1
|
Zhou T, Yuan Y, Xiao L, Ding W, Wang Y, Lv LP. Boosting of Redox-Active Polyimide Porous Organic Polymers with Multi-Walled Carbon Nanotubes towards Pseudocapacitive Energy Storage. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1388. [PMID: 39269050 PMCID: PMC11397463 DOI: 10.3390/nano14171388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Redox-active porous organic polymers (POPs) demonstrate significant potential in supercapacitors. However, their intrinsic low electrical conductivity and stacking tendencies often lead to low utilization rates of redox-active sites within their structural units. Herein, polyimide POPs (donated as PMTA) are synthesized in situ on multi-walled carbon nanotubes (MWCNTs) from tetramino-benzoquinone (TABQ) and 1,4,5,8-naphthalene tetracarboxylic dianhydride (PMDA) monomers. The strong π-π stacking interactions drive the PMTA POPs and the MWCNTs together to form a PMTA/MWCNT composite. With the assistance of MWCNTs, the stacking issue and low conductivity of PMTA POPs are well addressed, leading to the obvious activation and enhanced utilization of the redox-active groups in the PMTA POPs. PMTA/MWCNT then achieves a high capacitance of 375.2 F g-1 at 1 A g-1 as compared to the pristine PMTA POPs (5.7 F g-1) and excellent cycling stability of 89.7% after 8000 cycles at 5 A g-1. Cyclic voltammetry (CV) and in situ Fourier-Transform Infrared (FT-IR) results reveal that the electrode reactions involve the reversible structural evolution of carbonyl groups, which are activated to provide rich pseudocapacitance. Asymmetric supercapacitors (ASCs) assembled with PMTA/MWCNTs and activated carbon (AC) offer a high energy density of 15.4 Wh kg-1 at 980.4 W kg-1 and maintain a capacitance retention of 125% after 10,000 cycles at 5 A g-1, indicating their good potential for practical applications.
Collapse
Affiliation(s)
- Tian Zhou
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yu Yuan
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Luyi Xiao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Wei Ding
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Li-Ping Lv
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
2
|
Raucci A, Miglione A, Cimmino W, Cioffi A, Singh S, Spinelli M, Amoresano A, Musile G, Cinti S. Technical Evaluation of a Paper-Based Electrochemical Strip to Measure Nitrite Ions in the Forensic Field. ACS MEASUREMENT SCIENCE AU 2024; 4:136-143. [PMID: 38404486 PMCID: PMC10885323 DOI: 10.1021/acsmeasuresciau.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 02/27/2024]
Abstract
Nitrite is a compound used as a food additive for its preservative action and coloring capability, as well as an industrial agent for its antifreezing action and for preventing corrosion, and it is also used as a pharmaceutical in cyanide detoxification therapy. However, even recently, because of its high toxicity, it has been used as a murder and suicidal agent due to its affordability and ready availability. In this technical report, we describe an electrochemical paper-based device for selectively determining nitrite in complex biofluids, such as blood, cadaveric blood, vitreous humor, serum, plasma, and urine. The approach was validated in terms of the linearity of response, selectivity, and sensitivity, and the accuracy of the determination was verified by comparing the results with a chromatographic instrumental method. A linear response was observed in the micromolar range; the sensitivity of the method expressed as the limit of detection was 0.4 μM in buffer measurements. The simplicity of use, the portability of the device, and the performance shown make the approach suitable for detecting nitrite in complex biofluids, including contexts of forensic interest, such as murders or suicides in which nitrite is used as a toxic agent. Limits of detection of ca. 1, 2, 4, 5, 3, and 4 μM were obtained in vitreous humor, urine, serum and plasma, blood, and cadaveric blood, also highlighting a satisfactory accuracy comprised between 91 and 112%.
