1
|
Zheng J, Li X, Zhang F, Li C, Zhang X, Wang F, Qi J, Cui W, Deng L. Targeting Osteoblast-Osteoclast Cross-Talk Bone Homeostasis Repair Microcarriers Promotes Intervertebral Fusion in Osteoporotic Rats. Adv Healthc Mater 2024; 13:e2402117. [PMID: 39155412 DOI: 10.1002/adhm.202402117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Balancing osteoblast-osteoclast (OB-OC) cross-talk is crucial for restoring bone tissue structure and function. Current clinical drugs targeting either osteogenesis or osteoclastogenesis fail to effectively regulate cross-talk, impeding efficient bone repair in osteoporosis patients. Ubiquitin-specific protease 26 (USP26) is shown to coordinate OB-OC cross-talk by independently regulating β-catenin and Iκb-α. However, effective drugs for activating USP26 are still lacking. Here, they constructed bone homeostasis repair microcarriers (BHRC) that encapsulate Usp26 mRNA-loaded lipid nanoparticles (mRNA@LNP) within MMPs-responsive GelMA hydrogel microspheres. These microcarriers target the osteoporotic microenvironment and regulate OB-OC cross-talk, thereby facilitating intervertebral fusion in osteoporotic rats. Results demonstrate that mRNA@LNP exhibits uniform particle size and high transfection efficiency, while GelMA hydrogel microspheres possess excellent biocompatibility and MMP responsiveness, providing favorable cell survival space and controllable release of mRNA@LNP. The released LNP upregulates USP26 protein expression, effectively promoting osteogenesis while suppressing osteoclast formation. In vivo experiments show that injecting BHRC into the defect site of intervertebral discs in osteoporotic rats significantly promotes tail vertebrae fusion by responding to the microenvironment and regulating cell-to-cell cross-talk. Thus, the BHRC holds great potential in regulating osteoporotic homeostasis, particularly in challenging bone defects such as intervertebral fusion in osteoporotic environments.
Collapse
Affiliation(s)
- Jiancheng Zheng
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiaoyan Li
- Department of Orthopedic, Affiliated Hospital of Jining Medical University, Jining City, Shandong Province, 272029, P. R. China
| | - Fangke Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Changwei Li
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xingkai Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Fei Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jin Qi
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
2
|
Najer A. Pathogen-binding nanoparticles to inhibit host cell infection by heparan sulfate and sialic acid dependent viruses and protozoan parasites. SMART MEDICINE 2024; 3:e20230046. [PMID: 39188697 PMCID: PMC11235646 DOI: 10.1002/smmd.20230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 08/28/2024]
Abstract
Global health faces an immense burden from infectious diseases caused by viruses and intracellular protozoan parasites such as the coronavirus disease (COVID-19) and malaria, respectively. These pathogens propagate through the infection of human host cells. The first stage of this host cell infection mechanism is cell attachment, which typically involves interactions between the infectious agent and surface components on the host cell membranes, specifically heparan sulfate (HS) and/or sialic acid (SA). Hence, nanoparticles (NPs) which contain or mimic HS/SA that can directly bind to the pathogen surface and inhibit cell infection are emerging as potential candidates for an alternative anti-infection therapeutic strategy. These NPs can be prepared from metals, soft matter (lipid, polymer, and dendrimer), DNA, and carbon-based materials among others and can be designed to include aspects of multivalency, broad-spectrum activity, biocidal mechanisms, and multifunctionality. This review provides an overview of such anti-pathogen nanomedicines beyond drug delivery. Nanoscale inhibitors acting against viruses and obligate intracellular protozoan parasites are discussed. In the future, the availability of broadly applicable nanotherapeutics would allow early tackling of existing and upcoming viral diseases. Invasion inhibitory NPs could also provide urgently needed effective treatments for protozoan parasitic infections.
