shell nanowire arrays and appropriate cobalt doping, as-fabricated Ni//Zn battery based on the NiCo-OH as cathode achieved the maximum specific capacity of 383 mAh g-1at 5 mA cm-2with high energy density of 649 Wh kg-1at 0.73 kW kg-1, indicating good energy storage performance in Ni//Zn battery.
Collapse
Affiliation(s)
- Handan Qiao
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, 211816, Nanjing, Jiangsu, People's Republic of China
| | - Yawei Yu
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, 211816, Nanjing, Jiangsu, People's Republic of China
| | - Kefan Song
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, 211816, Nanjing, Jiangsu, People's Republic of China
| | - Zeyu Liu
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, 211816, Nanjing, Jiangsu, People's Republic of China
| | - Xiulan Hu
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, 211816, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
Henríquez R, Mestra-Acosta AS, Muñoz E, Grez P, Navarrete-Astorga E, Dalchiele EA. High-performance asymmetric supercapacitor based on CdCO 3/CdO/Co 3O 4 composite supported on Ni foam. RSC Adv 2021; 11:31557-31565. [PMID: 35496886 PMCID: PMC9041682 DOI: 10.1039/d1ra05243h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/04/2021] [Indexed: 02/01/2023] Open
Abstract
A CdCO3/CdO/Co3O4 composite has been prepared on nickel foam through a combined hydrothermal-annealing method. An asymmetric hybrid supercapacitor (SC) device was assembled with this composite as the positive electrode and activated carbon was the negative electrode. The SC exhibited a high specific capacitance of 84 F g−1 @ 1 mA cm−2, a maximum energy density of 26.3 W h kg−1, and a power density of 2290 W kg−1, along with a wide potential window of 1.5 V and long cycle life (92% after 6000 cycles). SCs assembled in series powered various light-emitting diodes and moved an electrical mini-motor. This work presents for the first time a CdCO3/CdO/Co3O4@nickel foam based supercapacitor with high both specific capacitance and energy density, a widespread potential window and a long cycle life.![]()
Collapse
Affiliation(s)
- Rodrigo Henríquez
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso Casilla 4059 Valparaíso Chile +56 32 2274921
| | - Alifhers S Mestra-Acosta
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso Casilla 4059 Valparaíso Chile +56 32 2274921
| | - Eduardo Muñoz
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso Casilla 4059 Valparaíso Chile +56 32 2274921
| | - Paula Grez
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso Casilla 4059 Valparaíso Chile +56 32 2274921
| | - Elena Navarrete-Astorga
- Universidad de Málaga, Departamento de Física Aplicada I, Laboratorio de Materiales y Superficies (Unidad asociada al CSIC) E29071 Málaga Spain
| | - Enrique A Dalchiele
- Instituto de Física, Facultad de Ingeniería Herrera y Reissig 565, C. C. 30 11000 Montevideo Uruguay
| |
Collapse
|
17
|
Zhou C, Bai J, Zhang Y, Li J, Li Z, Jiang P, Fang F, Zhou M, Mei X, Zhou B. Novel 3D Pd-Cu(OH) 2/CF cathode for rapid reduction of nitrate-N and simultaneous total nitrogen removal from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123232. [PMID: 32653780 DOI: 10.1016/j.jhazmat.2020.123232] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Removal of NO3- is a challenging problem in wastewater treatment. Electrocatalysis shows a great potential to remove NO3- but selectively converting NO3- to N2 is facing a low efficiency. Here, a novel 3D Pd-Cu(OH)2/CF cathode based electrocatalytic (EC) system was proposed that can rapidly and selectively convert NO3- to NH4+, and further convert to N2 simultaneously. The special designs for the system include: Cu(OH)2 nanowires were firstly grown on copper foam (CF) with excellent conductivity that features high specific surface area in enhancing NO3- absorption and conversion to NO2-. Then, palladium (Pd) with a superior photons activation capacity was doped on the Cu(OH)2 nanowires to promote the reduction of NO2- to NH4+. Then NH4+ was quickly oxidized into N2 by active chlorine. Finally, total nitrogen (TN) could easily be removed completely via above exhaustive cycle reactions. The 3D Pd-Cu(OH)2/CF cathode exhibits a 98.8 % conversion of NO3- to NH4+ in 45 min with the reported highest removal rate of 0.017 cm-2 min-1, which is 19.4 times higher than that of CF. The converted NH4+ was finally exhaustively oxidized to N2 with a 98.7 % of TN removal in 60 min.
Collapse
Affiliation(s)
- Changhui Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing Bai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yan Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinhua Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Zhijing Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Panyu Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fei Fang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Mengyang Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaojie Mei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Key Laboratory of Thin Film and Microfabrication Technology, Ministry of Education, Shanghai 200240, PR China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan 650034, PR China.
| |
Collapse
|
18
|
Song K, Wang X, Li J, Zhang B, Yang R, Liu P, Wang J. 3D hierarchical CoFe2O4/CoOOH nanowire arrays on Ni-Sponge for high-performance flexible supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135892] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|