Collapse
Affiliation(s)
- Ada Raucci
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Antonella Miglione
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Wanda Cimmino
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Alessia Cioffi
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Sima Singh
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Michele Spinelli
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Naples, Italy
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Naples, Italy
| | - Giacomo Musile
- Department
of Diagnostics and Public Health, University
of Verona, P.le Scuro 10, 37134 Verona, Italy
| | - Stefano Cinti
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
- BAT
Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental
Technology, University of Naples “Federico
II”, 80055 Naples, Italy
| |
Collapse
|
3
|
Fahemi N, Angizi S, Hatamie A. Integration of Ultrathin Bubble Walls and Electrochemistry: Innovation in Microsensing for Forensic Nitrite Detection and Microscale Metallic Film Deposition. Anal Chem 2024. [PMID: 38324919 DOI: 10.1021/acs.analchem.3c04488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We present a strategy for electrochemical measurements using a durable minute bubble wall with a thickness of 27 μm (D = 1.8 cm) as an innovative electrochemical medium. The composition, thickness, and volume of the tiny bubble film were investigated and estimated using the spectroscopic method and the Beer-Lambert law. A carbon microelectrode (D = 10 μm) was then employed as the working electrode, inserted through the bubble wall to function as the solution interface. First, the potential of this method for microelectrodeposition of metallic Ag and Pd films in a tiny bubble was investigated. Interestingly, microscopic images of the deposited film clearly demonstrated that the bubble thickness determines and confines the electrochemical deposition zone. In other words, innovative template-free microelectrodeposition was achieved. In the second phase of our work, microelectroanalysis of trace levels of nitrite ions was performed within the bubble wall and on a foam-covered hand, between the fingers directly, with a low limit of detection of 28 μM. This technique holds significance in criminal investigations, as the presence of NO2- ions on the hand indicates the potential presence of gunshot residue and aids in identifying suspects. In comparison to current methods, this approach is rapid, simple, cost-effective, and amenable to on-site applications, eliminating the need for sample treatment. Ultimately, the utilization of a bubble wall as a novel electrochemical microreactor can open new ways in microelectrochemical analysis, presenting novel opportunities and applications in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Nikoo Fahemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
| | - Shayan Angizi
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 412 96, Sweden
| |
Collapse
|
4
|
Xu Y, Ben Y, Sun L, Su J, Guo H, Zhou R, Wei Y, Wei Y, Lu Y, Sun Y, Zhang X. Sensing platform for the highly sensitive detection of catechol based on composite coupling with conductive Ni 3(HITP) 2 and nanosilvers. Phys Chem Chem Phys 2024; 26:2951-2962. [PMID: 38214187 DOI: 10.1039/d3cp05391a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Catechol, which has a high toxicity and low degradability, poses significant risks to both human health and the environment. Tracking of catechol residues is essential to protect human health and to assess the safety of the environment. We constructed sensing platforms to detect catechol based on the conductive metal-organic frameworks [Ni3(HITP)2] and their nanosilver composites. The reduction process of catechol at the Ni3(HITP)2/AgNP electrode is chemically irreversible as a result of the difference in compatibility of the oxidation stability and conductivity between the Ni3(HITP)2/AgNS and Ni3(HITP)2/AgNP electrodes. The electrochemical results show that the Ni3(HITP)2/AgNS electrode presents a lower detection limit of 0.053 μM and better sensitivity, reproducibility and repeatability than the Ni3(HITP)2/AgNP electrode. The kinetic mechanism of the catechol electrooxidation at the surface of the electrode is controlled by diffusion through a 2H+/2e- process. The transfer coefficient is the key factor used to illustrate this process. During the electrochemical conversion of phenol to ketone, more than half of ΔG is used to change the activation energy. We also studied the stability, anti-interference and reproducibility of these electrode systems.
Collapse
Affiliation(s)
- Yuandong Xu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yingying Ben
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lili Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Jishan Su
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Hui Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Rongjia Zhou
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yaqing Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yajun Wei
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Yongjuan Lu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Yizhan Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xia Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Tiryaki E, Zorlu T. Recent Advances in Metallic Nanostructures-assisted Biosensors for Medical Diagnosis and Therapy. Curr Top Med Chem 2024; 24:930-951. [PMID: 38243934 DOI: 10.2174/0115680266282489240109050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The field of nanotechnology has witnessed remarkable progress in recent years, particularly in its application to medical diagnosis and therapy. Metallic nanostructures-assisted biosensors have emerged as a powerful and versatile platform, offering unprecedented opportunities for sensitive, specific, and minimally invasive diagnostic techniques, as well as innovative therapeutic interventions. These biosensors exploit the molecular interactions occurring between biomolecules, such as antibodies, enzymes, aptamers, or nucleic acids, and metallic surfaces to induce observable alterations in multiple physical attributes, encompassing electrical, optical, colorimetric, and electrochemical signals. These interactions yield measurable data concerning the existence and concentration of particular biomolecules. The inherent characteristics of metal nanostructures, such as conductivity, plasmon resonance, and catalytic activity, serve to amplify both sensitivity and specificity in these biosensors. This review provides an in-depth exploration of the latest advancements in metallic nanostructures-assisted biosensors, highlighting their transformative impact on medical science and envisioning their potential in shaping the future of personalized healthcare.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials for Biomedical Applications, Italian Institute of Technology, 16163, Genova, Italy
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey
| | - Tolga Zorlu
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
6
|
Han E, Li L, Gao T, Pan Y, Cai J. Nitrite determination in food using electrochemical sensor based on self-assembled MWCNTs/AuNPs/poly-melamine nanocomposite. Food Chem 2023; 437:137773. [PMID: 39491295 DOI: 10.1016/j.foodchem.2023.137773] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
A nanocomposite of multi-walled carbon nanotubes/gold nanoparticles/poly-melamine (MWCNTs/AuNPs/PM) was designed using layer-by-layer self-assembled method on glassy carbon electrode (GCE) by electrochemical deposition to construct an electrochemical sensor for sensitive detection of nitrite. First, a layer of MWCNTs was modified on electrode, and then gold nanoparticles and melamine were in-situ polymerized onto MWCNTs through self-assembled technique to form GCE/MWCNTs/AuNPs/PM. MWCNTs have large specific surface area, which increased the number of gold nanoparticles deposited on MWCNTs. Meanwhile, the doping of gold nanoparticles also improved the polymerization of melamine. The synergistic interaction of nanocomposite further improved the catalytic effect on nitrite. Under optimized conditions, the detection range for nitrite was from 0.4 to 1475 μM and the detection limit was 0.041 μM. Through the detection of nitrite in food samples, the recovery rates were from 93.16% to 108.68%. Therefore, the method can be used as a practical platform for nitrite detection in food.