Collapse
Affiliation(s)
- Adrian Najer
- Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
3
|
Croitoru GA, Pîrvulescu DC, Niculescu AG, Grumezescu AM, Antohi AM, Nicolae CL. Metallic nanomaterials - targeted drug delivery approaches for improved bioavailability, reduced side toxicity, and enhanced patient outcomes. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:145-158. [PMID: 39020529 PMCID: PMC11384046 DOI: 10.47162/rjme.65.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This paper explores the integral role of metallic nanomaterials in drug delivery, specifically focusing on their unique characteristics and applications. Exhibiting unique size, shape, and surface features, metallic nanoparticles (MNPs) (e.g., gold, iron oxide, and silver NPs) present possibilities for improving medication efficacy while minimizing side effects. Their demonstrated success in improving drug solubility, bioavailability, and targeted release makes them promising carriers for treating a variety of diseases, including inflammation and cancer, which has one of the highest rates of mortality in the world. Furthermore, it is crucial to acknowledge some limitations of MNPs in drug delivery before successfully incorporating them into standard medical procedures. Thus, challenges such as potential toxicity, issues related to long-term safety, and the need for standardized production methods will also be addressed.
Collapse
Affiliation(s)
- George Alexandru Croitoru
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
4
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Chaturvedi A, Sharma S, Shukla R. Drug Nanocrystals: A Delivery Channel for Antiviral Therapies. AAPS PharmSciTech 2024; 25:41. [PMID: 38366178 DOI: 10.1208/s12249-024-02754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
Viral infections represent a significant threat to global health due to their highly communicable and potentially lethal nature. Conventional antiviral interventions encounter challenges such as drug resistance, tolerability issues, specificity concerns, high costs, side effects, and the constant mutation of viral proteins. Consequently, the exploration of alternative approaches is imperative. Therefore, nanotechnology-embedded drugs excelled as a novel approach purporting severe life-threatening viral disease. Integrating nanomaterials and nanoparticles enables ensuring precise drug targeting, improved drug delivery, and fostered pharmacokinetic properties. Notably, nanocrystals (NCs) stand out as one of the most promising nanoformulations, offering remarkable characteristics in terms of physicochemical properties (higher drug loading, improved solubility, and drug retention), pharmacokinetics (enhanced bioavailability, dose reduction), and optical properties (light absorptivity, photoluminescence). These attributes make NCs effective in diagnosing and ameliorating viral infections. This review comprises the prevalence, pathophysiology, and resistance of viral infections along with emphasizing on failure of current antivirals in the management of the diseases. Moreover, the review also highlights the role of NCs in various viral infections in mitigating, diagnosing, and other NC-based strategies combating viral infections. In vitro, in vivo, and clinical studies evident for the effectiveness of NCs against viral pathogens are also discussed.
Collapse
Affiliation(s)
- Akanksha Chaturvedi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, 226002, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, 226002, India.
| |
Collapse
|
6
|
Chavda V, Yadav D, Parmar H, Brahmbhatt R, Patel B, Madhwani K, Jain M, Song M, Patel S. A Narrative Overview of Coronavirus Infection: Clinical Signs and Symptoms, Viral Entry and Replication, Treatment Modalities, and Management. Curr Top Med Chem 2024; 24:1883-1916. [PMID: 38859776 DOI: 10.2174/0115680266296095240529114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
The global pandemic known as coronavirus disease (COVID-19) is causing morbidity and mortality on a daily basis. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV- -2) virus has been around since December 2019 and has infected a high number of patients due to its idiopathic pathophysiology and rapid transmission. COVID-19 is now deemed a newly identified "syndrome" condition since it causes a variety of unpleasant symptoms and systemic side effects following the pandemic. Simultaneously, it always becomes potentially hazardous when new variants develop during evolution. Its random viral etiology prevents accurate and suitable therapy. Despite the fact that multiple preclinical and research studies have been conducted to combat this lethal virus, and various therapeutic targets have been identified, the precise course of therapy remains uncertain. However, just a few drugs have shown efficacy in treating this viral infection in its early stages. Currently, several medicines and vaccinations have been licensed following clinical trial research, and many countries are competing to find the most potent and effective immunizations against this highly transmissible illness. For this narrative review, we used PubMed, Google Scholar, and Scopus to obtain epidemiological data, pre-clinical and clinical trial outcomes, and recent therapeutic alternatives for treating COVID-19 viral infection. In this study, we discussed the disease's origin, etiology, transmission, current advances in clinical diagnostic technologies, different new therapeutic targets, pathophysiology, and future therapy options for this devastating virus. Finally, this review delves further into the hype surrounding the SARS-CoV-2 illness, as well as present and potential COVID-19 therapies.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto94305, CA, USA
