1
|
You Z, Wang C, Hu P, Zhang W, Li Q, Zheng Y. Construction of dual driving force in carbon nitride for highly efficient hydrogen evolution: Simultaneously manipulating carriers transport in intra- and interlayer. J Colloid Interface Sci 2024; 676:186-196. [PMID: 39024819 DOI: 10.1016/j.jcis.2024.07.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Photocatalytic hydrogen evolution is widely recognized as an environmentally friendly approach to address future energy crises and environmental issues. However, rapid recombination of photo-induced charges over carbon nitride in lateral and vertical direction hinder this process. Herein, we proposed an effective strategy involving the embedding of benzene rings and the intercalation of platinum atoms on carbon nitride for a controlled intralayer and interlayer charges flow. Modified carbon nitride exhibits a significant higher hydrogen evolution rate (6288.5 μmol/g/h), which is 42 times greater than that of pristine carbon nitride. Both experiments and simulations collectively indicate that the improved photocatalytic activities can be attributed to the adjustment of the highly symmetric structure of carbon nitride, achieved by embedding benzene rings to induce the formation of an intralayer build-in electric field and intercalating Pt atoms to enhance interlayer polarization, which simultaneously accelerate lateral and vertical charges migration. This dual-direction charges separation mechanism in carbon nitride provides valuable insights for the development of highly active photocatalysis.
Collapse
Affiliation(s)
- Ziyun You
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, PR China
| | - Chenxi Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, PR China
| | - Peng Hu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, PR China
| | - Wei Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, PR China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, PR China
| | - Yanmei Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
2
|
Hsu CY, AL-Salman H, Hussein HH, Juraev N, Mahmoud ZH, Al-Shuwaili SJ, Hassan Ahmed H, Ali Ami A, Ahmed NM, Azat S, kianfar E. Experimental and theoretical study of improved mesoporous titanium dioxide perovskite solar cell: The impact of modification with graphene oxide. Heliyon 2024; 10:e26633. [PMID: 38404854 PMCID: PMC10884932 DOI: 10.1016/j.heliyon.2024.e26633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
The present study serves experimental and theoretical analyses in developing a hybrid advanced structure as a photolysis, which is based on electrospun Graphene Oxide-titanium dioxide (GO-TiO2) nanofibers as an electron transfer material (ETMs) functionalized for perovskite solar cell (PVSCs) with GO. The prepared ETMs were utilized for the synthesis of mixed-cation (FAPbI3)0.8(MAPbBr3)0.2. The effect of GO on TiO2 and their chemical structure, electronic and morphological characteristic were investigated and discussed. The elaborated device, namely ITO/Bl-TiO2/3 wt% GO-TiO2/(FAPbI3)0.8(MAPbBr3)0.2/spiro-MeTAD/Pt, displayed 20.14% disposition and conversion solar energy with fill factor (FF) of 1.176%, short circuit current density (Jsc) of 20.56 mA/cm2 and open circuit voltage (VOC) 0.912 V. The obtained efficiency is higher than titanium oxide (18.42%) and other prepared GO-TiO2 composite nanofibers based ETMs. The developed materials and device would facilitate elaboration of advanced functional materials and devices for energy storage applications.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - H.N.K. AL-Salman
- Pharmaceutical Chemistry Department, college of Pharmacy, University of Basrah, Iraq
| | - Hussein H. Hussein
- Pharmaceutical Chemistry Department, college of Pharmacy, University of Basrah, Iraq
| | - Nizomiddin Juraev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan
- Scientific and Innovation Department, Tashkent State Pedagogical University, Tashkent, Uzbekistan
| | - Zaid H. Mahmoud
- University of Diyala, college of sciences, chemistry department, Iraq
| | - Saeb Jasim Al-Shuwaili
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, 10011, Iraq
| | | | - Ahmed Ali Ami
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Nahed Mahmood Ahmed
- college of pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Seitkhan Azat
- Satbayev University, Satbayev Str. 22a, 050013, Almaty, Kazakhstan
| | - Ehsan kianfar
- Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| |
Collapse
|
3
|
Sukanya R, Mohandoss S, Lee YR. Synthesis of active-site rich molybdenum-doped manganese tungstate nanocubes for effective electrochemical sensing of the antiviral drug (COVID-19) nitazoxanide. CHEMOSPHERE 2023; 311:137005. [PMID: 36347350 PMCID: PMC9636157 DOI: 10.1016/j.chemosphere.2022.137005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Nitazoxanide (NTZ), a promising antiviral agent, is currently being tested in clinical trials as a potential treatment for novel coronavirus disease 2019 (COVID -19). This paper describes a one-pot hydrothermal synthesis to prepare molybdenum (Mo)-doped manganese tungstate nanocubes (Mo-MnWO4 NCs) for the electrochemical sensing of NTZ. The as-prepared Mo-MnWO4 NCs were characterized using various techniques such as XRD, Raman, FE-SEM, FE-TEM, and XPS to confirm the crystal structure, morphology, and elemental composition. The obtained results demonstrate that Mo doping on MnWO4 generates many vacancy sites, exhibiting remarkable electrochemical activity. The kinetic parameters of the electrode modified with Mo-MnWO4 NCs were calculated to be (Ks) 1.1 × 10-2 cm2 s-1 and (α) 0.97, respectively. Moreover, a novel electrochemical sensor using Mo-MnWO4 NCs was fabricated to detect NTZ, which is used as a primary antibiotic to control COVID-19. Under optimal conditions, the electrochemical reduction of NTZ was determined with a low detection limit of 3.7 nM for a linear range of 0.014-170.2 μM with a high sensitivity of 0.78 μA μM-1 cm-2 and negligible interference with other nitro group-containing drugs, cations, and anions. The electrochemical sensor was successfully used to detect NTZ in the blood serum and urine samples and achieved high recoveries in the range of 94-99.2% and 95.3-99.6%, respectively. This work opens a way to develop high-performance sensing materials by exploring the introduction of defect engineering on metal tungstates to detect drug molecules for practical applications.