Collapse
Affiliation(s)
- En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Lei Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ting Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yingying Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
7
|
Jiang M, Liao J, Liu C, Liu J, Chen P, Zhou J, Du Z, Liu Y, Luo Y, Liu Y, Chen F, Fang X, Lin X. Metal-organic frameworks/metal nanoparticles as smart nanosensing interfaces for electrochemical sensors applications: a mini-review. Front Bioeng Biotechnol 2023; 11:1251713. [PMID: 37614634 PMCID: PMC10442806 DOI: 10.3389/fbioe.2023.1251713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Metal-organic frameworks (MOFs) are porous materials with huge specific surface area and abundant active sites, which are composed of metal ions or clusters and organic ligands in the form of coordination bonds. In recent years, MOFs have been successfully applied in many fields due to their excellent physical, chemical, and biological properties. Electrochemical sensors have advantages such as economy, portability, and sensitivity, making them increasingly valued in the field of sensors. Many studies have shown that the electrode materials will affect the performance of electrochemical sensors. Therefore, the research on electrode materials is still one of the hotspots. MOFs are also commonly used to construct electrochemical sensors. However, electrochemical sensors prepared from single MOFs have shortcomings such as insufficient conductivity, low sensitivity, and poor electrochemical catalytic ability. In order to compensate for these defects, a new type of nanocomposite material with very ideal conductivity was formed by adding metal nanoparticles (MNPs) to MOFs. The combination of the two is expected to be widely applied in the field of sensors. This review summarizes the applications of various MNPs/MOFs composites in the field of electrochemical sensors and provides some references for the development of MNPs/MOFs composites-based electrochemical sensors in the future.
Collapse
Affiliation(s)
- Min Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Jing Liao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Chenghao Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Jun Liu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Peixian Chen
- Department of Health Services, Fujian Hwa Nan Women’s College, Fuzhou, China
| | - Jia Zhou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Zhizhi Du
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Yan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Yangbin Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Fei Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Xiaojun Fang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, China
| |
Collapse
|
8
|
Rajab N, Ibrahim H, Hassan RYA, Youssef AFA. Selective determination of nitrite in water and food samples using zirconium oxide (ZrO 2)@MWCNTs modified screen printed electrode. RSC Adv 2023; 13:21259-21270. [PMID: 37465573 PMCID: PMC10350638 DOI: 10.1039/d3ra03448h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Nitrite ions are being used in different forms as food preservatives acting as flavor enhancers or coloring agents for food products. However, continuous ingestion of nitrite may have severe health implications due to its mutagenic and carcinogenic effects. Thus, this study constructed an electrochemical assay using disposable nano-sensor chip ZrO2@MWCNTs screen printed electrodes (SPE) for the rapid, selective, and sensitive determination of nitrite in food and water samples. As a sensing platform, the use of nanomaterials, including metal oxide nanostructures and carbon nanotubes, exhibited a superior electrocatalytic activity and conductivity. Morphological, structural, and electrochemical analyses were performed using electron microscopy (SEM and TEM), Fourier-transform infrared (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and chronoamperometry (CA). Accordingly, a wide dynamic linear range (5.0 μM to 100 μM) was obtained with a limit of detection of 0.94 μM by the chronoamperometric technique. In addition, the sensor's selectivity was tested when several non-target species were exposed to the sensor chips while no obvious electrochemical signals were generated when the nitrite ions were not present. Eventually, real food and water sample analysis was conducted, and a high recovery was achieved.