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, South Korea
| | - Harisinh Parmar
- Department of Neurosurgery, Krishna institute of medical sciences, Karad, Maharashtra, India
| | - Raxit Brahmbhatt
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Bipin Patel
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Kajal Madhwani
- Department of Life Science, University of Westminster, London, W1B 2HW, United Kingdom
| | - Meenu Jain
- Gajra Raja Medical College, Gwalior, 474009, Madhya Pradesh, India
| | - Minseok Song
- Department of Life Science, Yeungnam University, South Korea
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
7
|
Lee MF, Poh CL. Strategies to improve the physicochemical properties of peptide-based drugs. Pharm Res 2023; 40:617-632. [PMID: 36869247 DOI: 10.1007/s11095-023-03486-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Peptides are a rapid-growing class of therapeutics with unique and desirable physicochemical properties. Due to disadvantages such as low membrane permeability and susceptibility to proteolytic degradation, peptide-based drugs have limited bioavailability, a short half-life, and rapid in vivo elimination. Various strategies can be applied to improve the physicochemical properties of peptide-based drugs to overcome limitations such as limited tissue residence time, metabolic instability, and low permeability. Applied strategies including backbone modifications, side chain modifications, conjugation with polymers, modification of peptide termini, fusion to albumin, conjugation with the Fc portion of antibodies, cyclization, stapled peptides, pseudopeptides, cell-penetrating peptide conjugates, conjugation with lipids, and encapsulation in nanocarriers are discussed.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
8
|
Pilaquinga F, Bosch R, Morey J, Bastidas-Caldes C, Torres M, Toscano F, Debut A, Pazmiño-Viteri K, Nieves Piña MDL. High in vitroactivity of gold and silver nanoparticles from Solanum mammosum L. against SARS-CoV-2 surrogate Phi6 and viral model PhiX174. NANOTECHNOLOGY 2023; 34:175705. [PMID: 36689773 DOI: 10.1088/1361-6528/acb558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
The search for new strategies to curb the spread of the SARS-CoV-2 coronavirus, which causes COVID-19, has become a global priority. Various nanomaterials have been proposed as ideal candidates to inactivate the virus; however, because of the high level of biosecurity required for their use, alternative models should be determined. This study aimed to compare the effects of two types of nanomaterials gold (AuNPs) and silver nanoparticles (AgNPs), recognized for their antiviral activity and affinity with the coronavirus spike protein using PhiX174 and enveloped Phi6 bacteriophages as models. To reduce the toxicity of nanoparticles, a species known for its intermediate antiviral activity,Solanum mammosumL. (Sm), was used. NPs prepared with sodium borohydride (NaBH4) functioned as the control. Antiviral activity against PhiX174 and Phi6 was analyzed using its seed, fruit, leaves, and essential oil; the leaves were the most effective on Phi6. Using the aqueous extract of the leaves, AuNPs-Sm of 5.34 ± 2.25 nm and AgNPs-Sm of 15.92 ± 8.03 nm, measured by transmission electron microscopy, were obtained. When comparing NPs with precursors, both gold(III) acetate and silver nitrate were more toxic than their respective NPs (99.99% at 1 mg ml-1). The AuNPs-Sm were less toxic, reaching 99.30% viral inactivation at 1 mg ml-1, unlike the AgNPs-Sm, which reached 99.94% at 0.01 mg ml-1. In addition, cell toxicity was tested in human adenocarcinoma alveolar basal epithelial cells (A549) and human foreskin fibroblasts. Gallic acid was the main component identified in the leaf extract using high performance liquid chromatography with diode array detection (HPLC-DAD). The FT-IR spectra showed the presence of a large proportion of polyphenolic compounds, and the antioxidant analysis confirmed the antiradical activity. The control NPs showed less antiviral activity than the AuNPs-Sm and AgNPs-Sm, which was statistically significant; this demonstrates that both theS. mammosumextract and its corresponding NPs have a greater antiviral effect on the surrogate Phi bacteriophage, which is an appropriate model for studying SARS-CoV-2.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- Laboratory of Nanotechnology, School of Chemistry Sciences, Pontificia Universidad Católica del Ecuador, Avenida 12 de octubre 1076 y Roca, Quito, Ecuador
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Rafael Bosch
- Environmental Microbiology, IMEDEA (CSIC-UIB); and Microbiology, Department of Biology, University of Balearic Islands, Palma de Mallorca, Spain
| | - Jeroni Morey
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Redondel del Ciclista, Antigua Vía a Nayón, Quito, Ecuador
- Programa de Doctorado en Salud Pública y Animal, Universidad de Extremadura, Plaza de Caldereros, s/n, Extremadura, Spain
