1
|
Sun G, Fu Y, Li J, Ma S, Lu Y, Liu Q. N, F Co-Doped Carbon Material Self-Supporting Cathode for High-Performance Lithium-Oxygen Batteries. CHEMSUSCHEM 2024:e202401644. [PMID: 39299914 DOI: 10.1002/cssc.202401644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
The Li-O2 battery has emerged as a promising energy storage system due to its exceptionally high theoretical energy density of 3500 Wh kg-1. However, the sluggish kinetics associated with the formation and decomposition of discharge product Li2O2 poses several challenges in Li-O2 batteries, including excessive over-potential, limited rate performance, and reduced actual specific energy. Consequently, the development of cost-effective cathode catalysts with enhanced catalytic activity and long-term stability represents a viable approach to address these challenges. In this study, commercial melamine foam is utilized as a precursor material which was subjected to pyrolysis at elevated temperatures with PVDF to synthesize N, F co-doped self-supporting carbon cathode (NF-NSC). Remarkably, thanks to the synergistic effects of N, F heteroatomic in conjunction with the inherent three-dimensional reticular porous structure, NF-NSC exhibited enhanced electrochemical performance when utilized in Li-O2 batteries. Specifically, the NF-NSC cathode demonstrated an impressive discharge specific capacity of up to 35204 mAh g-1 alongside a low over-potential (0.86 V) and excellent cycling stability (146 cycles).
Collapse
Affiliation(s)
- Guangting Sun
- The College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yaning Fu
- The College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jie Li
- The College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shiyu Ma
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454150, Henan, China
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450007, Henan, China
| | - Youcai Lu
- The College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qingchao Liu
- The College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China
| |
Collapse
|
2
|
Xiao BH, Xiao K, Li JX, Xiao CF, Cao S, Liu ZQ. Flexible electrochemical energy storage devices and related applications: recent progress and challenges. Chem Sci 2024; 15:11229-11266. [PMID: 39055032 PMCID: PMC11268522 DOI: 10.1039/d4sc02139h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Given the escalating demand for wearable electronics, there is an urgent need to explore cost-effective and environmentally friendly flexible energy storage devices with exceptional electrochemical properties. However, the existing types of flexible energy storage devices encounter challenges in effectively integrating mechanical and electrochemical performances. This review is intended to provide strategies for the design of components in flexible energy storage devices (electrode materials, gel electrolytes, and separators) with the aim of developing energy storage systems with excellent performance and deformability. Firstly, a concise overview is provided on the structural characteristics and properties of carbon-based materials and conductive polymer materials utilized in flexible energy storage devices. Secondly, the fabrication process and strategies for optimizing their structures are summarized. Subsequently, a comprehensive review is presented regarding the applications of carbon-based materials and conductive polymer materials in various fields of flexible energy storage, such as supercapacitors, lithium-ion batteries, and zinc-ion batteries. Finally, the challenges and future directions for next-generation flexible energy storage systems are proposed.
Collapse
Affiliation(s)
- Bo-Hao Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Jian-Xi Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Can-Fei Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Shunsheng Cao
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
3
|
Ding M, Zhao D, Wei R, Duan Z, Zhao Y, Li Z, Lin T, Li C. Multifunctional elastomeric composites based on 3D graphene porous materials. EXPLORATION (BEIJING, CHINA) 2024; 4:20230057. [PMID: 38855621 PMCID: PMC11022621 DOI: 10.1002/exp.20230057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/25/2023] [Indexed: 06/11/2024]
Abstract
3D graphene porous materials (3GPM), which have low density, large porosity, excellent compressibility, high conductivity, hold huge promise for a wide range of applications. Nevertheless, most 3GPM have brittle and weak network structures, which limits their widespread use. Therefore, the preparation of a robust and elastic graphene porous network is critical for the functionalization of 3GPM. Herein, the recent research of 3GPM with excellent mechanical properties are summarized and the focus is on the effect factors that affect the mechanical properties of 3GPM. Moreover, the applications of elastic 3GPM in various fields, such as adsorption, energy storage, solar steam generation, sensors, flexible electronics, and electromagnetic wave shielding are comprehensively reviewed. At last, the new challenges and perspective for fabrication and functionalization of robust and elastic 3GPM are outlined. It is expected that the perspective will inspire more new ideas in preparation and functionalization of 3GPM.
