1
|
Klein F, Kohl SH, Lührs M, Mehler DMA, Sorger B. From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230087. [PMID: 39428887 PMCID: PMC11513164 DOI: 10.1098/rstb.2023.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 10/22/2024] Open
Abstract
Neurofeedback allows individuals to monitor and self-regulate their brain activity, potentially improving human brain function. Beyond the traditional electrophysiological approach using primarily electroencephalography, brain haemodynamics measured with functional magnetic resonance imaging (fMRI) and more recently, functional near-infrared spectroscopy (fNIRS) have been used (haemodynamic-based neurofeedback), particularly to improve the spatial specificity of neurofeedback. Over recent years, especially fNIRS has attracted great attention because it offers several advantages over fMRI such as increased user accessibility, cost-effectiveness and mobility-the latter being the most distinct feature of fNIRS. The next logical step would be to transfer haemodynamic-based neurofeedback protocols that have already been proven and validated by fMRI to mobile fNIRS. However, this undertaking is not always easy, especially since fNIRS novices may miss important fNIRS-specific methodological challenges. This review is aimed at researchers from different fields who seek to exploit the unique capabilities of fNIRS for neurofeedback. It carefully addresses fNIRS-specific challenges and offers suggestions for possible solutions. If the challenges raised are addressed and further developed, fNIRS could emerge as a useful neurofeedback technique with its own unique application potential-the targeted training of brain activity in real-world environments, thereby significantly expanding the scope and scalability of haemodynamic-based neurofeedback applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Franziska Klein
- Biomedical Devices and Systems Group, R&D Division Health, OFFIS—Institute for Information Technology, Oldenburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Simon H. Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Michael Lührs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute of Translational Psychiatry, Medical Faculty, University of Münster, Münster, Germany
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Cooke A, Hindle J, Lawrence C, Bellomo E, Pritchard AW, MacLeod CA, Martin-Forbes P, Jones S, Bracewell M, Linden DEJ, Mehler DMA. Effects of home-based EEG neurofeedback training as a non-pharmacological intervention for Parkinson's disease. Neurophysiol Clin 2024; 54:102997. [PMID: 38991470 DOI: 10.1016/j.neucli.2024.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVES Aberrant movement-related cortical activity has been linked to impaired motor function in Parkinson's disease (PD). Dopaminergic drug treatment can restore these, but dosages and long-term treatment are limited by adverse side-effects. Effective non-pharmacological treatments could help reduce reliance on drugs. This experiment reports the first study of home-based electroencephalographic (EEG) neurofeedback training as a non-pharmacological candidate treatment for PD. Our primary aim was to test the feasibility of our EEG neurofeedback intervention in a home setting. METHODS Sixteen people with PD received six home visits comprising symptomology self-reports, a standardised motor assessment, and a precision handgrip force production task while EEG was recorded (visits 1, 2 and 6); and 3 × 1-hr EEG neurofeedback training sessions to supress the EEG mu rhythm before initiating handgrip movements (visits 3 to 5). RESULTS Participants successfully learned to self-regulate mu activity, and this appeared to expedite the initiation of precision movements (i.e., time to reach target handgrip force off-medication pre-intervention = 628 ms, off-medication post-intervention = 564 ms). There was no evidence of wider symptomology reduction (e.g., Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III Motor Examination, off-medication pre-intervention = 29.00, off-medication post intervention = 30.07). Interviews indicated that the intervention was well-received. CONCLUSION Based on the significant effect of neurofeedback on movement-related cortical activity, positive qualitative reports from participants, and a suggestive benefit to movement initiation, we conclude that home-based neurofeedback for people with PD is a feasible and promising non-pharmacological treatment that warrants further research.
Collapse
Affiliation(s)
- Andrew Cooke
- Instutute for the Psychology of Elite Performance (IPEP), Bangor University, UK; School of Psychology and Sport Science, Bangor University, UK.
| | - John Hindle
- The Centre for Research in Ageing and Cognitive Health (REACH), University of Exeter, UK; University of Exeter Medical School, UK
| | - Catherine Lawrence
- Centre for Health Economics and Medicines Evaluation (CHEME), Bangor University, UK; School of Health Sciences, Bangor University, UK
| | - Eduardo Bellomo
- Instutute for the Psychology of Elite Performance (IPEP), Bangor University, UK
| | | | - Catherine A MacLeod
- Centre for Population Health Sciences, Usher Institute, The University of Edinburgh, UK
| | | | | | - Martyn Bracewell
- School of Psychology and Sport Science, Bangor University, UK; North Wales Medical School, Bangor University, UK; Walton Centre NHS Foundation Trust, UK
| | - David E J Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK; MRC Center for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, UK
| | - David M A Mehler
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK; MRC Center for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, UK; Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Germany; Institute for Translational Psychiatry, University Hospital Münster, Germany
| |
Collapse
|
3
|
Godet A, Serrand Y, Léger B, Moirand R, Bannier E, Val-Laillet D, Coquery N. Functional near-infrared spectroscopy-based neurofeedback training targeting the dorsolateral prefrontal cortex induces changes in cortico-striatal functional connectivity. Sci Rep 2024; 14:20025. [PMID: 39198481 PMCID: PMC11358514 DOI: 10.1038/s41598-024-69863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Due to its central role in cognitive control, the dorso-lateral prefrontal cortex (dlPFC) has been the target of multiple brain modulation studies. In the context of the present pilot study, the dlPFC was the target of eight repeated neurofeedback (NF) sessions with functional near infrared spectroscopy (fNIRS) to assess the brain responses during NF and with functional and resting state magnetic resonance imaging (task-based fMRI and rsMRI) scanning. Fifteen healthy participants were recruited. Cognitive task fMRI and rsMRI were performed during the 1st and the 8th NF sessions. During NF, our data revealed an increased activity in the dlPFC as well as in brain regions involved in cognitive control and self-regulation learning (pFWE < 0.05). Changes in functional connectivity between the 1st and the 8th session revealed increased connectivity between the posterior cingulate cortex and the dlPFC, and between the posterior cingulate cortex and the dorsal striatum (pFWE < 0.05). Decreased left dlPFC-left insula connectivity was also observed. Behavioural results revealed a significant effect of hunger and motivation on the participant control feeling and a lower control feeling when participants did not identify an effective mental strategy, providing new insights on the effects of behavioural factors that may affect the NF learning.
Collapse
Affiliation(s)
- A Godet
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - Y Serrand
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - B Léger
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - R Moirand
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
- Unité d'Addictologie, CHU Rennes, Rennes, France
| | - E Bannier
- Inria, CRNS, Inserm, IRISA UMR 6074, Empenn U1228, Univ Rennes, Rennes, France.
- Radiology Department, CHU Rennes, Rennes, France.
| | - D Val-Laillet
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France.
| | - N Coquery
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| |
Collapse
|
4
|
Saleem S, Habib SH. Neurofeedback Recuperates Cognitive Functions in Children with Autism Spectrum Disorders (ASD). J Autism Dev Disord 2024; 54:2891-2901. [PMID: 37314667 DOI: 10.1007/s10803-023-06037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, verbal and nonverbal communication, and behaviors or interests. Besides behavioral, psychopharmacological and biomedical interventions there is increasing evidence of non-invasive treatments like neurofeedback (NFB) that can improve brain activity. In this study, we have investigated whether NFB can improve cognitive functions in children with ASD. Thirty-five children with ASD (7-17 years) were selected by purposive sampling. The subjects underwent 30 sessions of NFB training for 20 min over 10 weeks' period. Psychometric tests i.e. Childhood Autism Rating Scale (CARS), IQ scoring and Reward sensitivity tests were administered at baseline. Pre and post NFB intervention assessment of executive functions, working memory and processing speed were done by NIH Toolbox Cognition Batteries. Friedman test revealed that children showed a statistically significant improvement in the NIH Tool Box cognitive assessments, including the Flankers Inhibitory Control and Attention Test (Pre-test = 3.63, Post-test = 5.22; p = 0.00), the Dimensional Change Card Sorting Test (Pre-test = 2.88, Post-test = 3.26; p = 0.00), the Pattern Comparison Processing Speed Test (Pre-test = 6.00, Post-test = 11:00; p = 0.00) and the List Sorting Working Memory Test (Pre-test = 4.00, Post-test = 6:00; p = 0.00), and displayed a trend of improvement at 2-month follow-up (Flankers Inhibitory Control and Attention Test (Post-test = 5.11 ± 2.79, Follow-Up = 5.31 ± 2.67; p = 0.21), the Dimensional Change Card Sorting Test (Post-test = 3.32 ± 2.37, Follow-Up = 3.67 ± 2.35; p = 0.054), the Pattern Comparison Processing Speed Test (Post-test = 13.69 ± 9.53, Follow-Up = 14.42 ± 10.23 p = 0.079) and the List Sorting Working Memory Test (Post-test = 6.17 ± 4.41, Follow-Up = 5.94 ± 4.03; p = 0.334). Our findings suggest NFB intervention for 10 weeks produce improvement in executive functions (Inhibitory Control and Attention and Cognitive Flexibility), Processing Speed and Working Memory in ASD Children.
Collapse
Affiliation(s)
- Shemaila Saleem
- Department of Physiology, Federal Medical College (FMC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Department of Physiology, Institute of Basic Medical Sciences (IBMS), Khyber Medical University (KMU), Peshawar, Pakistan
| | - Syed Hamid Habib
- Department of Physiology, Institute of Basic Medical Sciences (IBMS), Khyber Medical University (KMU), Peshawar, Pakistan.
| |
Collapse
|
5
|
Mathew J, Adhia DB, Smith ML, De Ridder D, Mani R. Closed-Loop Infraslow Brain-Computer Interface can Modulate Cortical Activity and Connectivity in Individuals With Chronic Painful Knee Osteoarthritis: A Secondary Analysis of a Randomized Placebo-Controlled Clinical Trial. Clin EEG Neurosci 2024:15500594241264892. [PMID: 39056313 DOI: 10.1177/15500594241264892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Introduction. Chronic pain is a percept due to an imbalance in the activity between sensory-discriminative, motivational-affective, and descending pain-inhibitory brain regions. Evidence suggests that electroencephalography (EEG) infraslow fluctuation neurofeedback (ISF-NF) training can improve clinical outcomes. It is unknown whether such training can induce EEG activity and functional connectivity (FC) changes. A secondary data analysis of a feasibility clinical trial was conducted to determine whether EEG ISF-NF training can significantly alter EEG activity and FC between the targeted cortical regions in people with chronic painful knee osteoarthritis (OA). Methods. A parallel, two-arm, double-blind, randomized, sham-controlled clinical trial was conducted. People with chronic knee pain associated with OA were randomized to receive sham NF training or source-localized ratio ISF-NF training protocol to down-train ISF bands at the somatosensory (SSC), dorsal anterior cingulate (dACC), and uptrain pregenual anterior cingulate cortices (pgACC). Resting state EEG was recorded at baseline and immediate post-training. Results. The source localization mapping demonstrated a reduction (P = .04) in the ISF band activity at the left dorsolateral prefrontal cortex (LdlPFC) in the active NF group. Region of interest analysis yielded significant differences for ISF (P = .008), slow (P = .007), beta (P = .043), and gamma (P = .012) band activities at LdlPFC, dACC, and bilateral SSC. The FC between pgACC and left SSC in the delta band was negatively correlated with pain bothersomeness in the ISF-NF group. Conclusion. The EEG ISF-NF training can modulate EEG activity and connectivity in individuals with chronic painful knee osteoarthritis, and the observed EEG changes correlate with clinical pain measures.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| | - Divya Bharatkumar Adhia
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Dousset C, Wyckmans F, Monseigne T, Fourdin L, Boulanger R, Sistiaga S, Ingels A, Kajosch H, Noël X, Kornreich C, Campanella S. Sensori-motor neurofeedback improves inhibitory control and induces neural changes: a placebo-controlled, double-blind, event-related potentials study. Int J Clin Health Psychol 2024; 24:100501. [PMID: 39328986 PMCID: PMC11426047 DOI: 10.1016/j.ijchp.2024.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objective Inhibition is crucial for controlling behavior and is impaired in various psychopathologies. Neurofeedback holds promise in addressing cognitive deficits, and experimental research is essential for identifying its functional benefits. This study aimed to investigate whether boosting sensorimotor activity (SMR) improves inhibitory control in a final sample of healthy individuals (N = 53), while exploring the underlying neurophysiological mechanism. Method Participants were randomly divided into two groups: one receiving SMR neurofeedback training to enhance sensorimotor activity within the 12-15 Hz frequency range, and the other receiving sham feedback. Inhibition performance and neural correlates were evaluated with a Go-NoGo task before (T0) and after (T1) 10 neurofeedback sessions using event-related potentials. Data were analyzed via ANOVAs and regression analyses. Results Compared to placebo, the active group demonstrated higher absolute SMR power (p = 0.040) and improvements in inhibitory control, including faster response times and fewer inhibition errors (p < 0.001, d = 6.06), associated with a larger NoGoP3d amplitude (p < 0.001, d = 3.35). A positive correlation between the increase in SMR power and the rise in NoGoP3d amplitude (β=0.46, p = 0.015) explains 21 % of the observed variance. Conclusions Uptraining SMR power is linked to heightened utilization of neural resources for executing optimal inhibition responses. These results uphold its effectiveness in cognitive rehabilitation.