| | - Marbel Torres
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio de Inmunología y Virología, Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Fernanda Toscano
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio de Inmunología y Virología, Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - Katherine Pazmiño-Viteri
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - María de Las Nieves Piña
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
9
|
Zhang D, He J, Zhou M. Radiation-assisted strategies provide new perspectives to improve the nanoparticle delivery to tumor. Adv Drug Deliv Rev 2023; 193:114642. [PMID: 36529190 DOI: 10.1016/j.addr.2022.114642] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
Nanoparticles (NPs), with advantages in tumor targeting, have been extensively developed for anticancer treatment. However, the delivery efficacy of NPs tends to be heterogeneous in clinical research. Surprisingly, a traditional cancer treatment, radiotherapy (radiation), has been observed with the potential to improve the delivery of NPs by influencing the features of the tumor microenvironment, which provides new perspectives to overcome the barriers in the NPs delivery. Since the effect of radiation can also be enhanced by versatile NPs, these findings of radiation-assisted NPs delivery suggest innovative strategies combining radiotherapy with nanotherapeutics. This review summarizes the research on the delivery and therapeutic efficacy of NPs that are improved by radiation, focusing on relative mechanisms and existing challenges and opportunities.
Collapse
Affiliation(s)
- Dongxiao Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Jian He
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
10
|
Tian L, Jackson K, Chan M, Saif A, He L, Didar TF, Hosseinidoust Z. Phage display for the detection, analysis, disinfection, and prevention of Staphylococcus aureus. SMART MEDICINE 2022; 1:e20220015. [PMID: 39188734 PMCID: PMC11235639 DOI: 10.1002/smmd.20220015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 08/28/2024]
Abstract
The World Health Organization has designated Staphylococcus aureus as a global health concern. This designation stems from the emergence of multiple drug-resistant strains that already account for hundreds of thousands of deaths globally. The development of novel treatment strategies to eradicate S. aureus or mitigate its pathogenic potential is desperately needed. In the effort to develop emerging strategies to combat S. aureus, phage display is uniquely positioned to assist in this endeavor. Leveraging bacteriophages, phage display enables researchers to better understand interactions between proteins and their antagonists. In doing so, researchers have the capacity to design novel inhibitors, biosensors, disinfectants, and immune modulators that can target specific S. aureus strains. In this review, we highlight how phage display can be leveraged to design novel solutions to combat S. aureus. We further discuss existing uses of phage display as a detection, intervention, and prevention platform against S. aureus and provide outlooks on how this technology can be optimized for future applications.
Collapse
Affiliation(s)
- Lei Tian
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Kyle Jackson
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Michael Chan
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Ahmed Saif
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Leon He
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Tohid F. Didar
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
- Department of Mechanical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Zeinab Hosseinidoust
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
11
|
Alavi SE, Raza A, Gholami M, Giles M, Al-Sammak R, Ibrahim A, Ebrahimi Shahmabadi H, Sharma LA. Advanced Drug Delivery Platforms for the Treatment of Oral Pathogens. Pharmaceutics 2022; 14:2293. [PMID: 36365112 PMCID: PMC9692332 DOI: 10.3390/pharmaceutics14112293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/26/2023] Open
Abstract
The oral cavity is a complex ecosystem accommodating various microorganisms (e.g., bacteria and fungi). Various factors, such as diet change and poor oral hygiene, can change the composition of oral microbiota, resulting in the dysbiosis of the oral micro-environment and the emergence of pathogenic microorganisms, and consequently, oral infectious diseases. Systemic administration is frequently used for drug delivery in the treatment of diseases and is associated with the problems, such as drug resistance and dysbiosis. To overcome these challenges, oral drug delivery systems (DDS) have received considerable attention. In this literature review, the related articles are identified, and their findings, in terms of current therapeutic challenges and the applications of DDSs, especially nanoscopic DDSs, for the treatment of oral infectious diseases are highlighted. DDSs are also discussed in terms of structures and therapeutic agents (e.g., antibiotics, antifungals, antiviral, and ions) that they deliver. In addition, strategies (e.g., theranostics, hydrogel, microparticle, strips/fibers, and pH-sensitive nanoparticles), which can improve the treatment outcome of these diseases, are highlighted.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Michael Giles