Collapse
Affiliation(s)
- Nadeen Rajab
- University of Science and Technology (UST), Zewail City of Science and Technology Giza 12578 Egypt
| | - Hosny Ibrahim
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Rabeay Y A Hassan
- University of Science and Technology (UST), Zewail City of Science and Technology Giza 12578 Egypt
| | - Ahmed F A Youssef
- University of Science and Technology (UST), Zewail City of Science and Technology Giza 12578 Egypt
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| |
Collapse
|
9
|
Atay E, Altan A. Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:3151-3184. [PMID: 37222549 DOI: 10.1111/1541-4337.13179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Foodborne diseases caused by pathogen bacteria are a serious problem toward the safety of human life in a worldwide. Conventional methods for pathogen bacteria detection have several handicaps, including trained personnel requirement, low sensitivity, laborious enrichment steps, low selectivity, and long-term experiments. There is a need for precise and rapid identification and detection of foodborne pathogens. Biosensors are a remarkable alternative for the detection of foodborne bacteria compared to conventional methods. In recent years, there are different strategies for the designing of specific and sensitive biosensors. Researchers activated to develop enhanced biosensors with different transducer and recognition elements. Thus, the aim of this study was to provide a topical and detailed review on aptamer, nanofiber, and metal organic framework-based biosensors for the detection of food pathogens. First, the conventional methods, type of biosensors, common transducer, and recognition element were systematically explained. Then, novel signal amplification materials and nanomaterials were introduced. Last, current shortcomings were emphasized, and future alternatives were discussed.
Collapse
Affiliation(s)
- Elif Atay
- Department of Food Engineering, Mersin University, Mersin, Turkey
| | - Aylin Altan
- Department of Food Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
10
|
Wang J, Shan X, Xue Q, Liu Y, Liu Z, He L, Wang X, Zhu C. Detection of nitrite in water using Glycine-modified nanocarbon and Au nanoparticles co-modified flexible laser-induced graphene electrode. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Wang F, Li Y, Yan C, Ma Q, Yang X, Peng H, Wang H, Du J, Zheng B, Guo Y. Bismuth-Decorated Honeycomb-like Carbon Nanofibers: An Active Electrocatalyst for the Construction of a Sensitive Nitrite Sensor. Molecules 2023; 28:molecules28093881. [PMID: 37175296 PMCID: PMC10180303 DOI: 10.3390/molecules28093881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The existence of carcinogenic nitrites in food and the natural environment has attracted much attention. Therefore, it is still urgent and necessary to develop nitrite sensors with higher sensitivity and selectivity and expand their applications in daily life to protect human health and environmental safety. Herein, one-dimensional honeycomb-like carbon nanofibers (HCNFs) were synthesized with electrospun technology, and their specific structure enabled controlled growth and highly dispersed bismuth nanoparticles (Bi NPs) on their surface, which endowed the obtained Bi/HCNFs with excellent electrocatalytic activity towards nitrite oxidation. By modifying Bi/HCNFs on the screen-printed electrode, the constructed Bi/HCNFs electrode (Bi/HCNFs-SPE) can be used for nitrite detection in one drop of solution, and exhibits higher sensitivity (1269.9 μA mM-1 cm-2) in a wide range of 0.1~800 μM with a lower detection limit (19 nM). Impressively, the Bi/HCNFs-SPE has been successfully used for nitrite detection in food and environment samples, and the satisfactory properties and recovery indicate its feasibility for further practical applications.
Collapse
Affiliation(s)
- Fengyi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Ye Li
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Chenglu Yan
- Key Laboratory of Aviation Fuel & Chemical Airworthiness and Green Development, The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, China
| | - Qiuting Ma
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaofeng Yang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Huaqiao Peng
- Key Laboratory of Aviation Fuel & Chemical Airworthiness and Green Development, The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, China
| | - Huiyong Wang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453002, China
| | - Juan Du
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Yong Guo
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
12
|
Yang N, Zhou X, Qi X, Li J, Fang W, Xue H, Yang Z. A nitrite sensor based on bimetallic zeolitic imidazole framework derived Co/porous carbon nanorods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Kokulnathan T, Wang TJ, Ahmed F, Kumar S. Deep Eutectic Solvents-Assisted Synthesis of NiFe-LDH/Mo2C Nanocomposites for Electrochemical Determination of Nitrite. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Gao P, Zhao S, Qu X, Qian X, Duan F, Lu S, Zhu H, Du M. Bifunctional high-entropy alloys for sensitive nitrite detection and oxygen reduction reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Two-step hydrothermal and ultrasound-assisted synthesis of CB/NiCo2S4@CeO2 composites for high-sensitivity electrochemical detection of nitrite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Mondal J, An JM, Surwase SS, Chakraborty K, Sutradhar SC, Hwang J, Lee J, Lee YK. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. BIOSENSORS 2022; 12:731. [PMID: 36140116 PMCID: PMC9496036 DOI: 10.3390/bios12090731] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