Collapse
Affiliation(s)
- Clémence Dousset
- Laboratory of Medical Psychology and Addictology, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (ULB), 4 Place Vangehuchten 1020, Brussels, Belgium
| | - Florent Wyckmans
- Laboratory of Medical Psychology and Addictology, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (ULB), 4 Place Vangehuchten 1020, Brussels, Belgium
| | | | - Lauréline Fourdin
- Center for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 50 avenue Franklin Roosevelt, CP191 1050 Brussels, Belgium
| | - Romane Boulanger
- Center for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 50 avenue Franklin Roosevelt, CP191 1050 Brussels, Belgium
| | - Sonia Sistiaga
- Laboratory of Medical Psychology and Addictology, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (ULB), 4 Place Vangehuchten 1020, Brussels, Belgium
| | - Anaïs Ingels
- Laboratory of Medical Psychology and Addictology, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (ULB), 4 Place Vangehuchten 1020, Brussels, Belgium
| | - Hendrik Kajosch
- Laboratory of Medical Psychology and Addictology, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (ULB), 4 Place Vangehuchten 1020, Brussels, Belgium
| | - Xavier Noël
- Laboratory of Medical Psychology and Addictology, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (ULB), 4 Place Vangehuchten 1020, Brussels, Belgium
| | - Charles Kornreich
- Laboratory of Medical Psychology and Addictology, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (ULB), 4 Place Vangehuchten 1020, Brussels, Belgium
| | - Salvatore Campanella
- Laboratory of Medical Psychology and Addictology, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (ULB), 4 Place Vangehuchten 1020, Brussels, Belgium
| |
Collapse
|
7
|
Hilbert A, Rösch SA, Petroff D, Prettin C, Lührs M, Ehlis AC, Schmidt R. Near-infrared spectroscopy and electroencephalography neurofeedback for binge-eating disorder: an exploratory randomized trial. Psychol Med 2024; 54:675-686. [PMID: 37964437 DOI: 10.1017/s0033291723002350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
BACKGROUND Binge-eating disorder (BED) co-occurs with neurobehavioral alterations in the processing of disorder-relevant content such as visual food stimuli. Whether neurofeedback (NF) directly targeting them is suited for treatment remains unclear. This study sought to determine feasibility and estimate effects of individualized, functional near-infrared spectroscopy-based real-time NF (rtfNIRS-NF) and high-beta electroencephalography-based NF (EEG-NF), assuming superiority over waitlist (WL). METHODS Single-center, assessor-blinded feasibility study with randomization to rtfNIRS-NF, EEG-NF, or WL and assessments at baseline (t0), postassessment (t1), and 6-month follow-up (t2). NF comprised 12 60-min food-specific rtfNIRS-NF or EEG-NF sessions over 8 weeks. Primary outcome was the binge-eating frequency at t1 assessed interview-based. Secondary outcomes included feasibility, eating disorder symptoms, mental and physical health, weight management-related behavior, executive functions, and brain activity at t1 and t2. RESULTS In 72 patients (intent-to-treat), the results showed feasibility of NF regarding recruitment, attrition, adherence, compliance, acceptance, and assessment completion. Binge eating improved at t1 by -8.0 episodes, without superiority of NF v. WL (-0.8 episodes, 95% CI -2.4 to 4.0), but with improved estimates in NF at t2 relative to t1. NF was better than WL for food craving, anxiety symptoms, and body mass index, but overall effects were mostly small. Brain activity changes were near zero. CONCLUSIONS The results show feasibility of food-specific rtfNIRS-NF and EEG-NF in BED, and no posttreatment differences v. WL, but possible continued improvement of binge eating. Confirmatory and mechanistic evidence is warranted in a double-blind randomized design with long-term follow-up, considering dose-response relationships and modes of delivery.
Collapse
Affiliation(s)
- Anja Hilbert
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, Leipzig University Medical Center, Leipzig, Germany
| | - Sarah Alica Rösch
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, Leipzig University Medical Center, Leipzig, Germany
| | - David Petroff
- Clinical Trial Centre Leipzig, University of Leipzig, Leipzig, Germany
| | | | - Michael Lührs
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Innovation B.V., Maastricht, The Netherlands
| | - Ann-Christin Ehlis
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
| | - Ricarda Schmidt
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
8
|
Marcu GM, Dumbravă A, Băcilă IC, Szekely-Copîndean RD, Zăgrean AM. Increasing Value and Reducing Waste of Research on Neurofeedback Effects in Post-traumatic Stress Disorder: A State-of-the-Art-Review. Appl Psychophysiol Biofeedback 2024; 49:23-45. [PMID: 38151684 DOI: 10.1007/s10484-023-09610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Post-Traumatic Stress Disorder (PTSD) is often considered challenging to treat due to factors that contribute to its complexity. In the last decade, more attention has been paid to non-pharmacological or non-psychological therapies for PTSD, including neurofeedback (NFB). NFB is a promising non-invasive technique targeting specific brainwave patterns associated with psychiatric symptomatology. By learning to regulate brain activity in a closed-loop paradigm, individuals can improve their functionality while reducing symptom severity. However, owing to its lax regulation and heterogeneous legal status across different countries, the degree to which it has scientific support as a psychiatric treatment remains controversial. In this state-of-the-art review, we searched PubMed, Cochrane Central, Web of Science, Scopus, and MEDLINE and identified meta-analyses and systematic reviews exploring the efficacy of NFB for PTSD. We included seven systematic reviews, out of which three included meta-analyses (32 studies and 669 participants) that targeted NFB as an intervention while addressing a single condition-PTSD. We used the MeaSurement Tool to Assess systematic Reviews (AMSTAR) 2 and the criteria described by Cristea and Naudet (Behav Res Therapy 123:103479, 2019, https://doi.org/10.1016/j.brat.2019.103479 ) to identify sources of research waste and increasing value in biomedical research. The seven assessed reviews had an overall extremely poor quality score (5 critically low, one low, one moderate, and none high) and multiple sources of waste while opening opportunities for increasing value in the NFB literature. Our research shows that it remains unclear whether NFB training is significantly beneficial in treating PTSD. The quality of the investigated literature is low and maintains a persistent uncertainty over numerous points, which are highly important for deciding whether an intervention has clinical efficacy. Just as importantly, none of the reviews we appraised explored the statistical power, referred to open data of the included studies, or adjusted their pooled effect sizes for publication bias and risk of bias. Based on the obtained results, we identified some recurrent sources of waste (such as a lack of research decisions based on sound questions or using an appropriate methodology in a fully transparent, unbiased, and useable manner) and proposed some directions for increasing value (homogeneity and consensus) in designing and reporting research on NFB interventions in PTSD.
Collapse
Affiliation(s)
- Gabriela Mariana Marcu
- Division of Physiology and Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
- Department of Psychology, "Lucian Blaga" University of Sibiu, Sibiu, Romania.
| | - Andrei Dumbravă
- George I.M. Georgescu Institute of Cardiovascular Diseases, Iaşi, Romania
- Alexandru Ioan Cuza University Iaşi, Iaşi, Romania
| | - Ionuţ-Ciprian Băcilă
- Scientific Research Group in Neuroscience "Dr. Gheorghe Preda" Clinical Psychiatry Hospital, Sibiu, Romania
- Faculty of Medicine, "Lucian Blaga" University of Sibiu Romania, Sibiu, Romania
| | - Raluca Diana Szekely-Copîndean
- Scientific Research Group in Neuroscience "Dr. Gheorghe Preda" Clinical Psychiatry Hospital, Sibiu, Romania
- Department of Social and Human Research, Romanian Academy - Cluj-Napoca Branch, Cluj-Napoca, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
9
|
Donantueno C, Yger P, Cabestaing F, Jardri R. fMRI-based neurofeedback strategies and the way forward to treating phasic psychiatric symptoms. Front Neurosci 2023; 17:1275229. [PMID: 38125404 PMCID: PMC10731299 DOI: 10.3389/fnins.2023.1275229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Auditory verbal hallucinations (AVH) are the perfect illustration of phasic symptoms in psychiatric disorders. For some patients and in some situations, AVH cannot be relieved by standard therapeutic approaches. More advanced treatments are needed, among which neurofeedback, and more specifically fMRI-based neurofeedback, has been considered. This paper discusses the different possibilities to approach neurofeedback in the specific context of phasic symptoms, by highlighting the strengths and weaknesses of the available neurofeedback options. It concludes with the added value of the recently introduced information-based neurofeedback. Although requiring an online fMRI signal classifier, which can be quite complex to implement, this neurofeedback strategy opens a door toward an alternative treatment option for complex phasic symptomatology.
Collapse
Affiliation(s)
- Candela Donantueno
- University of Lille, INSERM U-1172, CHU Lille, Lille Neuroscience & Cognition Center, Plasticity & SubjectivitY Team, Fontan Hospital, Lille, France
| | - Pierre Yger
- University of Lille, INSERM U-1172, CHU Lille, Lille Neuroscience & Cognition Center, Plasticity & SubjectivitY Team, Fontan Hospital, Lille, France
| | | | - Renaud Jardri
- University of Lille, INSERM U-1172, CHU Lille, Lille Neuroscience & Cognition Center, Plasticity & SubjectivitY Team, Fontan Hospital, Lille, France
| |
Collapse
|
10
|
Rösch SA, Schmidt R, Hilbert A. Predictors of neurofeedback treatment outcome in binge-eating disorder: An exploratory study. Int J Eat Disord 2023; 56:2283-2294. [PMID: 37737523 DOI: 10.1002/eat.24062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE Knowledge on predictors for treatment response to psychotherapy in binge-eating disorder (BED) is mixed and not yet available for increasingly popular neurofeedback (NF) treatment targeting self-regulation of aberrant brain activity. This study examined eating disorder- and psychopathology-related predictors for NF treatment success in BED. METHOD Patients with BED (N = 78) were randomized to 12 sessions of real-time functional near-infrared spectroscopy (rtfNIRS)-NF, targeting individual prefrontal cortex signal up-regulation, electroencephalography (EEG)-NF, targeting down-regulation of fronto-central beta activity, or waitlist (WL). The few studies assessing predictors for clinical outcomes after NF and evidenced predictors for psychotherapy guided the selection of baseline eating disorder-related predictors, including objective binge-eating (OBE) frequency, eating disorder psychopathology (EDP), food cravings, and body mass index (BMI), and general psychopathology-related predictors, including depressive and anxiety symptoms, impulsivity, emotion dysregulation, and self-efficacy. These questionnaire-based or objectively assessed (BMI) predictors were regressed on outcomes OBE frequency and EDP as key features of BED at post-treatment (t1) and 6-month follow-up (t2) in preregistered generalized mixed models (https://osf.io/4aktp). RESULTS Higher EDP, food cravings, and BMI predicted worse outcomes across all groups at t1 and t2. General psychopathology-related predictors did not predict outcomes at t1 and t2. Explorative analyses indicated that lower OBE frequency and higher self-efficacy predicted lower OBE frequency, and lower EDP predicted lower EDP after the waiting period in WL. DISCUSSION Consistent with findings for psychotherapy, higher eating disorder-related predictors were associated with higher EDP and OBE frequency. The specificity of psychopathological predictors for NF treatment success warrants further examination. PUBLIC SIGNIFICANCE This exploratory study firstly assessed eating disorder- and psychopathology-related predictors for neurofeedback treatment outcome in binge-eating disorder and overweight. Findings showed an association between higher eating disorder symptoms and worse neurofeedback outcomes, indicating special needs to be considered in neurofeedback treatment for patients with a higher binge-eating disorder symptom burden. In general, outcomes and assignment to neurofeedback treatment may be improved upon consideration of baseline psychological variables.