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Rayan Al-Sammak
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Ali Ibrahim
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Lavanya A. Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| |
Collapse
|
12
|
Zaman B, Hassan W, Khan A, Mushtaq A, Ali N, Bilal M, Ahmed DA. Forced Degradation Studies and Development and Validation of HPLC-UV Method for the Analysis of Velpatasvir Copovidone Solid Dispersion. Antibiotics (Basel) 2022; 11:897. [PMID: 35884151 PMCID: PMC9311562 DOI: 10.3390/antibiotics11070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Analytical methods for the drug substance and degradation products (DPs) are validated by performing forced degradation studies. Forced degradation studies of Velpatasvir (VEL) drug substance and Velpatasvir copovidone solid dispersion (VEL-CSD) were performed under the stressed alkaline, acidic, oxidative and thermal conditions according to ICH guidelines ICH Q1A (R2). VEL is labile to degrade in stressed alkaline, acidic, and oxidative conditions. It is also photolabile and degraded during photostability studies as described by ICH Q1B, and showed no degradation on exposure to extreme temperature when protected from light. A sensitive stability indicating HPLC-UV method was developed and validated for the separation of VEL and eight DPs. The DPs of VEL are separated using gradient elution of mobile phase containing 0.05% Trifluoroacetic acid (TFA) and methanol over symmetry analytical column C18 (250 mm × 4.6 mm, 5 µm) with a flow rate of 0.8 mL min-1. Simultaneous detection of all DPs and VEL was performed on UV detector at 305 nm. The performance parameters like precision, specificity and linearity of the method were validated using reference standards as prescribed by ICHQ2 (R1). Limits of quantification and limits of detection were determined from calibration curve using the expression 10δ/slope and 3δ/slope respectively. The proposed method is stability-indicating and effectively applied to the analysis of process impurities and DPs in VEL drug substance and VEL-CSD.
Collapse
Affiliation(s)
- Bakht Zaman
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (B.Z.); (W.H.)
| | - Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (B.Z.); (W.H.)
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (B.Z.); (W.H.)
| | - Ayesha Mushtaq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Dina A. Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, New Cairo 1835, Egypt;
| |
Collapse
|
13
|
Crintea A, Dutu AG, Sovrea A, Constantin AM, Samasca G, Masalar AL, Ifju B, Linga E, Neamti L, Tranca RA, Fekete Z, Silaghi CN, Craciun AM. Nanocarriers for Drug Delivery: An Overview with Emphasis on Vitamin D and K Transportation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1376. [PMID: 35458084 PMCID: PMC9024560 DOI: 10.3390/nano12081376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Mounting evidence shows that supplementation with vitamin D and K or their analogs induces beneficial effects in various diseases, e.g., osteoarticular, cardiovascular, or carcinogenesis. The use of drugs delivery systems via organic and inorganic nanocarriers increases the bioavailability of vitamins and analogs, enhancing their cellular delivery and effects. The nanotechnology-based dietary supplements and drugs produced by the food and pharmaceutical industries overcome the issues associated with vitamin administration, such as stability, absorption or low bioavailability. Consequently, there is a continuous interest in optimizing the carriers' systems in order to make them more efficient and specific for the targeted tissue. In this pioneer review, we try to circumscribe the most relevant aspects related to nanocarriers for drug delivery, compare different types of nanoparticles for vitamin D and K transportation, and critically address their benefits and disadvantages.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alina Gabriela Dutu
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alina Sovrea
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.S.); (A.-M.C.)
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.S.); (A.-M.C.)
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Aurelian Lucian Masalar
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Brigitta Ifju
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Eugen Linga
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Lidia Neamti
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Rares Andrei Tranca
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Zsolt Fekete
- Department of Oncology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Ciprian Nicolae Silaghi
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alexandra Marioara Craciun
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| |
Collapse
|
14
|
Madeo LF, Sarogni P, Cirillo G, Vittorio O, Voliani V, Curcio M, Shai-Hee T, Büchner B, Mertig M, Hampel S. Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local Treatment of Squamous Cell Carcinoma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1648. [PMID: 35268879 PMCID: PMC8911244 DOI: 10.3390/ma15051648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022]
Abstract
With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100-170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized.