Collapse
Affiliation(s)
- Meichun Ding
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Demin Zhao
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Rui Wei
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Zhenying Duan
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Yuxi Zhao
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Aix Marseille Univ, CNRSInstitut de Chimie Radicalaire (ICR)MarseilleFrance
| | - Zeyang Li
- School of The Queen's University of Belfast Joint CollegeChina Medical UniversityShenyangChina
| | - Tianhao Lin
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Chenwei Li
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
4
|
Qu Z, Huang L, Guo M, Sun T, Xu X, Gao Z. Application of novel polypyrrole/melamine foam auxiliary electrode in promoting electrokinetic remediation of Cr(VI)-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162840. [PMID: 36924972 DOI: 10.1016/j.scitotenv.2023.162840] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Zhengjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Lihui Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Mengmeng Guo
- Jinan Ecological and Environmental Monitoring Center, Jinan 250000, China
| | - Ting Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoshen Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics of Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Cheng W, Huang W, Zhang A, Du Y, Cui L, Tian P, Liu J. Hierarchical MoO
3
‐MnNi LDH@Cu(OH)
2
Core‐Shell Nanorod Arrays Constructed through In‐Situ Oxidation Combined with a Hydrothermal Strategy for High‐Performance Energy Storage. ChemElectroChem 2022. [DOI: 10.1002/celc.202201051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wenting Cheng
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
| | - Wenjun Huang
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
| | - Aitang Zhang
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
| | - Yiqi Du
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
| | - Liang Cui
- College of Materials Science and Engineering Linyi University Linyi 276000 Shandong China
| | - Pengfei Tian
- College of Materials Science and Engineering Linyi University Linyi 276000 Shandong China
| | - Jingquan Liu
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
- College of Materials Science and Engineering Linyi University Linyi 276000 Shandong China
| |
Collapse
|
6
|
Solvent-assisted assembly of reduced graphene oxide/MXene-polypyrrole composite film for flexible supercapacitors. J Colloid Interface Sci 2022; 630:817-827. [DOI: 10.1016/j.jcis.2022.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
7
|
Ni0.96S/NiS/Ni3S2 coated three-dimensional graphene composite for high energy storage and capacitance retention supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Fu J, Cai C, Zhang Z, Wang X, Wang C, Tu H, Wu H, Zhao Y, Zhang C, Zhu J, Zhao X, Xu R, Wang M, Sherrell P, Chen J. Free-standing sulfonated graphene-polypyrrole-polyethylene glycol foam for highly flexible supercapacitors. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Lv S, Ma L, Shen X, Tong H. Nitrogen and sulfur co-doped porous chitosan hydrogel-derived carbons for supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Ding M, Li C. Recent Advances in Simple Preparation of 3D Graphene Aerogels Based on 2D Graphene Materials. Front Chem 2022; 10:815463. [PMID: 35155367 PMCID: PMC8825482 DOI: 10.3389/fchem.2022.815463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022] Open
Abstract
Recently, 3D graphene aerogels (3GAs) with high electrical conductivity, excellent mechanical properties, and fast mass and electron transport have attracted increasing attention and shown wide applications (such as flexible electronics devices, sensors, absorbents, catalysis, energy storage devices, solar steam generation devices, and so on). The drying process becomes an important factor limiting the large-scale preparation of 3GAs. Therefore, how to simplify the preparation process plays an important role in the large-scale application of 3GAs. In this study, we summarize the recent progresses of 3GAs by different drying methods and focus on the effect of robust graphene network on the simple preparation of 3GAs. Besides, the design and synthesis strategies of 3GAs with robust graphene network structures have been systematically discussed. Finally, the emerging challenges and prospective for developing simple preparation and functionalization of 3GAs were outlined. It is expected that our study will lay a foundation for large-scale preparation and application of 3GAs and inspire more new ideas in this field.