Collapse
Affiliation(s)
- Sarah A Rösch
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Ricarda Schmidt
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| | - Anja Hilbert
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
11
|
Kober SE, Buchrieser F, Wood G. Neurofeedback on twitter: Evaluation of the scientific credibility and communication about the technique. Heliyon 2023; 9:e18931. [PMID: 37600360 PMCID: PMC10432958 DOI: 10.1016/j.heliyon.2023.e18931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Neurofeedback is a popular technique to induce neuroplasticity with a controversial reputation. The public discourse on neurofeedback, as a therapeutic and neuroenhancement technique, encompasses scientific communication, therapeutic expectations and outcomes, as well as complementary and alternative practices. We investigated twitter publications from 2010 to 2022 on the keyword "neurofeedback". A total of over 138 k tweets were obtained, which originated from over 42 k different users. The communication flow in the neurofeedback community is mainly unidirectional and non-interactive. Analysis of hashtags revealed application fields, therapy provider and neuroenhancement to be the most popular contents in neurofeedback communication. A group of 1221 productive users was identified, in which clinicians, entrepreneurs, broadcasters, and scientists contribute. We identified reactions to critical publications in the twitter traffic and an increase in the number of tweets by academic users which suggest an increase in the interest on the scientific credibility of neurofeedback. More intense scientific communication on neurofeedback in twitter may contribute to promote a more realistic view on challenges and advances regarding good scientific practice of neurofeedback.
Collapse
|
12
|
Hilbert A. Psychological and Medical Treatments for Binge-Eating Disorder: A Research Update. Physiol Behav 2023:114267. [PMID: 37302642 DOI: 10.1016/j.physbeh.2023.114267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Binge-eating disorder (BED), characterized by recurrent binge eating in the absence of regular weight-compensatory behaviors, is the most common eating disorder, associated with pronounced mental and physical sequelae. An increasing body of research documents the efficacy of diverse approaches to the treatment of this disorder, summarized in meta-analyses. This research update narratively reviewed randomized-controlled trials (RCTs) on the psychological and medical treatment of BED published between January 2018 to November 2022, identified through a systematic literature search. A total of 16 new RCTs and 3 studies on previous RCTs providing efficacy- and safety-related data were included. Regarding psychotherapy, confirmatory evidence supported the use of integrative-cognitive therapy and, with lower effects, brief emotion regulation skills training for binge eating and associated psychopathology. Behavioral weight loss treatment was revealed to be efficacious for binge eating, weight loss, and psychopathology, but its combination with naltrexone-bupropion did not augment efficacy. New treatment approaches were explored, including e-mental-health and brain-directed treatments, mostly targeting emotion and self-regulation. Additionally, different therapeutic approaches were evaluated in complex stepped-care models. In light of these advances, future research is necessary to further optimize effects of evidence-based treatments for BED, through improvement of existing or development of new treatments, based on mechanistic and/or interventional research, and/or tailoring treatments to personal characteristics in a precision medicine approach.
Collapse
Affiliation(s)
- Anja Hilbert
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
13
|
Migalina VV, Omelchenko MA, Lebedeva IS, Kaleda VG. [Application of the biofeedback method in the therapy of depression]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:122-126. [PMID: 38127712 DOI: 10.17116/jnevro2023123112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In order to systematize the modern literature data on the effectiveness of biofeedback in the treatment of patients with depressive disorders, clinical efficacy and prospects for use in psychiatric practice, publications in the MEDLINE / PubMed, eLibrary databases from 2013 to 2023, as well as relevant references in the reference lists of the analyzed articles, were selected by the keywords «biofeedback», «depression», «depression therapy», «electroencephalogram», «non-drug treatments for depression». The analysis of data has shown that the biofeedback method demonstrates a certain therapeutic potential in the treatment of depression. It can be used to augment therapy in case of insufficient therapeutic effect, with low patient compliance, as well as poor tolerability of psychopharmacotherapy and in the presence of residual symptoms after pharmacological treatment. The method allows the correction of the psycho-emotional state, improves the balance between the parasympathetic and sympathetic divisions of the autonomic nervous system, and contributes to a more stable clinical effect. At the same time, further studies are needed, with the inclusion of large samples of patients from various nosological groups and with an analysis of the comparability of the effects of various biofeedback protocols.
Collapse
Affiliation(s)
| | | | | | - V G Kaleda
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
14
|
Batail JM, Corouge I, Combès B, Conan C, Guillery-Sollier M, Vérin M, Sauleau P, Le Jeune F, Gauvrit JY, Robert G, Barillot C, Ferre JC, Drapier D. Apathy in depression: An arterial spin labeling perfusion MRI study. J Psychiatr Res 2023; 157:7-16. [PMID: 36427413 DOI: 10.1016/j.jpsychires.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/28/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Apathy, as defined as a deficit in goal-directed behaviors, is a critical clinical dimension in depression associated with chronic impairment. Little is known about its cerebral perfusion specificities in depression. To explore neurovascular mechanisms underpinning apathy in depression by pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI). METHODS Perfusion imaging analysis was performed on 90 depressed patients included in a prospective study between November 2014 and February 2017. Imaging data included anatomical 3D T1-weighted and perfusion pCASL sequences. A multiple regression analysis relating the quantified cerebral blood flow (CBF) in different regions of interest defined from the FreeSurfer atlas, to the Apathy Evaluation Scale (AES) total score was conducted. RESULTS After confound adjustment (demographics, disease and clinical characteristics) and correction for multiple comparisons, we observed a strong negative relationship between the CBF in the left anterior cingulate cortex (ACC) and the AES score (standardized beta = -0.74, corrected p value = 0.0008). CONCLUSION Our results emphasized the left ACC as a key region involved in apathy severity in a population of depressed participants. Perfusion correlates of apathy in depression evidenced in this study may contribute to characterize different phenotypes of depression.
Collapse
Affiliation(s)
- J M Batail
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France; Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France; Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France.
| | - I Corouge
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France
| | - B Combès
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France
| | - C Conan
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France
| | - M Guillery-Sollier
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France; Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France; Univ Rennes, LP3C (Laboratoire de Psychologie: Cognition, Comportement, Communication) - EA 1285, CC5000, Rennes, France
| | - M Vérin
- Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France; CHU Rennes, Department of Neurology, F-35033, Rennes, France
| | - P Sauleau
- Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France; CHU Rennes, Department of Neurophysiology, F-35033, Rennes, France
| | - F Le Jeune
- Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France; Centre Eugène Marquis, Department of Nuclear Medicine, F-35062, Rennes, France
| | - J Y Gauvrit
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France; CHU Rennes, Department of Radiology, F-35033, Rennes, France
| | - G Robert
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France; Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France; Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France
| | - C Barillot
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France
| | - J C Ferre
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, F-35042, Rennes, France; CHU Rennes, Department of Radiology, F-35033, Rennes, France
| | - D Drapier
- Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France; Univ Rennes, "Comportement et noyaux gris centraux" Research Unit (EA 4712), F-35000, Rennes, France
| |
Collapse
|
15
|
Ciccarelli G, Federico G, Mele G, Di Cecca A, Migliaccio M, Ilardi CR, Alfano V, Salvatore M, Cavaliere C. Simultaneous real-time EEG-fMRI neurofeedback: A systematic review. Front Hum Neurosci 2023; 17:1123014. [PMID: 37063098 PMCID: PMC10102573 DOI: 10.3389/fnhum.2023.1123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
Neurofeedback (NF) is a biofeedback technique that teaches individuals self-control of brain functions by measuring brain activations and providing an online feedback signal to modify emotional, cognitive, and behavioral functions. NF approaches typically rely on a single modality, such as electroencephalography (EEG-NF) or a brain imaging technique, such as functional magnetic resonance imaging (fMRI-NF). The introduction of simultaneous EEG-fMRI tools has opened up the possibility of combining the high temporal resolution of EEG with the high spatial resolution of fMRI, thereby increasing the accuracy of NF. However, only a few studies have actively combined both techniques. In this study, we conducted a systematic review of EEG-fMRI-NF studies (N = 17) to identify the potential and effectiveness of this non-invasive treatment for neurological conditions. The systematic review revealed a lack of homogeneity among the studies, including sample sizes, acquisition methods in terms of simultaneity of the two procedures (unimodal EEG-NF and fMRI-NF), therapeutic targets field, and the number of sessions. Indeed, because most studies are based on a single session of NF, it is difficult to draw any conclusions regarding the therapeutic efficacy of NF. Therefore, further research is needed to fully understand non-clinical and clinical potential of EEG-fMRI-NF.
Collapse
|
16
|
Kalokairinou L, Specker Sullivan L, Wexler A. Neurofeedback as placebo: a case of unintentional deception? JOURNAL OF MEDICAL ETHICS 2022; 48:1037-1042. [PMID: 34521768 PMCID: PMC9205641 DOI: 10.1136/medethics-2021-107435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
The use of placebo in clinical practice has been the topic of extensive debate in the bioethics literature, with much scholarship focusing on concerns regarding deception. While considerations of placebo without deception have largely centred on open-label placebo, this paper considers a different kind of ethical quandary regarding placebo without an intent to deceive-one where the provider believes a treatment is effective due to a direct physiological mechanism, even though that belief may not be supported by rigorous scientific evidence. This is often the case with complementary and alternative medicine (CAM) techniques and also with some mainstream therapies that have not proven to be better than sham. Using one such CAM technique as a case study-electroencephalography (EEG) neurofeedback for attention-deficit/hyperactivity disorder (ADHD)-this paper explores the ethics of providing therapies that may have some beneficial effect, although one that is likely due to placebo effect. First, we provide background on EEG neurofeedback for ADHD and its evidence base, showing how it has proven to be equivalent to-but not better than-sham neurofeedback. Subsequently, we explore whether offering therapies that are claimed to work via specific physical pathways, but may actually work due to the placebo effect, constitute deception. We suggest that this practice may constitute unintentional deception regarding mechanism of action. Ultimately, we argue that providers have increased information provision obligations when offering treatments that diverge from standard of care and we make recommendations for mitigating unintentional deception.