After the COVID-19 pandemic, the development of an accurate diagnosis and monitoring of diseases became a more important issue. In order to fabricate high-performance and sensitive biosensors, many researchers and scientists have used many kinds of nanomaterials such as metal nanoparticles (NPs), metal oxide NPs, quantum dots (QDs), and carbon nanomaterials including graphene and carbon nanotubes (CNTs). Among them, CNTs have been considered important biosensing channel candidates due to their excellent physical properties such as high electrical conductivity, strong mechanical properties, plasmonic properties, and so on. Thus, in this review, CNT-based biosensing systems are introduced and various sensing approaches such as electrochemical, optical, and electrical methods are reported. Moreover, such biosensing platforms showed excellent sensitivity and high selectivity against not only viruses but also virus DNA structures. So, based on the amazing potential of CNTs-based biosensing systems, healthcare and public health can be significantly improved.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Sachin S. Surwase
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea
| | - Sabuj Chandra Sutradhar
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Joon Hwang
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jaewook Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
| |
Collapse
|
17
|
Amali RKA, Lim HN, Ibrahim I, Zainal Z, Ahmad SAA. A copper-based metal-organic framework decorated with electrodeposited Fe 2O 3 nanoparticles for electrochemical nitrite sensing. Mikrochim Acta 2022; 189:356. [PMID: 36038741 DOI: 10.1007/s00604-022-05450-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/09/2022] [Indexed: 10/14/2022]
Abstract
An amperometric nitrite sensor is reported based on a screen-printed carbon electrode (SPCE) modified with copper(II)-benzene-1,4-dicarboxylate (Cu-BDC) frameworks and iron(III) oxide nanoparticles (Fe2O3 NPs). First, copper(I) oxide (Cu2O) nanocubes were synthesized, followed by a solvothermal reaction between Cu2O and H2BDC to form square plate-like Cu-BDC frameworks. Then, Fe2O3 NPs were electrodeposited on Cu-BDC frameworks using a potentiostatic method. The Fe2O3@Cu-BDC nanocomposite benefits from high conductivity and large active surface area, offering excellent electrocatalytic activity for nitrite oxidation. Under optimal amperometric conditions (0.55 V vs. Ag/AgCl), the sensor has a linear range of 1 to 2000 µM with a detection limit of 0.074 µM (S/N = 3) and sensitivity of 220.59 µA mM-1 cm-2. The sensor also provides good selectivity and reproducibility (RSD = 1.91%, n = 5). Furthermore, the sensor exhibits long-term stability, retaining 91.4% of its original current after 4 weeks of storage at room temperature. Finally, assessing nitrite in tap and mineral water samples revealed that the Fe2O3@Cu-BDC/SPCE has a promising prospect in amperometric nitrite detection.
Collapse
Affiliation(s)
- R K A Amali
- Foundry of Reticular Materials of Sustainably Laboratory & Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - H N Lim
- Foundry of Reticular Materials of Sustainably Laboratory & Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - I Ibrahim
- Foundry of Reticular Materials of Sustainably Laboratory & Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Z Zainal
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - S A A Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Saha P, Akter R, Shah SS, Mahfoz W, Aziz MA, Ahammad AJS. Gold Nanomaterials and their Composites as Electrochemical Sensing Platforms for Nitrite Detection. Chem Asian J 2022; 17:e202200823. [PMID: 36039466 DOI: 10.1002/asia.202200823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/29/2022] [Indexed: 02/01/2023]
Abstract
Nitrite is one of the abundant toxic components existing in the environment and is likely to have a great potential to affect human health badly. For that reason, it has become crucial to build a reliable nitrite detection method. In recent years, several nitrite monitoring systems have been proposed. Compared with traditional analytical strategies, the electrochemical approach has a bunch of advantages, including low cost, rapid response, easy operation, simplicity, etc. In this case, noble metal nanomaterials, especially Au-based nanomaterials, have attracted attention in electrode modification because of higher catalytic activity, facile mass transfer, and broad active area for determining nitrite. This review is based on the state-of-the-art, which includes a variety of nanomaterials that have been coupled with AuNPs for the creation of nanocomposites, and the construction as well as development of electrochemical sensors for nitrite detection over the last few years (2016-2022). A background study on synthesizing different morphological AuNPs and nanocomposites has also been introduced. The fabrication methods and sensing capabilities of modified electrodes are given special consideration.