Collapse
Affiliation(s)
- Meichun Ding
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chenwei Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Chenwei Li,
| |
Collapse
|
11
|
Xu S, Hao H, Chen Y, Li W, Shen W, Shearing PR, Brett DJL, He G. Flexible all-solid-state supercapacitors based on PPy/rGO nanocomposite on cotton fabric. NANOTECHNOLOGY 2021; 32:305401. [PMID: 33878745 DOI: 10.1088/1361-6528/abf9c4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Polypyrrole (PPy) has high electrochemical activity and low cost, so it has great application prospects in wearable supercapacitors. Herein, we have successfully prepared polypyrrole/reduced graphene oxide (PPy/rGO) nanocomposite cotton fabric (NCF) by chemical polymerization, which exhibits splendid electrochemical performance compared with the individual. The addition of rGO can block the deformation of PPy caused by the expansion and contraction. The as-prepared PPy-0.5/rGO NCF electrode exhibits the brilliant specific capacitance (9300 mF cm-2at 1 mA cm-2) and the capacitance retention with 94.47% after 10 000 cycles. At the same time, the superior capacitance stability under different bending conditions and reuse capability have been achieved. All-solid-state supercapacitor has high energy density of 167μWh cm-2with a power density of 1.20 mW cm-2. Therefore, the PPy-0.5/rGO NCF electrode has a broad application prospect in high-performance flexible supercapacitor fabric electrode.
Collapse
Affiliation(s)
- Shuzhen Xu
- College of Material Engineering, Shanghai University of Engineering Science 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Huilian Hao
- College of Material Engineering, Shanghai University of Engineering Science 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Yinan Chen
- College of Material Engineering, Shanghai University of Engineering Science 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Wenyao Li
- College of Material Engineering, Shanghai University of Engineering Science 333 Long Teng Road, Shanghai 201620, People's Republic of China
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Wenzhong Shen
- Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, People's Republic of China
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Dan J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Guanjie He
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, United Kingdom
| |
Collapse
|
12
|
Fan Y, Tao T, Gao Y, Deng C, Yu B, Chen YI, Lu S, Huang S. A Self-Healing Amalgam Interface in Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004798. [PMID: 32969108 DOI: 10.1002/adma.202004798] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Poor cyclability and safety concerns caused by the uncontrollable dendrite growth and large interfacial resistance severely restrict the practical applications of metal batteries. Herein, a facile, universal strategy to fabricate ceramic and glass phase compatible, and self-healing metal anodes is proposed. Various amalgam-metal anodes (Li, Na, Zn, Al, and Mg) show a long cycle life in symmetric cells. It has been found that liquid Li amalgam shows a complete wetting with the surface of lanthanum lithium titanate electrolyte and a glass-phase solid-state electrolyte. The interfacial compatibility between the lithium metal anode and solid-state electrolyte is dramatically improved by using an in situ regenerated amalgam interface with high electron/ion dual-conductivity, obviously decreasing the anode/electrolyte interfacial impedance. The lithium-amalgam interface between the metal anode and electrolyte undergoes a reversible isothermal phase transition between solid and liquid during the cycling process at room temperature, resulting in a self-healing surface of metal anodes.
Collapse
Affiliation(s)
- Ye Fan
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Tao Tao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Dongguan South China Design Innovation Institute, Dongguan, 523808, P. R. China
| | - Yuxuan Gao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Chao Deng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Baozhi Yu
- Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria, 3216, Australia
| | - Ying Ian Chen
- Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria, 3216, Australia
| | - Shengguo Lu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|