Collapse
Affiliation(s)
- Louiza Kalokairinou
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Perez TM, Glue P, Adhia DB, Navid MS, Zeng J, Dillingham P, Smith M, Niazi IK, Young CK, De Ridder D. Infraslow closed-loop brain training for anxiety and depression (ISAD): a protocol for a randomized, double-blind, sham-controlled pilot trial in adult females with internalizing disorders. Trials 2022; 23:949. [PMID: 36397122 PMCID: PMC9670077 DOI: 10.1186/s13063-022-06863-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The core intrinsic connectivity networks (core-ICNs), encompassing the default-mode network (DMN), salience network (SN) and central executive network (CEN), have been shown to be dysfunctional in individuals with internalizing disorders (IDs, e.g. major depressive disorder, MDD; generalized anxiety disorder, GAD; social anxiety disorder, SOC). As such, source-localized, closed-loop brain training of electrophysiological signals, also known as standardized low-resolution electromagnetic tomography (sLORETA) neurofeedback (NFB), targeting key cortical nodes within these networks has the potential to reduce symptoms associated with IDs and restore normal core ICN function. We intend to conduct a randomized, double-blind (participant and assessor), sham-controlled, parallel-group (3-arm) trial of sLORETA infraslow (<0.1 Hz) fluctuation neurofeedback (sLORETA ISF-NFB) 3 times per week over 4 weeks in participants (n=60) with IDs. Our primary objectives will be to examine patient-reported outcomes (PROs) and neurophysiological measures to (1) compare the potential effects of sham ISF-NFB to either genuine 1-region ISF-NFB or genuine 2-region ISF-NFB, and (2) assess for potential associations between changes in PRO scores and modifications of electroencephalographic (EEG) activity/connectivity within/between the trained regions of interest (ROIs). As part of an exploratory analysis, we will investigate the effects of additional training sessions and the potential for the potentiation of the effects over time. METHODS We will randomly assign participants who meet the criteria for MDD, GAD, and/or SOC per the MINI (Mini International Neuropsychiatric Interview for DSM-5) to one of three groups: (1) 12 sessions of posterior cingulate cortex (PCC) ISF-NFB up-training (n=15), (2) 12 sessions of concurrent PCC ISF up-training and dorsal anterior cingulate cortex (dACC) ISF-NFB down-training (n=15), or (3) 6 sessions of yoked-sham training followed by 6 sessions genuine ISF-NFB (n=30). Transdiagnostic PROs (Hospital Anxiety and Depression Scale, HADS; Inventory of Depression and Anxiety Symptoms - Second Version, IDAS-II; Multidimensional Emotional Disorder Inventory, MEDI; Intolerance of Uncertainty Scale - Short Form, IUS-12; Repetitive Thinking Questionnaire, RTQ-10) as well as resting-state neurophysiological measures (full-band EEG and ECG) will be collected from all subjects during two baseline sessions (approximately 1 week apart) then at post 6 sessions, post 12 sessions, and follow-up (1 month later). We will employ Bayesian methods in R and advanced source-localisation software (i.e. exact low-resolution brain electromagnetic tomography; eLORETA) in our analysis. DISCUSSION This protocol will outline the rationale and research methodology for a clinical pilot trial of sLORETA ISF-NFB targeting key nodes within the core-ICNs in a female ID population with the primary aims being to assess its potential efficacy via transdiagnostic PROs and relevant neurophysiological measures. TRIAL REGISTRATION Our study was prospectively registered with the Australia New Zealand Clinical Trials Registry (ANZCTR; Trial ID: ACTRN12619001428156). Registered on October 15, 2019.
Collapse
Affiliation(s)
- Tyson M Perez
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand.
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand.
| | - Paul Glue
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Divya B Adhia
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Muhammad S Navid
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
- Donders Institute for Brain, Cognition and Behaviour, Radbout University Medical Center, Nijmegen, The Netherlands
| | - Jiaxu Zeng
- Department of Preventative & Social Medicine, Otago Medical School-Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Peter Dillingham
- Coastal People Southern Skies Centre of Research Excellence, Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand
| | - Mark Smith
- Neurofeedback Therapy Services of New York, New York, USA
| | - Imran K Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Calvin K Young
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Dirk De Ridder
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Barthélemy Q, Chevallier S, Bertrand-Lalo R, Clisson P. End-to-end P300 BCI using Bayesian accumulation of Riemannian probabilities. BRAIN-COMPUTER INTERFACES 2022. [DOI: 10.1080/2326263x.2022.2140467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Perez TM, Mathew J, Glue P, Adhia DB, De Ridder D. Is There Evidence for the Specificity of Closed-Loop Brain Training in the Treatment of Internalizing Disorders? A Systematic Review. Front Neurosci 2022; 16:821136. [PMID: 35360168 PMCID: PMC8960197 DOI: 10.3389/fnins.2022.821136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Internalizing disorders (IDs), e.g., major depressive disorder (MDD), posttraumatic stress disorder (PTSD), obsessive-compulsive disorder (OCD) are the most prevalent psychopathologies experienced worldwide. Current first-line therapies (i.e., pharmacotherapy and/or psychotherapy) offer high failure rates, limited accessibility, and substantial side-effects. Electroencephalography (EEG) guided closed-loop brain training, also known as EEG-neurofeedback (EEG-NFB), is believed to be a safe and effective alternative, however, there is much debate in the field regarding the existence of specificity [i.e., clinical effects specific to the modulation of the targeted EEG variable(s)]. This review was undertaken to determine if there is evidence for EEG-NFB specificity in the treatment of IDs. Methods We considered only randomized, double-blind, sham-controlled trials. Outcomes of interest included self/parent/teacher reports and clinician ratings of ID-related symptomatology. Results Of the four reports (total participant number = 152) meeting our eligibility criteria, three had point estimates suggesting small to moderate effect sizes favoring genuine therapy over sham, however, due to small sample sizes, all 95% confidence intervals (CIs) were wide and spanned the null. The fourth trial had yet to post results as of the submission date of this review. The limited overall number of eligible reports (and participants), large degree of inter-trial heterogeneity, and restricted span of ID populations with published/posted outcome data (i.e., PTSD and OCD) precluded a quantitative synthesis. Discussion The current literature suggests that EEG-NFB may induce specific effects in the treatment of some forms of IDs, however, the evidence is very limited. Ultimately, more randomized, double-blind, sham-controlled trials encompassing a wider array of ID populations are needed to determine the existence and, if present, degree of EEG-NFB specificity in the treatment of IDs. Systematic Review Registration [https://www.crd.york.ac.uk/prospero], identifier [CRD42020159702].
Collapse
Affiliation(s)
- Tyson Michael Perez
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, University of Otago, Dunedin, New Zealand
| | - Paul Glue
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Divya B. Adhia
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Dirk De Ridder
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Du B, Cheng X, Duan Y, Ning H. fMRI Brain Decoding and Its Applications in Brain-Computer Interface: A Survey. Brain Sci 2022; 12:228. [PMID: 35203991 PMCID: PMC8869956 DOI: 10.3390/brainsci12020228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/25/2022] Open
Abstract
Brain neural activity decoding is an important branch of neuroscience research and a key technology for the brain-computer interface (BCI). Researchers initially developed simple linear models and machine learning algorithms to classify and recognize brain activities. With the great success of deep learning on image recognition and generation, deep neural networks (DNN) have been engaged in reconstructing visual stimuli from human brain activity via functional magnetic resonance imaging (fMRI). In this paper, we reviewed the brain activity decoding models based on machine learning and deep learning algorithms. Specifically, we focused on current brain activity decoding models with high attention: variational auto-encoder (VAE), generative confrontation network (GAN), and the graph convolutional network (GCN). Furthermore, brain neural-activity-decoding-enabled fMRI-based BCI applications in mental and psychological disease treatment are presented to illustrate the positive correlation between brain decoding and BCI. Finally, existing challenges and future research directions are addressed.
Collapse
Affiliation(s)
- Bing Du
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; (B.D.); (X.C.)
| | - Xiaomu Cheng
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; (B.D.); (X.C.)
| | - Yiping Duan
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
| | - Huansheng Ning
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; (B.D.); (X.C.)
| |
Collapse
|
21
|
Zafarmand M, Farahmand Z, Otared N. A Systematic Literature Review and Meta-analysis on Effectiveness of Neurofeedback for Obsessive-Compulsive Disorder. Neurocase 2022; 28:29-36. [PMID: 35253624 DOI: 10.1080/13554794.2021.2019790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To evaluate the evidences related to the effectiveness of neurofeedback treatment for people with OCD. A literature review and meta-analysis of current controlled trials for patients with OCD symptoms was conducted across different databases. So, the primary outcome measure was OCD symptoms in subjects based on DSM IV. Y-BOCS was considered as primary outcomes. Nine met inclusion criteria (including 1211 patients). Analysis showed there was an important benefit of neurofeedback treatment in comparison to other treatments (MD = -6.815; 95% CI = [-9.033, -4.598]; P < 0.001). The results provide preliminary evidence that NFB is efficacious method for OCD and suggest that more clinical trials are needed to compare common treatment such as medication, neurological, and behavioral interventions.
Collapse
Affiliation(s)
| | - Zahra Farahmand
- Department of Clinical Psychology, Tehran University of Medical Science, Tehran, Iran
| | - Nastaran Otared
- Department of Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
22
|
Liu S, Hao X, Liu X, He Y, Zhang L, An X, Song X, Ming D. Sensorimotor rhythm neurofeedback training relieves anxiety in healthy people. Cogn Neurodyn 2021; 16:531-544. [DOI: 10.1007/s11571-021-09732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 10/19/2022] Open
|
23
|
Garro F, Chiappalone M, Buccelli S, De Michieli L, Semprini M. Neuromechanical Biomarkers for Robotic Neurorehabilitation. Front Neurorobot 2021; 15:742163. [PMID: 34776920 PMCID: PMC8579108 DOI: 10.3389/fnbot.2021.742163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
One of the current challenges for translational rehabilitation research is to develop the strategies to deliver accurate evaluation, prediction, patient selection, and decision-making in the clinical practice. In this regard, the robot-assisted interventions have gained popularity as they can provide the objective and quantifiable assessment of the motor performance by taking the kinematics parameters into the account. Neurophysiological parameters have also been proposed for this purpose due to the novel advances in the non-invasive signal processing techniques. In addition, other parameters linked to the motor learning and brain plasticity occurring during the rehabilitation have been explored, looking for a more holistic rehabilitation approach. However, the majority of the research done in this area is still exploratory. These parameters have shown the capability to become the “biomarkers” that are defined as the quantifiable indicators of the physiological/pathological processes and the responses to the therapeutical interventions. In this view, they could be finally used for enhancing the robot-assisted treatments. While the research on the biomarkers has been growing in the last years, there is a current need for a better comprehension and quantification of the neuromechanical processes involved in the rehabilitation. In particular, there is a lack of operationalization of the potential neuromechanical biomarkers into the clinical algorithms. In this scenario, a new framework called the “Rehabilomics” has been proposed to account for the rehabilitation research that exploits the biomarkers in its design. This study provides an overview of the state-of-the-art of the biomarkers related to the robotic neurorehabilitation, focusing on the translational studies, and underlying the need to create the comprehensive approaches that have the potential to take the research on the biomarkers into the clinical practice. We then summarize some promising biomarkers that are being under investigation in the current literature and provide some examples of their current and/or potential applications in the neurorehabilitation. Finally, we outline the main challenges and future directions in the field, briefly discussing their potential evolution and prospective.
Collapse
Affiliation(s)
- Florencia Garro
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Michela Chiappalone
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Stefano Buccelli
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | | |
Collapse
|
24
|
Viviani G, Vallesi A. EEG-neurofeedback and executive function enhancement in healthy adults: A systematic review. Psychophysiology 2021; 58:e13874. [PMID: 34117795 PMCID: PMC8459257 DOI: 10.1111/psyp.13874] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023]
Abstract
Electroencephalographic (EEG)-neurofeedback training (NFT) is a promising technique that supports individuals in learning to modulate their brain activity to obtain cognitive and behavioral improvements. EEG-NFT is gaining increasing attention for its potential "peak performance" applications on healthy individuals. However, evidence for clear cognitive performance enhancements with healthy adults is still lacking. In particular, whether EEG-NFT represents an effective technique for enhancing healthy adults' executive functions is still controversial. Therefore, the main objective of this systematic review is to assess whether the existing EEG-NFT studies targeting executive functions have provided reliable evidence for NFT effectiveness. To this end, we conducted a qualitative analysis of the literature since the limited number of retrieved studies did not allow us meta-analytical comparisons. Moreover, a second aim was to identify optimal frequencies as NFT targets for specifically improving executive functions. Overall, our systematic review provides promising evidence for NFT effectiveness in boosting healthy adults' executive functions. However, more rigorous NFT studies are required in order to overcome the methodological weaknesses that we encountered in our qualitative analysis.