Collapse
Affiliation(s)
- Protity Saha
- Jagannath University, Chemistry, Department of Chemistry, 1100, BANGLADESH
| | - Riva Akter
- Jagannath University, Chemistry, Department of Chemistry, 1100, BANGLADESH
| | - Syed Shaheen Shah
- King Fahd University of Petroleum & Minerals, Physics Department, Building 6, 31261, Dhahran, SAUDI ARABIA
| | - Wael Mahfoz
- King Fahd University of Petroleum & Minerals, Chemistry, Chemistry Department, 31261, Dhahran, SAUDI ARABIA
| | - Md Abdul Aziz
- King Fahd University of Petroleum & Minerals, Center of Research excellence in Nanotechnology, KFUPM Box # 81, 31261, Dhahran, SAUDI ARABIA
| | - A J Saleh Ahammad
- Jagannath University, Chemistry, Department of Chemistry, 1100, BANGLADESH
| |
Collapse
|
19
|
Tang J, Hu T, Li N, Zhu Y, Li J, Zheng S, Guo J. Ag doped Co/Ni bimetallic organic framework for determination of luteolin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Rapid detection of nitrite based on nitrite-oxidizing bacteria biosensor and its application in surface water monitoring. Biosens Bioelectron 2022; 215:114573. [PMID: 35853327 DOI: 10.1016/j.bios.2022.114573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022]
Abstract
Timely and sensitive detection of nitrite is of great significance for human health protection and water pollution treatment. However, many biosensors can only determine the comprehensive toxicity of the water, and there are few electroactive biofilm (EAB) sensors for the specific detection of pollutants. Biofilms formed by bacteria with specific functions can improve the specificity of nitrite identification by biosensors. This study developed a novel, rapidly responding, high sensitivity (958.6 μAμM-1cm-2), wide detection range and anti-interference electrochemical biosensor based on electroactive nitrite-oxidizing bacteria. The biosensor could accurately detect nitrite in the range of 0.3-100 mg/L within 3 min by the cyclic voltammetry (CV) method. The bioelectrode could perform stable detection of nitrite over 200 cycles. The specificity of the biosensor for detecting nitrite was demonstrated by the presence of nitrite oxidizing bacteria (NOB) and nitrite oxidase enzyme (NXR) on the electrode biofilm. The biosensor performed well in wetlands and rivers, with an RSD <14.8% in the detection of nitrite at low concentrations, and further revealed the nitrification occurrence. Our study provided a feasible way for the development of a highly sensitive, rapidly responding and stable electrochemical biosensor, which also exhibited potential applications for long-term detection of nitrite and assessment of ecological function in surface water (rivers, lakes, wetlands, marshes, etc.).
Collapse
|
21
|
Wang JY, Zhang MM, Chen JY, Li H, Le Wang J, Wang CR. SnO 2@C/CC Composite Anode for Lithium-ion Batteries. CHEM LETT 2022. [DOI: 10.1246/cl.220191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- J. Ying Wang
- College of Science and Shanghai Institute of Intelligent Electronics and Systems, Donghua University, 2999 Renmin Rd North, Songjiang District, Shanghai 201620, P. R. China
| | - M. Meng Zhang
- College of Science and Shanghai Institute of Intelligent Electronics and Systems, Donghua University, 2999 Renmin Rd North, Songjiang District, Shanghai 201620, P. R. China
| | - J. Yuan Chen
- College of Science and Shanghai Institute of Intelligent Electronics and Systems, Donghua University, 2999 Renmin Rd North, Songjiang District, Shanghai 201620, P. R. China
| | - H. Li
- College of Science and Shanghai Institute of Intelligent Electronics and Systems, Donghua University, 2999 Renmin Rd North, Songjiang District, Shanghai 201620, P. R. China
| | - J. Le Wang
- College of Science and Shanghai Institute of Intelligent Electronics and Systems, Donghua University, 2999 Renmin Rd North, Songjiang District, Shanghai 201620, P. R. China
| | - C. Rui Wang
- College of Science and Shanghai Institute of Intelligent Electronics and Systems, Donghua University, 2999 Renmin Rd North, Songjiang District, Shanghai 201620, P. R. China
| |
Collapse
|
22
|
Yang M, Shi W, Liu S, Xu K. Multifunctional diphenyl ether-based, cross-linked polyisocyanide for efficient iodine capture and NO2-/SO32- electrochemical probing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Xu J, Ma J, Peng Y, Cao S, Zhang S, Pang H. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Peng G, Gao F, Zou J, Wang X, Gao Y, Zhou H, Liu S, Li M, Lu L. One-step electrochemical synthesis of tremella-like Co-MOFs/carbon nanohorns films for enhanced electrochemical sensing of carbendazim in vegetable and fruit samples. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Liu P, Wang J, Bai J, Ma Y, Lu S, Ma N, Chao S. One-step fabrication of Cu-based metal organic framework multilayer core-shell microspheres for efficiently catalyzing the oxygen reduction reaction. Dalton Trans 2022; 51:5714-5720. [PMID: 35333276 DOI: 10.1039/d2dt00324d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micro/nanomaterials with multilayer core-shell structures are receiving widespread attention due to their potential in energy storage and conversion systems. However, simple fabrication of multilayered core-shell structured micro/nanomaterials with a consistent composition still faces a great challenge. Herein, a simple one-step solvothermal method is used to fabricate Cu-based metal organic framework multilayer core-shell microspheres (Cu-MOF-MCSMSs) as efficient oxygen reduction reaction (ORR) catalysts. The systematic structural evolution of Cu-MOF-MCSMSs is from microspheres to core-shell microspheres and then to multilayer core-shell microspheres. Additionally, different transition metal cations and anions can also influence the structures, compositions and thus ORR activities of the synthesized MOFs. The representative Cu-MOF-MCSMSs exhibit high ORR activity and cycling stability. The simple method can provide a good guide to fabricate other micro/nanomaterials with multilayer core-shell structures and desirable properties.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medial University, Xinxiang 453003, P. R. China.