Collapse
Affiliation(s)
- Lorenzo Francesco Madeo
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (P.S.); (V.V.)
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy;
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (O.V.); (T.S.-H.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (P.S.); (V.V.)
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy;
| | - Tyler Shai-Hee
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (O.V.); (T.S.-H.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Bernd Büchner
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Mertig
- Institute of Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
| |
Collapse
|
15
|
Shi L, Cao J, Yang C, Wang X, Shi K, Shang L. Hierarchical magnetic nanoparticles for highly effective capture of small extracellular vesicles. J Colloid Interface Sci 2022; 615:408-416. [PMID: 35149353 DOI: 10.1016/j.jcis.2022.01.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
Small extracellular vesicles (EVs) have various functions through the transfer of specific biomolecules. However, it is still challenging to capture small EVs with high sensitivity and specificity. Herein, inspired by the unique burry structure and the strong adhesion ability of pollen grains, we presented a novel Fe3O4@MgSiO3 hierarchical magnetic nanoparticles (HNPs) as nanocarriers for the capture of small EVs. The NPs were generated through the solvothermal method and further modified with branching dendrimers to exhibit a hierarchical morphology. The enlarged surface area facilitated high-efficient capture of small EVs through specific recognition of aptamer probes and the small EVs surface markers. Besides, the magnetic core of the NPs allowed them to be isolated under the action of an external magnetic field, and thus the captured small EVs could be easily separated from plasma. These results indicated that the HNPs could serve as excellent nanocarriers for small EVs capture and related biomedical applications.
Collapse
Affiliation(s)
- Liang Shi
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Jie Cao
- Translational Medicine Laboratory, Wound Healing and Regenerative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chaoyu Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Xiaocheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Keqing Shi
- Translational Medicine Laboratory, Wound Healing and Regenerative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
17
|
Wang H, Cai L, Zhang D, Shang L, Zhao Y. Responsive Janus Structural Color Hydrogel Micromotors for Label-Free Multiplex Assays. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9829068. [PMID: 34888526 PMCID: PMC8628110 DOI: 10.34133/2021/9829068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Micromotors with self-propelling ability demonstrate great values in highly sensitive analysis. Developing novel micromotors to achieve label-free multiplex assay is particularly intriguing in terms of detection efficiency. Herein, structural color micromotors (SCMs) were developed and employed for this purpose. The SCMs were derived from phase separation of droplet templates and exhibited a Janus structure with two distinct sections, including one with structural colors and the other providing catalytic self-propelling functions. Besides, the SCMs were functionalized with ion-responsive aptamers, through which the interaction between the ions and aptamers resulted in the shift of the intrinsic color of the SCMs. It was demonstrated that the SCMs could realize multiplex label-free detection of ions based on their optical coding capacity and responsive behaviors. Moreover, the detection sensitivity was greatly improved benefiting from the autonomous motion of the SCMs which enhanced the ion-aptamer interactions. We anticipate that the SCMs can significantly promote the development of multiplex assay and biomedical fields.
Collapse
Affiliation(s)
- Huan Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dagan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Wei S, Zhou S, Huang W, Zan X, Geng W. Efficient Delivery of Antibodies Intracellularly by Co-Assembly with Hexahistidine-Metal Assemblies (HmA). Int J Nanomedicine 2021; 16:7449-7461. [PMID: 34785893 PMCID: PMC8579864 DOI: 10.2147/ijn.s332279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022] Open
Abstract
PURPOSE There has been a substantial global market for antibodies, which are based on extracellular targets. Binding intracellular targets by antibodies will bring new chances in antibody therapeutics and a huge market increase. We aim to evaluate the efficiency of a novel delivery system of His6-metal assembly (HmA) in delivering intracellular antibodies and biofunctions of delivered antibodies. METHODS In this study, the physicochemical properties of HmA@Antibodies generated through co-assembling with antibodies and HmA were well characterized by dynamic light scatter. The cytotoxicity of HmA@Antibodies was investigated by Cell Counting Kit-8 (CCK-8). The endocytic kinetics and lysosome escape process of HmA@Antibodies were studied by flow cytometry and fluorescent staining imaging, respectively. Compared to the commercialized positive control, the intracellular delivery efficiency by HmA@Antibodies and biofunctions of delivered antibodies were evaluated by fluorescent imaging and CCK-8. RESULTS Various antibodies (IgG, anti-β-tubulin and anti-NPC) could co-assemble with HmA under a gentle condition, producing nano-sized (~150 nm) and positively charged (~+30 eV) HmA@Antibodies particles with narrow size distribution (PDI ~ 0.15). HmA displayed very low cytotoxicity to divers cells (DCs, HeLa, HCECs, and HRPE) even after 96 h for the feeding concentration ≤100 μg mL-1, and fast escape from endosomes. In the case of delivery IgG, the delivery efficiency into alive cells of HmA was better than a commercial protein delivery reagent (PULSin). For cases of the anti-β-tubulin and anti-NPC, HmA showed comparable delivery efficiency to their positive controls, but HmA with ability to deliver these antibodies into alive cells was still superior to positive controls delivering antibodies into dead cells through punching holes. CONCLUSION Our results indicate that this strategy is a feasible way to deliver various antibodies intracellularly while preserving their functions, which has great potential in various applications and treating many refractory diseases by intracellular antibody delivery.