Collapse
Affiliation(s)
- Giada Viviani
- Department of Neuroscience and Padova Neuroscience CenterUniversity of PadovaPadovaItaly
| | - Antonino Vallesi
- Department of Neuroscience and Padova Neuroscience CenterUniversity of PadovaPadovaItaly
- IRCCS San Camillo HospitalVeniceItaly
| |
Collapse
|
25
|
Monferrer M, Ricarte JJ, Montes MJ, Fernández-Caballero A, Fernández-Sotos P. Psychosocial remediation in depressive disorders: A systematic review. J Affect Disord 2021; 290:40-51. [PMID: 33991945 DOI: 10.1016/j.jad.2021.04.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 04/25/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Social functioning impairment has been described in several psychiatric illness, including depressive disorders. It is associated with a deterioration in global functioning and quality of life, thus there is a growing interest in psychosocial functioning remediation interventions. This systematic review aims to review all psychotherapeutic, pharmacological and biological social functioning interventions in depressive disorders. METHODS A systematic search was conducted on PubMed, PsycINFO and Scopus from the first articles to 2019 following the PRISMA guidelines. 72 original papers were extracted from an initial number of 1827, based on the selected eligibility criteria. RESULTS A growing body of research was observed in the last 10 years, with most studies showing a low level of scientific evidence. The main diagnosis found was major depressive disorder and the principal social cognition domains assessed were emotional processing and attributional style. The type of intervention most found was the pharmacological one, followed by psychotherapeutic interventions classified as "non-specific. The efficacy of treatments showed an improvement in depressive symptoms and positive results for emotional processing and attributional style. LIMITATIONS Because there is a lack of well-controlled designs and really few interventions focusing on its remediation, and low homogeneity on the assessment of social aspects across, a comparison of results and the extraction of general conclusions is quite difficult. CONCLUSIONS Although a promising body of literature has been developed in recent years on the improvement of psychosocial functioning in patients with depressive disorders, more studies are needed to clarify relevant aspects in this area.
Collapse
Affiliation(s)
- Marta Monferrer
- Mental Health Service, Complejo Hospitalario Universitario de Albacete (CHUA), Albacete, Spain
| | - Jorge J Ricarte
- Department of Psychology, Faculty of Medicine, Universidad de Castilla La Mancha, Albacete, Spain
| | - María J Montes
- Mental Health Service, Complejo Hospitalario Universitario de Albacete (CHUA), Albacete, Spain
| | - Antonio Fernández-Caballero
- CIBERSAM (Biomedical Research Networking Centre in Mental Health), Spain; Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha, Albacete, Spain; Instituto de Investigación en Informática de Albacete, Albacete, Spain
| | - Patricia Fernández-Sotos
- Mental Health Service, Complejo Hospitalario Universitario de Albacete (CHUA), Albacete, Spain; CIBERSAM (Biomedical Research Networking Centre in Mental Health), Spain; Mental Health Service, Hospital Virgen de la Luz, Cuenca, Spain.
| |
Collapse
|
26
|
Boland C, Jalihal V, Organ C, Oak K, McLean B, Laugharne R, Woldman W, Beck R, Shankar R. EEG Markers in Emotionally Unstable Personality Disorder-A Possible Outcome Measure for Neurofeedback: A Narrative Review. Clin EEG Neurosci 2021; 52:254-273. [PMID: 32635758 DOI: 10.1177/1550059420937948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Objectives. There is growing evidence for the use of biofeedback (BF) in affective disorders, dissocial personality disorder, and in children with histories of abuse. Electroencephalogram (EEG) markers could be used as neurofeedback in emotionally unstable personality disorder (EUPD) management especially for those at high risk of suicide when emotionally aroused. This narrative review investigates the evidence for EEG markers in EUPD. Methods. PRISMA guidelines were used to conduct a narrative review. A structured search method was developed and implemented in collaboration with an information specialist. Studies were identified via 3 electronic database searches of MEDLINE, Embase, and PsycINFO. A predesigned inclusion/exclusion criterion was applied to selected papers. A thematic analysis approach with 5 criteria was used. Results. From an initial long list of 5250 papers, 229 studies were identified and screened, of which 44 met at least 3 of the predesigned inclusion criteria. No research to date investigates EEG-based neurofeedback in EUPD. A number of different EEG biomarkers are identified but there is poor consistency between studies. Conclusions. The findings heterogeneity may be due to the disorder complexity and the variable EEG related parameters studied. An alternative explanation may be that there are a number of different neuromarkers, which could be clustered together with clinical symptomatology, to give new subdomains. Quantitative EEGs in particular may be helpful to identify more specific abnormalities. EEG standardization of neurofeedback protocols based on specific EEG abnormalities detected may facilitate targeted use of neurofeedback as an intervention in EUPD.
Collapse
Affiliation(s)
- Cailín Boland
- Saint James's Hospital, Dublin, Ireland.,8809Trinity College Dublin, Dublin, Ireland
| | | | | | - Katy Oak
- 8028Royal Cornwall Hospitals Trust, Truro, UK
| | | | - Richard Laugharne
- 7491Cornwall Partnership NHS Foundation Trust, Truro, UK.,151756Exeter Medical School, Exeter, UK
| | | | - Randy Beck
- Institute of Functional Neuroscience, Perth, Western Australia, Australia
| | - Rohit Shankar
- 7491Cornwall Partnership NHS Foundation Trust, Truro, UK.,151756Exeter Medical School, Exeter, UK
| |
Collapse
|
27
|
Deiber MP, Ammann C, Hasler R, Colin J, Perroud N, Ros T. Electrophysiological correlates of improved executive function following EEG neurofeedback in adult attention deficit hyperactivity disorder. Clin Neurophysiol 2021; 132:1937-1946. [PMID: 34153722 DOI: 10.1016/j.clinph.2021.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Event-related potentials (ERPs) are reported to be altered in relation to cognitive processing deficits in attention deficit hyperactivity disorder (ADHD). However, this evidence is mostly limited to cross-sectional data. The current study utilized neurofeedback (NFB) as a neuromodulatory tool to examine the ERP correlates of attentional and inhibitory processes in adult ADHD using a single-session, within-subject design. METHODS We recorded high-density EEG in 25 adult ADHD patients and 22 neurotypical controls during a Go/NoGo task, before and after a 30-minute NFB session designed to down-regulate the alpha (8-12 Hz) rhythm. RESULTS At baseline, ADHD patients demonstrated impaired Go/NoGo performance compared to controls, while Go-P3 amplitude inversely correlated with ADHD-associated symptomatology in childhood. Post NFB, task performance improved in both groups, significantly enhancing stimulus detectability (d-prime) and reducing reaction time variability, while increasing N1 and P3 ERP component amplitudes. Specifically for ADHD patients, the pre-to-post enhancement in Go-P3 amplitude correlated with measures of improved executive function, i.e., enhanced d-prime, reduced omission errors and reduced reaction time variability. CONCLUSIONS A single-session of alpha down-regulation NFB was able to reverse the abnormal neurocognitive signatures of adult ADHD during a Go/NoGo task. SIGNIFICANCE The study demonstrates for the first time the beneficial neurobehavioral effect of a single NFB session in adult ADHD, and reinforces the notion that ERPs could serve as useful diagnostic/prognostic markers of executive dysfunction.
Collapse
Affiliation(s)
- Marie-Pierre Deiber
- Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland; Department of Psychiatry, University of Geneva, Geneva, Switzerland; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| | - Camille Ammann
- Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Roland Hasler
- Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Julien Colin
- Geneva Medical Center, University of Geneva, Geneva, Switzerland
| | - Nader Perroud
- Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland; Department of Psychiatry, University of Geneva, Geneva, Switzerland; Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Tomas Ros
- Department of Psychiatry, University of Geneva, Geneva, Switzerland; Centre for Biomedical Imaging (CIBM) Lausanne-Geneva, Geneva, Switzerland; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Initial Results of Tests Using GSR Biofeedback as a New Neurorehabilitation Technology Complementing Pharmacological Treatment of Patients with Schizophrenia. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5552937. [PMID: 34222472 PMCID: PMC8213473 DOI: 10.1155/2021/5552937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/22/2021] [Accepted: 06/04/2021] [Indexed: 11/24/2022]
Abstract
Galvanic skin response (GSR) Biofeedback uses training to reduce tension and anxiety and improve concentration and self-regulation. The study was aimed to evaluate this method as a form of rehabilitation and quantify the outcomes achieved by patients undergoing training using this technique. Six schizophrenic patients were enrolled in the study and underwent training based on the relaxation training module (CENTER), concentration training module (BALANCE), and self-regulation training module (INSECTS). Training sessions were held twice a week for 6 weeks. From the total group of subjects involved in the study, two patients had a statistically significant increase in measured values after the CENTER exercise, indicating that relaxation was achieved. Four patients showed a statistically significant decrease in measured values after the BALANCE exercise, which was reflective of an improvement in concentration. Three patients had a statistically significant decrease in measured values after the INSECTS exercise, which indicated an improvement in self-regulation. GSR Biofeedback may be used to complement the pharmacological treatment of patients diagnosed with schizophrenia.
Collapse
|
29
|
Trambaiolli LR, Cassani R, Mehler DMA, Falk TH. Neurofeedback and the Aging Brain: A Systematic Review of Training Protocols for Dementia and Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:682683. [PMID: 34177558 PMCID: PMC8221422 DOI: 10.3389/fnagi.2021.682683] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
Dementia describes a set of symptoms that occur in neurodegenerative disorders and that is characterized by gradual loss of cognitive and behavioral functions. Recently, non-invasive neurofeedback training has been explored as a potential complementary treatment for patients suffering from dementia or mild cognitive impairment. Here we systematically reviewed studies that explored neurofeedback training protocols based on electroencephalography or functional magnetic resonance imaging for these groups of patients. From a total of 1,912 screened studies, 10 were included in our final sample (N = 208 independent participants in experimental and N = 81 in the control groups completing the primary endpoint). We compared the clinical efficacy across studies, and evaluated their experimental designs and reporting quality. In most studies, patients showed improved scores in different cognitive tests. However, data from randomized controlled trials remains scarce, and clinical evidence based on standardized metrics is still inconclusive. In light of recent meta-research developments in the neurofeedback field and beyond, quality and reporting practices of individual studies are reviewed. We conclude with recommendations on best practices for future studies that investigate the effects of neurofeedback training in dementia and cognitive impairment.
Collapse
Affiliation(s)
- Lucas R Trambaiolli
- Basic Neuroscience Division, McLean Hospital - Harvard Medical School, Boston, MA, United States
| | - Raymundo Cassani
- Institut National de la Recherche Scientifique - Energy, Materials, and Telecommunications Centre (INRS-EMT), University of Québec, Montréal, QC, Canada
| | - David M A Mehler
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tiago H Falk
- Institut National de la Recherche Scientifique - Energy, Materials, and Telecommunications Centre (INRS-EMT), University of Québec, Montréal, QC, Canada
| |
Collapse
|
30
|
Trambaiolli LR, Tiwari A, Falk TH. Affective Neurofeedback Under Naturalistic Conditions: A Mini-Review of Current Achievements and Open Challenges. FRONTIERS IN NEUROERGONOMICS 2021; 2:678981. [PMID: 38235228 PMCID: PMC10790905 DOI: 10.3389/fnrgo.2021.678981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 01/19/2024]
Abstract
Affective neurofeedback training allows for the self-regulation of the putative circuits of emotion regulation. This approach has recently been studied as a possible additional treatment for psychiatric disorders, presenting positive effects in symptoms and behaviors. After neurofeedback training, a critical aspect is the transference of the learned self-regulation strategies to outside the laboratory and how to continue reinforcing these strategies in non-controlled environments. In this mini-review, we discuss the current achievements of affective neurofeedback under naturalistic setups. For this, we first provide a brief overview of the state-of-the-art for affective neurofeedback protocols. We then discuss virtual reality as a transitional step toward the final goal of "in-the-wild" protocols and current advances using mobile neurotechnology. Finally, we provide a discussion of open challenges for affective neurofeedback protocols in-the-wild, including topics such as convenience and reliability, environmental effects in attention and workload, among others.