| | - Jia Wang
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medial University, Xinxiang 453003, P. R. China.
| | - Jie Bai
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medial University, Xinxiang 453003, P. R. China.
| | - Yifei Ma
- Henan Chilwee Genshore Power Co., Ltd, Qinyang 454550, P. R. China
| | - Sihan Lu
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medial University, Xinxiang 453003, P. R. China.
| | - Nini Ma
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medial University, Xinxiang 453003, P. R. China.
| | - Shujun Chao
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medial University, Xinxiang 453003, P. R. China.
| |
Collapse
|
26
|
Cheng Z, Song H, Zhang X, Cheng X, Xu Y, Zhao H, Gao S, Huo L. Non-enzymatic nitrite amperometric sensor fabricated with near-spherical ZnO nanomaterial. Colloids Surf B Biointerfaces 2022; 211:112313. [PMID: 34990880 DOI: 10.1016/j.colsurfb.2021.112313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022]
Abstract
A unique near-spherical ZnO nanostructure was synthesized by using mixed solvents composed of polyethylene glycol-400 (PEG-400) and water at the volume ratio of 12:1 via the solvo-thermal method, and it possessed an ideal morphology with higher uniformity, better dispersion and small particle size. Such ZnO was employed to modify glass carbon electrode (GCE) for the construction of electrochemical sensor, i.e. near-spherical ZnO/GCE, whose nitrite sensing performance was evaluated by Chronoamperometry (CA) and Linear Sweep Voltammetry (LSV). In order to emphasis the superior sensing property and extensive suitability for different electrochemical detection techniques, the excellent but not the same nitrite detection performance obtained from CA and LSV was individually given in detail. This sensor based on CA showed broad linearity range of 0.6 μM-0.22 mM and 0.46 mM-5.5 mM, improved sensitivity of 0.785 μA μM-1 cm-2 accompanied with low LOD of 0.39 μM. With regard to LSV, wide linearity response of 1.9 μM-0.8 mM and 1.08 mM-5.9 mM, high sensitivity of 0.646 μA μM-1 cm-2 with LOD of 0.89 μM were obtained. Meanwhile, this sensor displayed outstanding repeatability with RSD of 2.96% (n = 4), high reproducibility with low RSD (1.72%-2.35%, n = 4), strong selectivity towards nitrite with the concentration set at one-tenth of the interfering substances, ideal stability with the peak current intensity above 90% of its initial value after storage for one month and acceptable recovery of 1.72-2.35% to actual samples including ham sausage, pickle and tap water. The near-spherical ZnO nanomaterial may be a preferred candidate for the fabrication of nitrite electrochemical sensor, which may exhibit a fascinating application in terms of food analysis and environmental monitoring.
Collapse
Affiliation(s)
- Zhenyu Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Haiyan Song
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; College of Chemistry & Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoli Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Yingming Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Hui Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shan Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
27
|
Tian YS, Li XH, Zhang DF, Lu L, Xu YG, An CW. A Novel Method for the Polarographic Determination of Trace Nitrite in Water. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Wang T, Xu X, Wang C, Li Z, Li D. A Novel Highly Sensitive Electrochemical Nitrite Sensor Based on a AuNPs/CS/Ti 3C 2 Nanocomposite. NANOMATERIALS 2022; 12:nano12030397. [PMID: 35159742 PMCID: PMC8840747 DOI: 10.3390/nano12030397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023]
Abstract
Nitrite is common inorganic poison, which widely exists in various water bodies and seriously endangers human health. Therefore, it is very necessary to develop a fast and online method for the detection of nitrite. In this paper, we prepared an electrochemical sensor for highly sensitive and selective detection of nitrite, based on AuNPs/CS/MXene nanocomposite. The characterization of the nanocomposite was demonstrated by scanning electron microscopy (SEM), a transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Under the optimized conditions, the fabricated electrode showed good performance with the linear range of 0.5–335.5 μM and 335.5–3355 μM, the limit of detection is 69 nM, and the sensitivity is 517.8 and 403.2 μA mM−1 cm−2. The fabricated sensors also show good anti-interference ability, repeatability, and stability, and have the potential for application in real samples.