Collapse
Affiliation(s)
- Shaoyin Wei
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People’s Republic of China
| | - Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People’s Republic of China
| | - Wenjuan Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People’s Republic of China
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, People’s Republic of China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People’s Republic of China
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang Province, People’s Republic of China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, People’s Republic of China
| |
Collapse
|
19
|
Abd Elkodous M, Olojede SO, Morsi M, El-Sayyad GS. Nanomaterial-based drug delivery systems as promising carriers for patients with COVID-19. RSC Adv 2021; 11:26463-26480. [PMID: 35480012 PMCID: PMC9037715 DOI: 10.1039/d1ra04835j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023] Open
Abstract
Once the World Health Organization (WHO) declared the COVID-19 outbreak to be pandemic, massive efforts have been launched by researchers around the globe to combat this emerging infectious disease. Here we review the most recent data on the novel SARS-CoV-2 pathogen. We analyzed its etiology, pathogenesis, diagnosis, prevention, and current medications. After that, we summarized the promising drug delivery application of nanomaterial-based systems. Their preparation routes, unique advantages over the traditional drug delivery routes and their toxicity though risk analysis were also covered. We also discussed in detail the mechanism of action for one example of drug-loaded nanomaterial drug delivery systems (Avigan-contained nano-emulsions). This review provides insights about employing nanomaterial-based drug delivery systems for the treatment of COVID-19 to increase the bioavailability of current drugs, reducing their toxicity, and to increase their efficiency.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology Toyohashi Aichi 441-8580 Japan
- Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University Sheikh Zayed Giza 16453 Egypt
| | - S O Olojede
- Nanotechnology Platforms, Discipline of Clinical Anatomy, Nelson Mandela School of Medicine, University of KwaZulu-Natal Durban South Africa
| | - Mahmoud Morsi
- Faculty of Medicine, Menoufia University Menoufia Shebin El Kom Egypt
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Chemical Engineering Department, Military Technical College (MTC) Egyptian Armed Forces Cairo Egypt
| |
Collapse
|
20
|
Jicsinszky L, Martina K, Cravotto G. Cyclodextrins in the antiviral therapy. J Drug Deliv Sci Technol 2021; 64:102589. [PMID: 34035845 PMCID: PMC8135197 DOI: 10.1016/j.jddst.2021.102589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The main antiviral drug-cyclodextrin interactions, changes in physicochemical and physiological properties of the most commonly used virucides are summarized. The potential complexation of antiviral molecules against the SARS-Cov2 also pointed out the lack of detailed information in designing effective and general medicines against viral infections. The principal problem of the current molecules is the 3D structures of the currently active compounds. Improving the solubility or bioavailability of antiviral molecules is possible, however, there is no universal solution, and the complexation experiments dominantly use the already approved cyclodextrin derivatives. This review discusses the basic properties of the different cyclodextrin derivatives, their potential in antiviral formulations, and the prevention and treatment of viral infections. The biologically active new cyclodextrin derivatives are also discussed.
Collapse
Affiliation(s)
- László Jicsinszky
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| | - Katia Martina
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| | - Giancarlo Cravotto
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| |
Collapse
|