Collapse
Affiliation(s)
- Lucas R. Trambaiolli
- Basic Neuroscience Division, McLean Hospital–Harvard Medical School, Belmont, MA, United States
| | - Abhishek Tiwari
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC, Canada
| | - Tiago H. Falk
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC, Canada
| |
Collapse
|
31
|
Nagappan A, Kalokairinou L, Wexler A. Ethical and Legal Considerations of Alternative Neurotherapies. AJOB Neurosci 2021; 12:257-269. [PMID: 33759705 DOI: 10.1080/21507740.2021.1896601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurotherapies for diagnostics and treatment-such as electroencephalography (EEG) neurofeedback, single-photon emission computerized tomography (SPECT) imaging for neuropsychiatric evaluation, and off-label/experimental uses of brain stimulation-are continuously being offered to the public outside mainstream healthcare settings. Because these neurotherapies share many key features of complementary and alternative medicine (CAM) techniques-and meet the definition of CAM as set out in Kaptchuk and Eisenberg-here we refer to them as "alternative neurotherapies." By explicitly linking these alternative neurotherapy practices under a common conceptual framework, this paper draws attention to, and critically considers, the cross-cutting ethical and legal issues related to the provision of these services. The first section of this paper provides an updated empirical overview of uses of SPECT neuropsychiatric evaluations, EEG neurofeedback, and experimental/off-label forms of brain stimulation. Next, drawing on CAM bioethics scholarship, we highlight the pertinent ethical issues in the alternative neurotherapy context, including the truthful representation of evidence base, marketing to vulnerable populations, potential harms, provider competency, and conflicts of interest. Finally, we consider the principal legal issues at stake for the provision of alternative neurotherapies in the U.S., namely those related to licensing and scope-of-practice considerations. We conclude with recommendations for future research in this domain.
Collapse
|
32
|
Guerrero Moreno J, Biazoli CE, Baptista AF, Trambaiolli LR. Closed-loop neurostimulation for affective symptoms and disorders: An overview. Biol Psychol 2021; 161:108081. [PMID: 33757806 DOI: 10.1016/j.biopsycho.2021.108081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022]
Abstract
Affective and anxiety disorders are the most prevalent and incident psychiatric disorders worldwide. Therapeutic approaches to these disorders using non-invasive brain stimulation (NIBS) and analogous techniques have been extensively investigated. In this paper, we discuss the combination of NIBS and neurofeedback in closed-loop setups and its application for affective symptoms and disorders. For this, we first provide a rationale for this combination by presenting some of the main original findings of NIBS, with a primary focus on transcranial magnetic stimulation (TMS), and neurofeedback, including protocols based on electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Then, we provide a scope review of studies combining real-time neurofeedback with NIBS protocols in the so-called closed-loop brain state-dependent neuromodulation (BSDS). Finally, we discuss the concomitant use of TMS and real-time functional near-infrared spectroscopy (fNIRS) as a possible solution to the current limitations of BSDS-based protocols for affective and anxiety disorders.
Collapse
Affiliation(s)
- Javier Guerrero Moreno
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil; Department of Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Abrahão Fontes Baptista
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil; Laboratory of Medical Investigations 54 (LIM-54), Universidade de São Paulo, São Paulo, Brazil; NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Lucas Remoaldo Trambaiolli
- McLean Hospital, Harvard Medical School, Boston, USA; School of Medicine and Dentistry, University of Rochester, Rochester, USA.
| |
Collapse
|
33
|
Trambaiolli LR, Kohl SH, Linden DEJ, Mehler DMA. Neurofeedback training in major depressive disorder: A systematic review of clinical efficacy, study quality and reporting practices. Neurosci Biobehav Rev 2021; 125:33-56. [PMID: 33587957 DOI: 10.1016/j.neubiorev.2021.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the leading cause of disability worldwide. Neurofeedback training has been suggested as a potential additional treatment option for MDD patients not reaching remission from standard care (i.e., psychopharmacology and psychotherapy). Here we systematically reviewed neurofeedback studies employing electroencephalography, or functional magnetic resonance-based protocols in depressive patients. Of 585 initially screened studies, 24 were included in our final sample (N = 480 patients in experimental and N = 194 in the control groups completing the primary endpoint). We evaluated the clinical efficacy across studies and attempted to group studies according to the control condition categories currently used in the field that affect clinical outcomes in group comparisons. In most studies, MDD patients showed symptom improvement superior to the control group(s). However, most articles did not comply with the most stringent study quality and reporting practices. We conclude with recommendations on best practices for experimental designs and reporting standards for neurofeedback training.
Collapse
Affiliation(s)
- Lucas R Trambaiolli
- Division of Basic Neuroscience, McLean Hospital, Harvard Medical School, Boston, USA.
| | - Simon H Kohl
- JARA Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Germany; Department of Child and Adolescent Psychiatry, Medical Faculty, RWTH Aachen University, Germany
| | - David E J Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands
| | | |
Collapse
|
34
|
The Current Evidence Levels for Biofeedback and Neurofeedback Interventions in Treating Depression: A Narrative Review. Neural Plast 2021; 2021:8878857. [PMID: 33613671 PMCID: PMC7878101 DOI: 10.1155/2021/8878857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
This article is aimed at showing the current level of evidence for the usage of biofeedback and neurofeedback to treat depression along with a detailed review of the studies in the field and a discussion of rationale for utilizing each protocol. La Vaque et al. criteria endorsed by the Association for Applied Psychophysiology and Biofeedback and International Society for Neuroregulation & Research were accepted as a means of study evaluation. Heart rate variability (HRV) biofeedback was found to be moderately supportable as a treatment of MDD while outcome measure was a subjective questionnaire like Beck Depression Inventory (level 3/5, “probably efficacious”). Electroencephalographic (EEG) neurofeedback protocols, namely, alpha-theta, alpha, and sensorimotor rhythm upregulation, all qualify for level 2/5, “possibly efficacious.” Frontal alpha asymmetry protocol also received limited evidence of effect in depression (level 2/5, “possibly efficacious”). Finally, the two most influential real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback protocols targeting the amygdala and the frontal cortices both demonstrate some effectiveness, though lack replications (level 2/5, “possibly efficacious”). Thus, neurofeedback specifically targeting depression is moderately supported by existing studies (all fit level 2/5, “possibly efficacious”). The greatest complication preventing certain protocols from reaching higher evidence levels is a relatively high number of uncontrolled studies and an absence of accurate replications arising from the heterogeneity in protocol details, course lengths, measures of improvement, control conditions, and sample characteristics.
Collapse
|
35
|
Trambaiolli LR, Tossato J, Cravo AM, Biazoli CE, Sato JR. Subject-independent decoding of affective states using functional near-infrared spectroscopy. PLoS One 2021; 16:e0244840. [PMID: 33411817 PMCID: PMC7790273 DOI: 10.1371/journal.pone.0244840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
Affective decoding is the inference of human emotional states using brain signal measurements. This approach is crucial to develop new therapeutic approaches for psychiatric rehabilitation, such as affective neurofeedback protocols. To reduce the training duration and optimize the clinical outputs, an ideal clinical neurofeedback could be trained using data from an independent group of volunteers before being used by new patients. Here, we investigated if this subject-independent design of affective decoding can be achieved using functional near-infrared spectroscopy (fNIRS) signals from frontal and occipital areas. For this purpose, a linear discriminant analysis classifier was first trained in a dataset (49 participants, 24.65±3.23 years) and then tested in a completely independent one (20 participants, 24.00±3.92 years). Significant balanced accuracies between classes were found for positive vs. negative (64.50 ± 12.03%, p<0.01) and negative vs. neutral (68.25 ± 12.97%, p<0.01) affective states discrimination during a reactive block consisting in viewing affective-loaded images. For an active block, in which volunteers were instructed to recollect personal affective experiences, significant accuracy was found for positive vs. neutral affect classification (71.25 ± 18.02%, p<0.01). In this last case, only three fNIRS channels were enough to discriminate between neutral and positive affective states. Although more research is needed, for example focusing on better combinations of features and classifiers, our results highlight fNIRS as a possible technique for subject-independent affective decoding, reaching significant classification accuracies of emotional states using only a few but biologically relevant features.
Collapse
Affiliation(s)
- Lucas R. Trambaiolli
- Division of Basic Neuroscience, McLean Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Juliana Tossato
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - André M. Cravo
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Claudinei E. Biazoli
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - João R. Sato
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| |
Collapse
|
36
|
Recommendations for Integrating a P300-Based Brain–Computer Interface in Virtual Reality Environments for Gaming: An Update. COMPUTERS 2020. [DOI: 10.3390/computers9040092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The integration of a P300-based brain–computer interface (BCI) into virtual reality (VR) environments is promising for the video games industry. However, it faces several limitations, mainly due to hardware constraints and limitations engendered by the stimulation needed by the BCI. The main restriction is still the low transfer rate that can be achieved by current BCI technology, preventing movement while using VR. The goal of this paper is to review current limitations and to provide application creators with design recommendations to overcome them, thus significantly reducing the development time and making the domain of BCI more accessible to developers. We review the design of video games from the perspective of BCI and VR with the objective of enhancing the user experience. An essential recommendation is to use the BCI only for non-complex and non-critical tasks in the game. Also, the BCI should be used to control actions that are naturally integrated into the virtual world. Finally, adventure and simulation games, especially if cooperative (multi-user), appear to be the best candidates for designing an effective VR game enriched by BCI technology.
Collapse
|
37
|
Pandria N, Athanasiou A, Konstantara L, Karagianni M, Bamidis PD. Advances in biofeedback and neurofeedback studies on smoking. Neuroimage Clin 2020; 28:102397. [PMID: 32947225 PMCID: PMC7502375 DOI: 10.1016/j.nicl.2020.102397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/02/2020] [Accepted: 08/19/2020] [Indexed: 11/19/2022]
Abstract
Smoking is a leading cause of morbidity and premature death constituting a global health challenge. Although, pharmacological and behavioral approaches comprise the mainstay of smoking cessation interventions, the efficacy and safety of pharmacotherapy is not demonstrated for some populations. Non-pharmacological approaches, such as biofeedback (BF) and neurofeedback (NF) could facilitate self-regulation of predisposing factors of relapse such as craving and stress. The current review aims to aggregate the existing evidence regarding the effects of BF and NF training on smokers. Relevant studies were identified through searching in Scopus, PubMed and Cochrane Library, and through hand-searching the references of screened articles. Peer-reviewed controlled and uncontrolled studies, where BF and/or NF training was administered, were included and evaluated according to PICOS framework. Narrative qualitative synthesis of ten eligible studies was performed, aggregated into three categories according to training provided. BF outcomes seem to be affected by smoking behavior prior to training; individualized EEG NF training holds promise for modulating craving-related response while minimizing the required number of sessions. Real-time fMRI NF studies concluded that nicotine-dependent individuals could modulate craving-related brain responses, while mixed results were revealed regarding smokers' ability to modulate brain responses related to resistance towards the urge to smoke. BF and NF training seem to facilitate modulation of autonomous and/or central nervous system activity while also transferring this learned self-regulation to behavioral outcomes. BF and NF training should a) address remaining issues on specificity and scientific validity, b) target diverse demographics, and c) produce robust reproducible methodologies and clinical guidelines for relevant health care providers, in order to be considered as viable complementary tools to standard smoking cessation care.
Collapse
Affiliation(s)
- N Pandria
- Lab of Medical Physics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece; Northern Greece Neurofeedback Center, Thessaloniki, Greece.
| | - A Athanasiou
- Lab of Medical Physics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece.
| | - L Konstantara
- Lab of Medical Physics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece.
| | - M Karagianni
- Lab of Medical Physics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece.
| | - P D Bamidis
- Lab of Medical Physics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece.
| |
Collapse
|
38
|
Stramba-Badiale C, Mancuso V, Cavedoni S, Pedroli E, Cipresso P, Riva G. Transcranial Magnetic Stimulation Meets Virtual Reality: The Potential of Integrating Brain Stimulation With a Simulative Technology for Food Addiction. Front Neurosci 2020; 14:720. [PMID: 32760243 PMCID: PMC7372037 DOI: 10.3389/fnins.2020.00720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of this perspective is to propose and discuss the integration of transcranial magnetic stimulation (TMS) over the dorsolateral prefrontal cortex with virtual reality (VR) food exposure for therapeutic interventions for food addiction. "Food addiction" is a dysfunctional eating pattern which is typically observed in eating disorders (ED) such as bulimia nervosa and binge eating disorder. Food addiction has been compared to substance use disorder due to the necessity of consuming a substance (food) and the presence of a dependence behavior. In recent years, VR has been applied in the treatment of ED because it triggers psychological and physiological responses through food exposure in place of real stimuli. Virtual reality-Cue exposure therapy has been proven as a valid technique for regulating anxiety and food craving in ED. More, TMS has been proven to modulate circuits and networks implicated in neuropsychiatric disorders and is effective in treating addiction such as nicotine craving and consumption and cocaine use disorder. The combination of a simulative technology and a neurostimulation would presumably provide better improvement compared to a single intervention because it implies the presence of both cognitive and neuropsychological techniques. The possible advantage of this approach will be discussed in the perspective.
