1
|
Markus V. Artificial sweetener-induced dysbiosis and associated molecular signatures. Biochem Biophys Res Commun 2024; 735:150798. [PMID: 39406022 DOI: 10.1016/j.bbrc.2024.150798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
Despite their approval for inclusion in beverages, and food products, the safety of artificial sweeteners is still a topic of debate within the scientific community. A significant aspect of this debate focuses on the potential of artificial sweeteners to induce dysbiosis, an imbalance in the intestinal microbiota, which has been associated with many diseases including obesity, Type 2 diabetes, and cardiovascular diseases. The interactions and mechanisms of action of artificial sweeteners within the gut microbiota, as well as the extent of associated molecular alterations, are still under active investigation. This review aims to evaluate recent developments in artificial sweetener-induced dysbiosis with its associated molecular signatures. Importantly, potential future directions for research are proposed, offering insights that could guide further targeted studies and inform dietary recommendations and policy revisions.
Collapse
Affiliation(s)
- Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, 99138, Lefkosa/ TRNC Mersin 10, Turkey.
| |
Collapse
|
2
|
Abdisa KB, Szerdahelyi E, Molnár MA, Friedrich L, Lakner Z, Koris A, Toth A, Nath A. Metabolic Syndrome and Biotherapeutic Activity of Dairy (Cow and Buffalo) Milk Proteins and Peptides: Fast Food-Induced Obesity Perspective-A Narrative Review. Biomolecules 2024; 14:478. [PMID: 38672494 PMCID: PMC11048494 DOI: 10.3390/biom14040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic syndrome (MS) is defined by the outcome of interconnected metabolic factors that directly increase the prevalence of obesity and other metabolic diseases. Currently, obesity is considered one of the most relevant topics of discussion because an epidemic heave of the incidence of obesity in both developing and underdeveloped countries has been reached. According to the World Obesity Atlas 2023 report, 38% of the world population are presently either obese or overweight. One of the causes of obesity is an imbalance of energy intake and energy expenditure, where nutritional imbalance due to consumption of high-calorie fast foods play a pivotal role. The dynamic interactions among different risk factors of obesity are highly complex; however, the underpinnings of hyperglycemia and dyslipidemia for obesity incidence are recognized. Fast foods, primarily composed of soluble carbohydrates, non-nutritive artificial sweeteners, saturated fats, and complexes of macronutrients (protein-carbohydrate, starch-lipid, starch-lipid-protein) provide high metabolic calories. Several experimental studies have pointed out that dairy proteins and peptides may modulate the activities of risk factors of obesity. To justify the results precisely, peptides from dairy milk proteins were synthesized under in vitro conditions and their contributions to biomarkers of obesity were assessed. Comprehensive information about the impact of proteins and peptides from dairy milks on fast food-induced obesity is presented in this narrative review article.
Collapse
Affiliation(s)
- Kenbon Beyene Abdisa
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - Emőke Szerdahelyi
- Department of Nutrition, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, HU-1118 Budapest, Hungary;
| | - Máté András Molnár
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - László Friedrich
- Department of Refrigeration and Livestock Product Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, HU-1118 Budapest, Hungary
| | - Zoltán Lakner
- Department of Agricultural Business and Economics, Institute of Agricultural and Food Economics, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, HU-1118 Budapest, Hungary
| | - András Koris
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Móricz Zsigmond út 22, HU-4032 Debrecen, Hungary
| | - Arijit Nath
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| |
Collapse
|
3
|
López-Méndez I, Maldonado-Rojas ADC, Uribe M, Juárez-Hernández E. Hunger & satiety signals: another key mechanism involved in the NAFLD pathway. Front Endocrinol (Lausanne) 2023; 14:1213372. [PMID: 37753211 PMCID: PMC10518611 DOI: 10.3389/fendo.2023.1213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disease, although prevalence could change according to region, nowadays is considered a public health problem whose real impact on the health system is unknown. NAFLD has a multifactorial and complex pathophysiology, due to this, developing a unique and effective pharmacological treatment has not been successful in reverting or avoiding the progression of this liver disease. Even though NAFLD pathophysiology is known, all actual treatments are focused on modifying or regulating the metabolic pathways, some of which interplay with obesity. It has been known that impairments in hunger and satiety signals are associated with obesity, however, abnormalities in these signals in patients with NAFLD and obesity are not fully elucidated. To describe these mechanisms opens an additional option as a therapeutic target sharing metabolic pathways with NAFLD, therefore, this review aims to describe the hormones and peptides implicated in both hunger-satiety in NAFLD. It has been established that NAFLD pharmacological treatment cannot be focused on a single purpose; hence, identifying interplays that lead to adding or modifying current treatment options could also have an impact on another related outcome such as hunger or satiety signals.
