1
|
Algethami FK, Marwani HM, Raza N, Asiri AM, Rahman MM. Non-enzymatic electrochemical detection of melamine in dairy products by using CuO decorated carbon nanotubes nanocomposites. Food Chem 2024; 445:138792. [PMID: 38387321 DOI: 10.1016/j.foodchem.2024.138792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Melamine, a typical nitrogen enriched organic compound exhibiting great potential in the industrial sector, is exploited as an adulterant to inflate protein levels in dairy products, can pose serious threats to humans and therefore necessitates its swift detection and precise quantification at its first exposure. In this investigation, sensitive and reliable sensor probes were fabricated using CuO nanoparticles and its nanocomposites (NCs) with carbon nanotubes (CNTs), carbon black (CB), and graphene oxide (GO) to promptly quantify melamine in dairy products. The optical, morphological, and structural characteristics of the CuO-CNT NCs were achieved using diverse instrumental techniques including UV-visible spectroscopy, transmission electron microscopy, X- ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy and etc. The fabrication of glassy carbon electrodes (GCE) was accomplished by coating CuO-CNT NCs through a binder (5 % nafion). These sensor probes demonstrated outstanding electrochemical sensor performance with CuO-CNT NCs/Nafion/GCE sensor probe in terms of very low limit of detection (0.27 nM), good linearity range (0.05-0.5 nM), and relatively high sensitivity (93.924 µA µM-1 m-2) for melamine under optimized experimental conditions. Furthermore, the performance of CuO-CNT NCs/Nafion/GCE coated sensor probes was practically validated for the selective melamine detection in the real sample analysis of commercially available milk brands, which revealed significant figures of merit in a very short response time of 10 s. From the results, it was concluded that the current study might be helpful in the development of an efficient commercial sensor based on ultra-sensitive transition metal oxides in the field of health care monitoring, food stuffs in a broader scale as well as food applications.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Chemistry, Government Alamdar Hussain Islamia Degree College Multan, Pakistan
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
He Y, Liao Y, Zhang B, Xu R, Ma Y, Zhao M, Cui H. Using the photo-enhanced barrier effect on electrochemical response for highly sensitive detection of melamine. Food Chem 2024; 432:137246. [PMID: 37643517 DOI: 10.1016/j.foodchem.2023.137246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Melamine added to milk powder can lead to kidney injury and even death, but rapid detection is still hard due to the strong interference of milk powder solution. Herein, the CC/CeO2/CNPs mesh was constructed to detect melamine by using the photo-enhanced barrier effects on electrochemical response. Schottky barrier was regulated effectively to produce electrochemical response to melamine by photo-induced electrostatic interaction, which exhibited strong resistance to interference in milk powder solution. Sensitivity was enhanced by nearly 5 times and the lowest detection limit was reduced as low as 0.274 nM. The obtained high recovery (100%-104%) and good stability in milk powder solution indicated the good potential for practical applications. It provides a new opportunity for achieving strong resistance to interference by using the photo-enhanced barrier driving effect on electrochemical response.
Collapse
Affiliation(s)
- Yichang He
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Yiquan Liao
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Bin Zhang
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Ruiqi Xu
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Ye Ma
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Minggang Zhao
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| | - Hongzhi Cui
- School of Materials Science and Engineering, Ocean University of China, 266100 Qingdao, PR China.
| |
Collapse
|
3
|
Su Z, Hu S, Zhang Y, Liang Z, Peng Y, Cao Q, Yu X, Zhu Z, He P, Li Z. Electrodeposition of paracetamol oxide for intelligent portable ratiometric detection of nicotine and ethyl vanillin β-D-glucoside. Analyst 2023; 149:188-195. [PMID: 38010128 DOI: 10.1039/d3an01718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein, the electrodeposition of paracetamol oxide (PA ox) for the intelligent portable ratiometric detection of nicotine (NIC) and ethyl vanillin β-D-glucoside (EVG) is reported. PA ox electrodeposited on a screen-printed carbon electrode (SPCE) was used as a new fixed state ratiometric reference probe. A portable electrochemical workstation combined with a smart phone was applied as an intelligent portable electrochemical sensing platform. The sensor was studied by scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FT-IR), ultraviolet-visible spectrophotometry (UV-vis), theoretical calculation, chronoamperometry, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). Under optimized conditions, the detection range of NIC is 10-200 μmol L-1, and the detection limit is 0.256 μmol L-1. The detection range of EVG was 10-180 μmol L-1, and the detection limit was 0.058 μmol L-1. The sensor can realize the real-time detection of NIC and EVG concentration in cigarette samples quickly and accurately, and has good anti-interference, repeatability and stability.