Collapse
Affiliation(s)
- Chiara Stramba-Badiale
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Valentina Mancuso
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Silvia Cavedoni
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Elisa Pedroli
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Department of Psychology, E-Campus University, Novedrate, Italy
| | - Pietro Cipresso
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
39
|
Simões M, Abreu R, Direito B, Sayal A, Castelhano J, Carvalho P, Castelo-Branco M. How much of the BOLD-fMRI signal can be approximated from simultaneous EEG data: relevance for the transfer and dissemination of neurofeedback interventions. J Neural Eng 2020; 17:046007. [DOI: 10.1088/1741-2552/ab9a98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Dousset C, Kajosch H, Ingels A, Schröder E, Kornreich C, Campanella S. Preventing relapse in alcohol disorder with EEG-neurofeedback as a neuromodulation technique: A review and new insights regarding its application. Addict Behav 2020; 106:106391. [PMID: 32197211 DOI: 10.1016/j.addbeh.2020.106391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Alcohol Use Disorder (AUD) has a disconcertingly high relapse rate (70-80% within a year following withdrawal). Preventing relapse or minimizing its extent is hence a challenging goal for long-term successful management of AUD. New perspectives that rely on diverse neuromodulation tools have been developed in this regard as care supports. This paper focuses on electroencephalogram-neurofeedback (EEG-NF), which is a tool that has experienced renewed interest in both clinical and research areas. We review the literature on EEG-based neurofeedback studies investigating the efficacy in AUD and including at least 10 neurofeedback training sessions. As neurofeedback is a form of biofeedback in which a measure of brain activity is provided as feedback in real-time to a subject, the high degree of temporal resolution of the EEG interface supports optimal learning. By offering a wide range of brain oscillation targets (alpha, beta, theta, delta, gamma, and SMR) the EEG-NF procedure increases the scope of possible investigations through a multitude of experimental protocols that can be considered to reinforce or inhibit specific forms of EEG activity associated with AUD-related cognitive impairments. The present review provides an overview of the EEG-NF protocols that have been used in AUD and it highlights the current paucity of robust evidence. Within this framework, this review presents the arguments in favor of the application of EEG-NF as an add-on tool in the management of alcohol disorders to enhance the cognitive abilities required to maintain abstinence more specifically, with a focus on inhibition and attentional skills.
Collapse
|
41
|
Marlats F, Bao G, Chevallier S, Boubaya M, Djabelkhir-Jemmi L, Wu YH, Lenoir H, Rigaud AS, Azabou E. SMR/Theta Neurofeedback Training Improves Cognitive Performance and EEG Activity in Elderly With Mild Cognitive Impairment: A Pilot Study. Front Aging Neurosci 2020; 12:147. [PMID: 32612522 PMCID: PMC7308493 DOI: 10.3389/fnagi.2020.00147] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/30/2020] [Indexed: 01/17/2023] Open
Abstract
Background: Neurofeedback (NF) training, as a method of self-regulation of brain activity, may be beneficial in elderly patients with mild cognitive impairment (MCI). In this pilot study, we investigated whether a sensorimotor (SMR)/theta NF training could improve cognitive performance and brain electrical activity in elderly patients with MCI. Methods: Twenty elderly patients with MCI were assigned to 20 consecutive sessions of sensorimotor (SMR)/theta NF training, during 10 weeks, on a basis of two sessions each week. Neuropsychological assessments and questionnaires, as well as electroencephalogram (EEG), were performed and compared between baseline (T0), after the last NF training session at 10 weeks (T1), and 1-month follow-up (T2). Results: Repeated measures ANOVA revealed that from baseline to post-intervention, participants showed significant improvement in the Montreal cognitive assessment (MoCa, F = 4.78; p = 0.012), the delayed recall of the Rey auditory verbal learning test (RAVLT, F = 3.675; p = 0.032), the Forward digit span (F = 13.82; p < 0.0001), the Anxiety Goldberg Scale (F = 4.54; p = 0.015), the Wechsler Adult Intelligence Score-Fourth Edition (WAIS-IV; F = 24.75; p < 0.0001), and the Mac Nair score (F = 4.47; p = 0.016). EEG theta power (F = 4.44; p = 0.016) and alpha power (F = 3.84; p = 0.027) during eyes-closed resting-state significantly increased after the NF training and showed sustained improvement at a 1-month follow-up. Conclusion: Our results suggest that NF training could be effective to reduce cognitive deficits in elderly patients with MCI and improve their EEG activity. If these findings are confirmed by randomized controlled studies with larger samples of patients, NF could be seen as a useful non-invasive, non-pharmacological tool for preventing further decline, rehabilitation of cognitive function in the elderly. Clinical Trial Registration: This pilot study was a preliminary step before the trial registered in www.ClinicalTrials.gov, under the number of NCT03526692.
Collapse
Affiliation(s)
- Fabienne Marlats
- Department of Clinical Gerontology, Broca Hôspital, Assistance Publique-Hôpitaux de Paris (AP-HP), Research TEAM EA4468, Paris Descartes University, Paris, France
| | - Guillaume Bao
- Clinical Neurophysiology Laboratory, Department of Physiology, Raymond Poincaré Hôspital, Assistance Publique-Hôpitaux de Paris (AP-HP), INSERM U1173, University of Versailles Saint Quentin en Yvelines, Garches, France
| | - Sylvain Chevallier
- Versailles Engineering Systems Laboratory (LISV), University of Versailles Saint Quentin en Yvelines (UVSQ), Vélizy, France
| | - Marouane Boubaya
- Clinical Research Unit, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France
| | - Leila Djabelkhir-Jemmi
- Department of Clinical Gerontology, Broca Hôspital, Assistance Publique-Hôpitaux de Paris (AP-HP), Research TEAM EA4468, Paris Descartes University, Paris, France
| | - Ya-Huei Wu
- Department of Clinical Gerontology, Broca Hôspital, Assistance Publique-Hôpitaux de Paris (AP-HP), Research TEAM EA4468, Paris Descartes University, Paris, France
| | - Hermine Lenoir
- Department of Clinical Gerontology, Broca Hôspital, Assistance Publique-Hôpitaux de Paris (AP-HP), Research TEAM EA4468, Paris Descartes University, Paris, France
| | - Anne-Sophie Rigaud
- Department of Clinical Gerontology, Broca Hôspital, Assistance Publique-Hôpitaux de Paris (AP-HP), Research TEAM EA4468, Paris Descartes University, Paris, France
| | - Eric Azabou
- Clinical Neurophysiology Laboratory, Department of Physiology, Raymond Poincaré Hôspital, Assistance Publique-Hôpitaux de Paris (AP-HP), INSERM U1173, University of Versailles Saint Quentin en Yvelines, Garches, France
| |
Collapse
|
42
|
Towards a Pragmatic Approach to a Psychophysiological Unit of Analysis for Mental and Brain Disorders: An EEG-Copeia for Neurofeedback. Appl Psychophysiol Biofeedback 2020; 44:151-172. [PMID: 31098793 DOI: 10.1007/s10484-019-09440-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article proposes what we call an "EEG-Copeia" for neurofeedback, like the "Pharmacopeia" for psychopharmacology. This paper proposes to define an "EEG-Copeia" as an organized list of scientifically validated EEG markers, characterized by a specific association with an identified cognitive process, that define a psychophysiological unit of analysis useful for mental or brain disorder evaluation and treatment. A characteristic of EEG neurofeedback for mental and brain disorders is that it targets a EEG markers related to a supposed cognitive process, whereas conventional treatments target clinical manifestations. This could explain why EEG neurofeedback studies encounter difficulty in achieving reproducibility and validation. The present paper suggests that a first step to optimize EEG neurofeedback protocols and future research is to target a valid EEG marker. The specificity of the cognitive skills trained and learned during real time feedback of the EEG marker could be enhanced and both the reliability of neurofeedback training and the therapeutic impact optimized. However, several of the most well-known EEG markers have seldom been applied for neurofeedback. Moreover, we lack a reliable and valid EEG targets library for further RCT to evaluate the efficacy of neurofeedback in mental and brain disorders. With the present manuscript, our aim is to foster dialogues between cognitive neuroscience and EEG neurofeedback according to a psychophysiological perspective. The primary objective of this review was to identify the most robust EEG target. EEG markers linked with one or several clearly identified cognitive-related processes will be identified. The secondary objective was to organize these EEG markers and related cognitive process in a psychophysiological unit of analysis matrix inspired by the Research Domain Criteria (RDoC) project.
Collapse
|
43
|
Wexler A, Nagappan A, Kopyto D, Choi R. Neuroenhancement for sale: assessing the website claims of neurofeedback providers in the United States. JOURNAL OF COGNITIVE ENHANCEMENT 2020; 4:379-388. [PMID: 34164596 DOI: 10.1007/s41465-020-00170-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although electroencephalographic (EEG) neurofeedback is a technique that has been in existence for many decades, it has remained controversial, largely due to questions about efficacy. Yet neurofeedback is being widely offered to the public, often at great expense. To date, however, there has not been empirical data on which providers are utilizing neurofeedback, what they are offering it for, and how they are advertising the technique. The present study aimed to fill that gap by systematically analyzing the websites of neurofeedback practitioners in the United States. To that end, we obtained data from four directories of neurofeedback providers, extracting practitioner names, geographical locations, professional training, and website URLs. Only websites offering neurofeedback services (N=371) were included in the next step, wherein two coders independently coded the websites based on a codebook developed from preliminary analyses. We found that nearly all websites (97.0%) contained claims about at least one clinical indication, most commonly anxiety, ADHD/ADD, and depression; however, only 36.0% of providers had either a medical degree (MD) or a doctoral-level degree in psychology. The majority of websites advertised neurofeedback for cognitive (90.0%) or performance (67.9%) enhancement, and roughly three-quarters utilized language related to complementary and alternative medicine (CAM). In sum, there is a considerable divergence between the scientific literature on neurofeedback and the marketing of neurofeedback services to the general public, raising concerns regarding the misrepresentation of services and misleading advertising claims.
Collapse
Affiliation(s)
- Anna Wexler
- Department of Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania
| | - Ashwini Nagappan
- Department of Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania
| | - Deena Kopyto
- Department of Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania
| | - Rebekah Choi
- Department of Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
44
|
Gadea M, Aliño M, Hidalgo V, Espert R, Salvador A. Effects of a single session of SMR neurofeedback training on anxiety and cortisol levels. Neurophysiol Clin 2020; 50:167-173. [PMID: 32279927 DOI: 10.1016/j.neucli.2020.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES According to some studies, a putatively calming effect of EEG neurofeedback training could be useful as a therapeutic tool in psychiatric practice. With the aim of elucidating this possibility, we tested the efficacy of a single session of ↑sensorimotor (SMR)/↓theta neurofeedback training for mood improvement in 32 healthy men, taking into account trainability, independence and interpretability of the results. METHODS A pre-post design, with the following dependent variables, was applied: (i) psychometric measures of mood with regards to anxiety, depression, and anger (Profile of Mood State, POMS, and State Trait Anxiety Inventory, STAI); (ii) biological measures (salivary levels of cortisol); (iii) neurophysiological measures (EEG frequency band power analysis). In accordance with general recommendations for research in neurofeedback, a control group receiving sham neurofeedback was included. RESULTS Anxiety levels decreased after the real neurofeedback and increased after the sham neurofeedback (P<0.01, size effect 0.9 for comparison between groups). Cortisol decreased after the experiment in both groups, though with significantly more pronounced effects in the desired direction after the real neurofeedback (P<0.04; size effect 0.7). The group receiving real neurofeedback significantly enhanced their SMR band (P<0.004; size effect 0.88), without changes in the theta band. The group receiving sham neurofeedback did not show any EEG changes. CONCLUSIONS The improvement observed in anxiety was greater in the experimental group than in the sham group, confirmed by both subjective (psychometric) measures and objective (biological) measures. This was demonstrated to be associated with the real neurofeedback, though a nonspecific (placebo) effect likely also contributed.