Collapse
Affiliation(s)
- Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
4
|
Ren Q, Fu L, Dudu OE, Zhang R, Liu H, Zheng Z, Ma Y. New insights into the digestion and bioavailability of a high-melting-temperature solid triacylglycerol fraction in bovine milk fat. Food Funct 2021; 12:5274-5286. [PMID: 34008635 DOI: 10.1039/d1fo00259g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clarifying the health risks associated with the consumption of high-melting-temperature solid triacylglycerol (TAG) from milk fat has profound significance for the nutritional evaluation and development of new dairy products. Our previous work effectively separated butterfat into solid/liquid fractions (30S and 30L) at 30 °C and successfully reconstituted milk fat globules (MFGs) with these fractions. The current study examined the postprandial digestive and daily metabolic properties of a high-melting-temperature solid TAG fraction by performing animal experiments (rats) with 30S-reconstituted MFG emulsion gavage for 240 min and 30S-containing diet administration for 4 weeks. Compared to the consumption of whole butterfat, 30S consumption altered apolipoprotein levels and did not lead to dyslipidaemia in the rats. Conversely, 30S administration induced significant body weight loss by enhancing satiety signals (glucagon-like peptide 1, GLP-1; cholecystokinin, CCK; and peptide YY, PYY), increasing faecal losses, and upregulating the level of hepatic lipolysis-associated enzymes (hormone-sensitive lipase, HSL; adipose triglyceride lipase, ATGL; and protein kinase A, PKA). The 30S diet efficiently improved adipocyte hypertrophy and reduced fat accumulation by downregulating the level of acetyl-CoA carboxylase (ACC) in adipose tissue. This study is of relevance to nutrition science and the dairy industry.
Collapse
Affiliation(s)
- Qingxi Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Ling Fu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Olayemi E Dudu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Rui Zhang
- The Academy of Quality Inspection in Heilongjiang Province, Harbin 150023, Heilongjiang, China
| | - Haiyan Liu
- Syncho International Health Management Co., Ltd, Chengdu 610044, Sichuan, China and Dairy Nutrition and Function Key Laboratory of Sichuan Province, Chengdu 610000, Sichuan, China
| | - Zhiqiang Zheng
- Institute of Quartermaster Engineering and Technology, Institute of System Engineering, Academy of Military Sciences, Beijing 100010, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
5
|
Tan C, Wei H, Zhao X, Xu C, Zhou Y, Peng J. Soluble Fiber with High Water-Binding Capacity, Swelling Capacity, and Fermentability Reduces Food Intake by Promoting Satiety Rather Than Satiation in Rats. Nutrients 2016; 8:nu8100615. [PMID: 27706095 PMCID: PMC5084003 DOI: 10.3390/nu8100615] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 01/10/2023] Open
Abstract
To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake—probably by promoting a feeling of satiety in rats to decrease their feeding behavior.
Collapse
Affiliation(s)
- Chengquan Tan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xichen Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chuanhui Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
6
|
Carnovale V, Pilon G, Britten M, Bazinet L, Couillard C. Effect of the consumption of β-lactoglobulin and epigallocatechin-3-gallate with or without calcium on glucose tolerance in C57BL/6 mice. Int J Food Sci Nutr 2016; 67:298-304. [DOI: 10.3109/09637486.2016.1157139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Valérie Carnovale
- Dairy Science and Technology Research Centre (STELA), Université Laval, 2425 rue de l’Agriculture, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, 2440 boulevard Hochelaga, Québec, Canada
- Department of Food Science, Université Laval, 2425 rue de l’Agriculture, Québec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Université Laval, 2440 boulevard Hochelaga, Québec, Canada
- Québec Heart and Lung Institute Research Center, 2725 chemin Ste-Foy, Québec, Canada
| | - Michel Britten
- Dairy Science and Technology Research Centre (STELA), Université Laval, 2425 rue de l’Agriculture, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, 2440 boulevard Hochelaga, Québec, Canada
- Agriculture and Agri-Food Canada, Food Research and Development Centre, Saint-Hyacinthe (Québec), Canada,
| | - Laurent Bazinet
- Dairy Science and Technology Research Centre (STELA), Université Laval, 2425 rue de l’Agriculture, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, 2440 boulevard Hochelaga, Québec, Canada
- Department of Food Science, Université Laval, 2425 rue de l’Agriculture, Québec, Canada
| | - Charles Couillard
- Institute of Nutrition and Functional Foods (INAF), Université Laval, 2440 boulevard Hochelaga, Québec, Canada
- School of Nutrition, Université Laval, 2425 rue de l’Agriculture, Québec, Canada
| |
Collapse
|
7
|
Naowaboot J, Piyabhan P, Munkong N, Parklak W, Pannangpetch P. Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice. Clin Exp Pharmacol Physiol 2016; 43:242-50. [DOI: 10.1111/1440-1681.12514] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Jarinyaporn Naowaboot
- Division of Pharmacology; Thammasat University (Rangsit Campus); Pathum Thani Thailand
| | - Pritsana Piyabhan
- Division of Physiology; Department of Preclinical Science; Thammasat University (Rangsit Campus); Pathum Thani Thailand
| | - Narongsuk Munkong
- Graduate Academy; Faculty of Medicine; Thammasat University (Rangsit Campus); Pathum Thani Thailand
| | - Wason Parklak
- Graduate Academy; Faculty of Medicine; Thammasat University (Rangsit Campus); Pathum Thani Thailand
| | | |
Collapse
|
8
|
McClements DJ. Reduced-fat foods: the complex science of developing diet-based strategies for tackling overweight and obesity. Adv Nutr 2015; 6:338S-52S. [PMID: 25979507 PMCID: PMC4424772 DOI: 10.3945/an.114.006999] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fat plays multiple roles in determining the desirable physicochemical properties, sensory attributes, nutritional profile, and biologic response of food products. Overconsumption of fats is linked to chronic diseases, such as obesity, coronary heart disease, diabetes, and cancer. There is therefore a need to develop reduced-fat products with physicochemical properties and sensory profiles that match those of their full-fat counterparts. In addition, foods may be redesigned to increase the feelings of satiety and satiation, and thereby reduce overall food intake. The successful design of these types of functional foods requires a good understanding of the numerous roles that fat plays in determining food attributes and the development of effective strategies to replace these attributes. This article provides an overview of the current understanding of the influence of fat on the physicochemical and physiologic attributes of emulsion-based food products and highlights approaches to create high-quality foods with reduced-fat contents.