Collapse
Affiliation(s)
- Tan Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Xianbao Xu
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Cong Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Zhen Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Daoliang Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
29
|
Wang S, Pan M, Liu K, Xie X, Yang J, Hong L, Wang S. A SiO 2@MIP electrochemical sensor based on MWCNTs and AuNPs for highly sensitive and selective recognition and detection of dibutyl phthalate. Food Chem 2022; 381:132225. [PMID: 35114624 DOI: 10.1016/j.foodchem.2022.132225] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 01/15/2023]
Abstract
A molecularly imprinted sensor for highly sensitive and selective determination of dibutyl phthalate (DBP) was fabricated by combining multi-walled carbon nanotubes (MWCNTs) and Au nanoparticles (AuNPs) with surface molecularly imprinted polymer (SMIPs). The MWCNTs and AuNPs were designed to modify the electrode surface to accelerate the electron transfer rate and enhance the chemical stability. SMIPs were synthesized using SiO2 microspheres as carriers. By loading SMIPs capable of identifying DBP on the surface of modified electrodes of MWCNTs and AuNPs, an electrochemical sensor for detecting DBP was successfully constructed. After optimizing the experimental conditions, the modified electrode SiO2-COOH@MIP/AuNPs/MWCNTs/GCE can recognize DBP in the range of 10-7g L-1 to 10-2g L-1, and the detection limit achieved to 5.09 × 10-9 g L-1 (S/N = 3). The results demonstrate that the proposed MIP electrochemical sensor may be a promising candidate electrochemical strategy for detecting DBP in complex samples.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
30
|
Yang Z, Zhong Y, Zhou X, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for nitrite detection: a short review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01270-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Rong S, Zou L, Meng L, Yang X, Dai J, Wu M, Qiu R, Tian Y, Feng X, Ren X, Jia L, Jiang L, Hang Y, Ma H, Pan H. Dual function metal-organic frameworks based ratiometric electrochemical sensor for detection of doxorubicin. Anal Chim Acta 2022; 1196:339545. [DOI: 10.1016/j.aca.2022.339545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
|
32
|
Guo H, Zhang T, Wang M, Sun L, Zhang J, Yang M, Yang F, Wu N, Yang W. Electrochemical behavior of MOF-801/MWCNT-COOH/AuNPs: A highly selective electrochemical sensor for determination of guanine and adenine. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Wang X, Wang Y, Ying Y. Recent advances in sensing applications of metal nanoparticle/metal–organic framework composites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Aykaç A, Gergeroglu H, Beşli B, Akkaş EÖ, Yavaş A, Güler S, Güneş F, Erol M. An Overview on Recent Progress of Metal Oxide/Graphene/CNTs-Based Nanobiosensors. NANOSCALE RESEARCH LETTERS 2021; 16:65. [PMID: 33877478 PMCID: PMC8056378 DOI: 10.1186/s11671-021-03519-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/30/2021] [Indexed: 05/07/2023]
Abstract
Nanobiosensors are convenient, practical, and sensitive analyzers that detect chemical and biological agents and convert the results into meaningful data between a biologically active molecule and a recognition element immobilized on the surface of the signal transducer by a physicochemical detector. Due to their fast, accurate and reliable operating characteristics, nanobiosensors are widely used in clinical and nonclinical applications, bedside testing, medical textile industry, environmental monitoring, food safety, etc. They play an important role in such critical applications. Therefore, the design of the biosensing interface is essential in determining the performance of the nanobiosensor. The unique chemical and physical properties of nanomaterials have paved the way for new and improved sensing devices in biosensors. The growing demand for devices with improved sensing and selectivity capability, short response time, lower limit of detection, and low cost causes novel investigations on nanobiomaterials to be used as biosensor scaffolds. Among all other nanomaterials, studies on developing nanobiosensors based on metal oxide nanostructures, graphene and its derivatives, carbon nanotubes, and the widespread use of these nanomaterials as a hybrid structure have recently attracted attention. Nanohybrid structures created by combining these nanostructures will directly meet the future biosensors' needs with their high electrocatalytic activities. This review addressed the recent developments on these nanomaterials and their derivatives, and their use as biosensor scaffolds. We reviewed these popular nanomaterials by evaluating them with comparative studies, tables, and charts.
Collapse
Affiliation(s)
- Ahmet Aykaç
- Department of Engineering Sciences, Izmir Katip Çelebi University, 35620, Izmir, Turkey.
- Department of Nanoscience and Nanotechnology, Izmir Katip Çelebi University, 35620, Izmir, Turkey.
| | - Hazal Gergeroglu
- Department of Nanoscience and Nanoengineering, Dokuz Eylul University, 35390, Izmir, Turkey
| | - Büşra Beşli
- Department of Nanoscience and Nanotechnology, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Emine Özge Akkaş
- Department of Nanoscience and Nanotechnology, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Ahmet Yavaş
- Department of Material Science and Engineering, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Saadet Güler
- Department of Material Science and Engineering, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Fethullah Güneş
- Department of Material Science and Engineering, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Mustafa Erol
- Department of Metallurgical and Materials Engineering, Dokuz Eylul University, 35390, Izmir, Turkey
| |
Collapse
|
35
|
Yang Z, Zhou X, Yin Y, Fang W. Determination of Nitrite by Noble Metal Nanomaterial-Based Electrochemical Sensors: A Minireview. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1897134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zhengfei Yang
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyong Zhou
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongqi Yin
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiming Fang
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|