Collapse
Affiliation(s)
- Marien Gadea
- Department of Psychobiology, University of Valencia, Valencia, Spain.
| | - Marta Aliño
- Department of Psychology, Universidad Internacional de Valencia, Valencia, Spain
| | - Vanesa Hidalgo
- Area of Psychobiology, Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain
| | - Raul Espert
- Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Alicia Salvador
- Laboratory of Cognitive Social Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Valencia, Spain
| |
Collapse
|
45
|
Fede SJ, Dean SF, Manuweera T, Momenan R. A Guide to Literature Informed Decisions in the Design of Real Time fMRI Neurofeedback Studies: A Systematic Review. Front Hum Neurosci 2020; 14:60. [PMID: 32161529 PMCID: PMC7052377 DOI: 10.3389/fnhum.2020.00060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/07/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Although biofeedback using electrophysiology has been explored extensively, the approach of using neurofeedback corresponding to hemodynamic response is a relatively young field. Real time functional magnetic resonance imaging-based neurofeedback (rt-fMRI-NF) uses sensory feedback to operantly reinforce patterns of neural response. It can be used, for example, to alter visual perception, increase brain connectivity, and reduce depression symptoms. Within recent years, interest in rt-fMRI-NF in both research and clinical contexts has expanded considerably. As such, building a consensus regarding best practices is of great value. Objective: This systematic review is designed to describe and evaluate the variations in methodology used in previous rt-fMRI-NF studies to provide recommendations for rt-fMRI-NF study designs that are mostly likely to elicit reproducible and consistent effects of neurofeedback. Methods: We conducted a database search for fMRI neurofeedback papers published prior to September 26th, 2019. Of 558 studies identified, 146 met criteria for inclusion. The following information was collected from each study: sample size and type, task used, neurofeedback calculation, regulation procedure, feedback, whether feedback was explicitly related to changing brain activity, feedback timing, control group for active neurofeedback, how many runs and sessions of neurofeedback, if a follow-up was conducted, and the results of neurofeedback training. Results: rt-fMRI-NF is typically upregulation practice based on hemodynamic response from a specific region of the brain presented using a continually updating thermometer display. Most rt-fMRI-NF studies are conducted in healthy samples and half evaluate its effect on immediate changes in behavior or affect. The most popular control group method is to provide sham signal from another region; however, many studies do not compare use a comparison group. Conclusions: We make several suggestions for designs of future rt-fMRI-NF studies. Researchers should use feedback calculation methods that consider neural response across regions (i.e., SVM or connectivity), which should be conveyed as intermittent, auditory feedback. Participants should be given explicit instructions and should be assessed on individual differences. Future rt-fMRI-NF studies should use clinical samples; effectiveness of rt-fMRI-NF should be evaluated on clinical/behavioral outcomes at follow-up time points in comparison to both a sham and no feedback control group.
Collapse
Affiliation(s)
| | | | | | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
46
|
Bismuth J, Vialatte F, Lefaucheur JP. Relieving peripheral neuropathic pain by increasing the power-ratio of low-β over high-β activities in the central cortical region with EEG-based neurofeedback: Study protocol for a controlled pilot trial (SMRPain study). Neurophysiol Clin 2020; 50:5-20. [DOI: 10.1016/j.neucli.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
|
47
|
Neurofeedback: A challenge for integrative clinical neurophysiological studies. Neurophysiol Clin 2020; 50:1-3. [PMID: 32007382 DOI: 10.1016/j.neucli.2020.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/03/2023] Open
|
48
|
Current progress in real-time functional magnetic resonance-based neurofeedback: Methodological challenges and achievements. Neuroimage 2019; 202:116107. [DOI: 10.1016/j.neuroimage.2019.116107] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
|
49
|
Weibel S, Menard O, Ionita A, Boumendjel M, Cabelguen C, Kraemer C, Micoulaud-Franchi JA, Bioulac S, Perroud N, Sauvaget A, Carton L, Gachet M, Lopez R. Practical considerations for the evaluation and management of Attention Deficit Hyperactivity Disorder (ADHD) in adults. Encephale 2019; 46:30-40. [PMID: 31610922 DOI: 10.1016/j.encep.2019.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/27/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Attention deficit with or without hyperactivity disorder (ADHD) is one of the most frequent neuropsychiatric disorders, and affects 2-4% of adults. In contrast with many European countries, the identification and management of adult ADHD remains underdeveloped in France, and a subject of controversy. This review provides a practical update on current knowledge about ADHD in adults for French-speaking professionals who have to detect or manage adult patients with ADHD. ADHD is classified as a neurodevelopmental disorder in the recent update of the international diagnostic classification. While symptoms and impairment due to ADHD are frequently severe during childhood, they often evolve as children grow older, with frequent persistent disabilities in adulthood. In adulthood, the clinical presentation, as in childhood, involves the symptom triad of inattention, hyperactivity and impulsivity. However, differences are noted: hyperactivity is more often internalized, symptoms of inattention may be masked by anxiety symptoms or obsessive-like compensation strategies. ADHD is often diagnosed during childhood, but it is not rare for the diagnosis to be made later. Failure to recognise symptoms resulting in misdiagnosis, or alternatively well-developed compensation factors could be two underlying reasons for the long delay until diagnosis. Other symptoms, such as emotional deregulation or executive function-related symptoms are also usually observed in adults. In addition, in adults, ADHD is often associated with other psychiatric disorders (in 80% of cases); this makes the diagnosis even more difficult. These disorders encompass a broad spectrum, from mood disorders (unipolar or bipolar), to anxiety disorders, and other neurodevelopmental disorders and personality disorders, especially borderline and antisocial personality disorder. Substance-use disorders are very common, either as a consequence of impulsivity and emotional dysregulation or as an attempt at self-treatment. Sleep disorders, especially restless leg syndrome and hypersomnolence, could share common pathophysiological mechanisms with ADHD. ADHD and comorbidity-related symptoms are responsible for serious functional impairment, in various domains, leading to academic, social, vocational, and familial consequences. The impact on other psychiatric disorders as an aggravating factor should also be considered. The considerable disability and the poorer quality of life among adults with ADHD warrant optimal evaluation and management. The diagnostic procedure for ADHD among adults should be systematic. Once the positive diagnosis is made, the evaluation enables characterisation of the levels of severity and impairment at individual level. A full examination should also assess medical conditions associated with ADHD, to provide personalized care. In recent years, a growing number of assessment tools have been translated and validated in French providing a wide range of structured interviews and standardized self-report questionnaires for the evaluation of core and associated ADHD symptoms, comorbidities and functional impairment. The treatment of ADHD in adults is multimodal, and aims to relieve the symptoms, limit the burden of the disease, and manage comorbidities. The most relevant and validated psychological approaches are psycho-education, cognitive-behavioural therapy and "third wave therapies" with a specific focus on emotional regulation. Cognitive remediation and neurofeedback are promising strategies still under evaluation. Medications, especially psychostimulants, are effective for alleviating ADHD symptoms with a large effect size. Their safety and tolerance are satisfactory, although their long-term clinical benefit is still under discussion. In France, methylphenidate is the only stimulant available for the treatment of ADHD. Unfortunately, there is no authorization for its use among adults except in continuation after adolescence. Hence the prescription, which is subject to the regulations on narcotics, is off-label in France. This article aims to provide practical considerations for the management of ADHD and associated disorders in adults, in this particular French context.
Collapse
Affiliation(s)
- S Weibel
- Service de psychiatrie 2, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France; Inserm U1114, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - O Menard
- Service d'addictologie, Hôpital Fontan 2, CHRU de Lille, 59000 Lille, France
| | - A Ionita
- Clinique du château, Nightingale hospitals Paris, 92380 Garches, France
| | - M Boumendjel
- Équipe de liaison et de soins en addictologie (ELSA), service de psychiatrie et d'addictologie, centre de soin de prévention et d'accompagnement en addictologie (CSAPA), Hôpital André Mignot, 78000 Versailles, France
| | - C Cabelguen
- Unité de neuromodulation et de psychiatrie de liaison, centre ambulatoire pluridisciplinaire de psychiatrie et d'addictologie, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, France
| | - C Kraemer
- Service de psychiatrie 2, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - J-A Micoulaud-Franchi
- Service d'explorations fonctionnelles du système nerveux, clinique du sommeil, CHU de Bordeaux, 33000 Bordeaux, France; CNRS, SANPSY, USR 3413, SANPSY, Université de Bordeaux, 33000 Bordeaux, France
| | - S Bioulac
- Service d'explorations fonctionnelles du système nerveux, clinique du sommeil, CHU de Bordeaux, 33000 Bordeaux, France; CNRS, SANPSY, USR 3413, SANPSY, Université de Bordeaux, 33000 Bordeaux, France
| | - N Perroud
- Service des spécialités psychiatrique, département de santé mentale et de psychiatrie, Hôpitaux Universitaires de Genève, 1201 Genève, Switzerland
| | - A Sauvaget
- Addictologie and psychiatrie de liaison, CHU de Nantes, 44000 Nantes, France; Laboratoire "mouvement, interactions, performance" (EA 4334), Faculté Sciences du sport, Université de Nantes, 44000 Nantes, France
| | - L Carton
- Inserm U1171 "Troubles cognitifs dégénératifs et vasculaires", Université de Lille, 59000 Lille, France; Département de pharmacologie médicale, CHRU de Lille, 59000 Lille, France
| | - M Gachet
- Service d'urgence et post-urgence psychiatrique, hôpital Lapeyronie, 34000 Montpellier, France
| | - R Lopez
- Consultation spécialisée TDAH adulte, centre national de référence narcolepsie hypersomnies rares, département de neurologie, Hôpital Gui-De-Chauliac, 34000 Montpellier, France; Inserm U1061, 34000 Montpellier, France.
| |
Collapse
|
50
|
A randomized controlled trial of a brain-computer interface based attention training program for ADHD. PLoS One 2019; 14:e0216225. [PMID: 31112554 PMCID: PMC6528992 DOI: 10.1371/journal.pone.0216225] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/16/2019] [Indexed: 12/03/2022] Open
Abstract
Objective The use of brain-computer interface in neurofeedback therapy for attention deficit hyperactivity disorder (ADHD) is a relatively new approach. We conducted a randomized controlled trial (RCT) to determine whether an 8-week brain computer interface (BCI)-based attention training program improved inattentive symptoms in children with ADHD compared to a waitlist-control group, and the effects of a subsequent 12-week lower-intensity training. Study design We randomized 172 children aged 6–12 attending an outpatient child psychiatry clinic diagnosed with inattentive or combined subtypes of ADHD and not receiving concurrent pharmacotherapy or behavioral intervention to either the intervention or waitlist-control group. Intervention involved 3 sessions of BCI-based training for 8 weeks, followed by 3 training sessions per month over the subsequent 12 weeks. The waitlist-control group received similar 20-week intervention after a wait-time of 8 weeks. Results The participants’ mean age was 8.6 years (SD = 1.51), with 147 males (85.5%) and 25 females (14.5%). Modified intention to treat analyzes conducted on 163 participants with at least one follow-up rating showed that at 8 weeks, clinician-rated inattentive symptoms on the ADHD-Rating Scale (ADHD-RS) was reduced by 3.5 (SD 3.97) in the intervention group compared to 1.9 (SD 4.42) in the waitlist-control group (between-group difference of 1.6; 95% CI 0.3 to 2.9 p = 0.0177). At the end of the full 20-week treatment, the mean reduction (pre-post BCI) of the pooled group was 3.2 (95% CI 2.4 to 4.1). Conclusion The results suggest that the BCI-based attention training program can improve ADHD symptoms after a minimum of 24 sessions and maintenance training may sustain this improvement. This intervention may be an option for treating milder cases or as an adjunctive treatment.
Collapse
|