Collapse
|
9
|
Chung C, Smith G, Degner B, McClements DJ. Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects. Crit Rev Food Sci Nutr 2015; 56:650-85. [DOI: 10.1080/10408398.2013.792236] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Cheryl Chung
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gordon Smith
- ConAgra Foods, Six ConAgra Drive, Omaha, Nebraska, USA
| | - Brian Degner
- ConAgra Foods, Six ConAgra Drive, Omaha, Nebraska, USA
| | | |
Collapse
|
10
|
Adam CL, Williams PA, Dalby MJ, Garden K, Thomson LM, Richardson AJ, Gratz SW, Ross AW. Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats. Nutr Metab (Lond) 2014; 11:36. [PMID: 25152765 PMCID: PMC4141268 DOI: 10.1186/1743-7075-11-36] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dietary fibre-induced satiety offers a physiological approach to body weight regulation, yet there is lack of scientific evidence. This experiment quantified food intake, body weight and body composition responses to three different soluble fermentable dietary fibres in an animal model and explored underlying mechanisms of satiety signalling and hindgut fermentation. METHODS Young adult male rats were fed ad libitum purified control diet (CONT) containing 5% w/w cellulose (insoluble fibre), or diet containing 10% w/w cellulose (CELL), fructo-oligosaccharide (FOS), oat beta-glucan (GLUC) or apple pectin (PECT) (4 weeks; n = 10/group). Food intake, body weight, and body composition (MRI) were recorded, final blood samples analysed for gut satiety hormones, hindgut contents for fermentation products (including short-chain fatty acids, SCFA) and intestinal tissues for SCFA receptor gene expression. RESULTS GLUC, FOS and PECT groups had, respectively, 10% (P < 0.05), 17% (P < 0.001) and 19% (P < 0.001) lower food intake and 37% (P < 0.01), 37% (P < 0.01) and 45% (P < 0.001) lower body weight gain than CONT during the four-week experiment. At the end they had 26% (P < 0.05), 35% (P < 0.01) and 42% (P < 0.001) less total body fat, respectively, while plasma total glucagon-like peptide-1 (GLP-1) was 2.2-, 3.2- and 2.6-fold higher (P < 0.001) and peptide tyrosine tyrosine (PYY) was 2.3-, 3.1- and 3.0-fold higher (P < 0.001). There were no differences in these parameters between CONT and CELL. Compared with CONT and CELL, caecal concentrations of fermentation products increased 1.4- to 2.2-fold in GLUC, FOS and PECT (P < 0.05) and colonic concentrations increased 1.9- to 2.5-fold in GLUC and FOS (P < 0.05), with no consistent changes in SCFA receptor gene expression detected. CONCLUSIONS This provides animal model evidence that sustained intake of three different soluble dietary fibres decreases food intake, weight gain and adiposity, increases circulating satiety hormones GLP-1 and PYY, and increases hindgut fermentation. The presence of soluble fermentable fibre appears to be more important than its source. The results suggest that dietary fibre-induced satiety is worthy of further investigation towards natural body weight regulation in humans.
Collapse
Affiliation(s)
- Clare L Adam
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Patricia A Williams
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Matthew J Dalby
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Karen Garden
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Lynn M Thomson
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Anthony J Richardson
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Silvia W Gratz
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Alexander W Ross
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
11
|
Affiliation(s)
- A.M. Johnstone
- Rowett Institute of Nutrition and Health; University of Aberdeen; UK
| | - R. R. Gonzalez
- Rowett Institute of Nutrition and Health; University of Aberdeen; UK
| | - J. Harrold
- Department of Experimental Psychology; University of Liverpool; UK
| |
Collapse
|