Collapse
Affiliation(s)
- Ramaraj Sukanya
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
4
|
Golmohammadi M, Sabbagh Alvani AA, Sameie H, Mei B, Salimi R, Poelman D, Rosei F. Photocatalytic nanocomposite membranes for environmental remediation. NANOTECHNOLOGY 2022; 33:465701. [PMID: 35921794 DOI: 10.1088/1361-6528/ac8682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
We report the design and one-pot synthesis of Ag-doped BiVO4embedded in reduced graphene oxide (BiVO4:Ag/rGO) nanocomposites via a hydrothermal processing route. The binary heterojunction photocatalysts exhibited high efficiency for visible light degradation of model dyes and were correspondingly used for the preparation of photocatalytic membranes using polyvinylidene fluoride (PVDF) or polyethylene glycol (PEG)-modified polyimide (PI), respectively. The surface and cross-section images combined with elemental mapping illustrated the effective distribution of the nanocomposites within the polymeric membranes. Photocatalytic degradation efficiencies of 61% and 70% were achieved after 5 h of visible light irradiation using BiVO4:Ag/rGO@PVDF and BiVO4:Ag/rGO@PI (PEG-modified) systems, respectively. The beneficial photocatalytic performance of the BiVO4:Ag/rGO@PI (PEG-modified) membrane is explained by the higher hydrophilicity due to the PEG modification of the PI membrane. This work may provide a rational and effective strategy to fabricate highly efficient photocatalytic nanocomposite membranes with well-contacted interfaces for environmental purification.
Collapse
Affiliation(s)
- Mahsa Golmohammadi
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran 1591634311, Iran
- Color & Polymer Research Center (CPRC), Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Ali Asghar Sabbagh Alvani
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran 1591634311, Iran
- Color & Polymer Research Center (CPRC), Amirkabir University of Technology, Tehran 1591634311, Iran
- Standard Research Institute (SRI), Karaj, 31745-139, Iran
| | - Hassan Sameie
- Color & Polymer Research Center (CPRC), Amirkabir University of Technology, Tehran 1591634311, Iran
- MESA + Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 217, The Netherlands
| | - Bastian Mei
- MESA + Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 217, The Netherlands
| | - Reza Salimi
- Color & Polymer Research Center (CPRC), Amirkabir University of Technology, Tehran 1591634311, Iran
- MESA + Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 217, The Netherlands
| | - Dirk Poelman
- Department of Solid State Sciences, Lumilab, Ghent University, Krijgslaan 281-S1, 9000 Ghent, Belgium
| | - Federico Rosei
- INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel Boulet, Varennes, QC J3X 1P7, Canada
| |
Collapse
|
5
|
Hwang SY, Jang HJ, Kim YJ, Maeng JY, Park GE, Yang SY, Rhee CK, Sohn Y. Interface Engineered V-Zn Hybrids: Electrocatalytic and Photocatalytic CO 2 Reductions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2758. [PMID: 36014623 PMCID: PMC9415906 DOI: 10.3390/nano12162758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
V-Zn hybrids have widely been used as catalyst materials in the environment and as energy. Herein, V-Zn hybrid electrodes were prepared by the hydrothermal and sputter-deposition methods using a Zn foil support. Their electrocatalytic CO2 reduction (EC CO2 RR) performances were tested under various applied potentials, different electrolytes, and concentrations before and after thermal treatment of the demonstrated electrode. Gas and liquid products were confirmed by gas chromatography and nuclear magnetic resonance spectroscopy, respectively. For V-Zn electrode by hydrothermal method produced mainly syngas (CO and H2) with tunable ratio by varying applied potential. Minor products include CH4, C2H4, and C2H6. A liquid product of formate showed a Faradaic efficiency (FE) of 2%. EC CO2 RR efficiency for CO, CH4, and formate was best in 0.2 M KHCO3 electrolyte condition. CO and formate were further increased by photoirradiation and Nafion-treated electrode. Formate and CH4 productions were significantly increased by thermal treatment of the V-Zn electrode. CO production was diminished for the V-Zn electrode by sputter deposition but was recovered by thermal treatment. Photocatalytic CO2 RR was tested to find that RR products include CH3OH, CO, CH4, C2H4, and C2H6. Interestingly long-chain hydrocarbons (CnH2n and CnH2n+2, where n = 3-6) were first observed under mild conditions. The long-chain formation was understood by Fisher-Tropsch (F-T) synthesis. Alkenes were observed to be more produced than alkanes unlike in the conventional F-T synthesis. The present new findings provide useful clues for the development of hybrid electro-and photo-catalysts tested under various experimental conditions in energy and environment.
Collapse
Affiliation(s)
- Seon Young Hwang
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Hye Ji Jang
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Young Jun Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Ju Young Maeng
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Go Eun Park
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Seo Young Yang
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Choong Kyun Rhee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Youngku Sohn
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|