Collapse
Affiliation(s)
- Zhaohong Su
- Yunnan Key Laboratory of Tobacco Chemistry R&D Center of China Tobacco Yunnan Industry Co., Ltd, 650231 Kunming, PR China.
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Shiyu Hu
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuhang Zhang
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhanning Liang
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Yi Peng
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Qinyi Cao
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Xia Yu
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhiyang Zhu
- Yunnan Key Laboratory of Tobacco Chemistry R&D Center of China Tobacco Yunnan Industry Co., Ltd, 650231 Kunming, PR China.
| | - Pei He
- Yunnan Key Laboratory of Tobacco Chemistry R&D Center of China Tobacco Yunnan Industry Co., Ltd, 650231 Kunming, PR China.
| | - Zhenjie Li
- Yunnan Key Laboratory of Tobacco Chemistry R&D Center of China Tobacco Yunnan Industry Co., Ltd, 650231 Kunming, PR China.
| |
Collapse
|
4
|
Comment on “Electrochemical Characterisation of Polymelamine Electropolymerised in Deep Eutectic Solvents for Selective Detection of Dopamine”. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Development of conductive poly (para-aminophenol)/zinc oxide nanocomposites for optoelectronic devices. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Rational design of an allosteric G-quadruplex aptamer probe for ultra-sensitive detection of melamine in milk. Int J Biol Macromol 2022; 210:430-438. [PMID: 35500779 DOI: 10.1016/j.ijbiomac.2022.04.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
Efficient and accurate detection of melamine in dairy products remains a crucial yet challenging task. Herein, an allosterically modulated G-quadruplex-integrated aptamer is rationally designed with thymine-rich recognition termini for melamine binding. The detection process is facile by simply introducing the analyte into the mixture consisting of G-quadruplex aptamer probes, exonuclease III, and thioflavin T (ThT). The detection feasibility is confirmed by the polyacrylamide gel electrophoresis and fluorescence measurement results. This exonuclease III-assisted signal amplifiable approach works well in a linear range from 0.1 nM to 0.1 μM. Moreover, a detection limit as low as 83 pM is easily achieved, which is almost five orders of magnitude smaller than the maximum allowable melamine levels (about 8 μM) defined by many countries all over the world. The whole assay time for each test is no longer than 1 h. Additionally, the scheme is highly specific and satisfactory recovery rates (from 91% to 104%) are readily obtained when challenged with melamine-spiked milk samples. Therefore, the label-free, turn-on, low-cost, and time-efficient method can be used for reliable detection of melamine in an easily manipulated and ultra-sensitive manner, which may find its utilization in the field of food safety, biomedical engineering, and clinical diagnosis.
Collapse
|
7
|
Ma J, Wu W, Xiao X, Feng Y, Hao Y, Zhang J, Liu C, Zhang P, Chen J, Zeng R, Chen S. New insight into electropolymerization of melamine. II: Low onset potential deposition of polymelamine with trace active bromine. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Motshakeri M, Sharma M, Phillips ARJ, Kilmartin PA. Electrochemical Methods for the Analysis of Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2427-2449. [PMID: 35188762 DOI: 10.1021/acs.jafc.1c06350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The milk and dairy industries are some of the most profitable sectors in many countries. This business requires close control of product quality and continuous testing to ensure the safety of the consumers. The potential risk of contaminants or degradation products and undesirable chemicals necessitates the use of fast, reliable detection tools to make immediate production decisions. This review covers studies on the application of electrochemical methods to milk (i.e., voltammetric and amperometric) to quantify different analytes, as reported over the last 10 to 15 years. The review covers a wide range of analytes, including allergens, antioxidants, organic compounds, nitrogen- and aldehyde containing compounds, biochemicals, heavy metals, hydrogen peroxide, nitrite, and endocrine disruptors. The review also examines pretreatment procedures applied to milk samples and the use of novel sensor materials. Final perspectives are provided on the future of cost-effective and easy-to-use electrochemical sensors and their advantages over conventional methods.
Collapse
Affiliation(s)
- Mahsa Motshakeri
- Polymer Biointerface Centre, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Anthony R J Phillips
- School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Paul A Kilmartin
- Polymer Biointerface Centre, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|