1
|
Yağcı A, Daler S, Kaya O. An Innovative Approach: Alleviating Cadmium Toxicity in Grapevine Seedlings Using Smoke Solution Derived from the Burning of Vineyard Pruning Waste. PHYSIOLOGIA PLANTARUM 2024; 176:e14624. [PMID: 39537427 DOI: 10.1111/ppl.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Although plant-derived smoke solutions (SSs) have exhibited growth-promoting properties in various plant species, their potential role in mitigating heavy metal stress, specifically in grapevines, has remained unexplored and unreported. This knowledge gap prompted the present study to evaluate the efficacy of foliar application of SSs derived from vineyard pruning waste at concentrations of 0%, 0.5%, 1%, and 2% in mitigating Cadmium (Cd) phytotoxicity in grape saplings. In our study, cadmium stress was induced by applying 10 mg/kg CdCl2 to the root area of the saplings, in conjunction with fertilizers. Our findings showed that exposure to Cd toxicity impeded the growth of grapevine saplings, adversely affecting shoot and root length, as well as fresh weight. Furthermore, it resulted in a reduction in chlorophyll content, stomatal conductance, and leaf water content while significantly increasing membrane damage and lipid peroxidation. Notably, the application of 0.5% SS enhanced grapevine sapling growth and alleviated Cd stress-induced damage by more effectively regulating physiological and biochemical responses compared to the control and other concentrations. Based on our results, under Cd stress conditions, the application of 0.5% SS effectively increased chlorophyll content, relative water content (RWC), stomatal conductance (1.79 mmol.m-2.sn-1), and total phenolic content (1.89 mg.g-1), whereas it significantly reduced malondialdehyde (MDA) levels and membrane damage (1.35 nmol.g-1). Additionally, it significantly elevated the activities of antioxidant enzymes, including superoxide dismutase (SOD) (2.16 U.mg-1), catalase (CAT) (1.55 U.mg-1), and ascorbate peroxidase (APX) (3.03 U.mg-1). The study demonstrated that plant-derived SS mitigates Cd stress in grapevines by enhancing antioxidative defence mechanisms.
Collapse
Affiliation(s)
- Adem Yağcı
- Department of Horticulture, Faculty of Agriculture, Tokat Gaziosmanpaşa University, Tokat, Türkiye
| | - Selda Daler
- Department of Horticulture, Faculty of Agriculture, Yozgat Bozok University, Yozgat, Türkiye
| | - Ozkan Kaya
- Republic of Türkiye Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, Türkiye
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
2
|
Ashraf H, Ghouri F, Zhong M, Cheema SA, Haider FU, Sun L, Ali S, Alshehri MA, Fu X, Shahid MQ. Oryza glumaepatula and calcium oxide nanoparticles enhanced Cr stress tolerance by maintaining antioxidant defense, chlorophyll and gene expression levels in rice. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122239. [PMID: 39182380 DOI: 10.1016/j.jenvman.2024.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Chromium (Cr), a potent heavy metal, threatens rice cultivation due to its escalating presence in soil from human activities. Wild rice contains useful genes for phytoremediation; however, it is difficult to use directly for metal mitigation. Here, a single segment substitution line (SSSL), SG001, was developed by crossing O. glumaepatula and Huajingxian74 (HJX) to evaluate the survival ability of plants against Cr. Further, we explored the potential effect of calcium oxide nanoparticles (CaO-NPs) (50 μM) to minimize the toxic effect of Cr (100 μM) in rice cultivars, SG001 and HJX. The findings of this study indicated that Cr toxicity led to increased oxidative stress. This was shown by higher levels of hydrogen peroxide (H2O2), which was increased by 104% in SG001 and 177% in HJX, and malondialdehyde (MDA) increased by 79% in SG001 and 135% in HJX. Furthermore, it also depicted that Cr toxicity considerably declined shoot and root length, shoot and root fresh weight by 30%, 27%, 25%, and 20% in SG001 and 44%, 51%, 42%, and 45% in HJX, respectively. This mitigation was evidenced by decreased Cr contents, increased calcium (Ca) levels in SG001, and the maintenance of chlorophyll, antioxidant defense, and gene expression levels. Moreover, there was a notable reduction in MDA and H2O2, while the defense mechanisms of key antioxidants, including ascorbate peroxidase, superoxide dismutase, glutathione, catalase, and peroxidase were upregulated, along with an increase in soluble protein contents in both rice cultivars after applying CaO-NPs. CaO-NPs effectively restored cellular and subcellular structural integrity and growth in both lines, which had been seriously disrupted by Cr toxicity. Overall, our findings suggest that SG001, in combination with CaO-NPs, could serve as an effective strategy to mitigate Cr toxicity in plants.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Ashraf H, Ghouri F, Liang J, Xia W, Zheng Z, Shahid MQ, Fu X. Silicon Dioxide Nanoparticles-Based Amelioration of Cd Toxicity by Regulating Antioxidant Activity and Photosynthetic Parameters in a Line Developed from Wild Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1715. [PMID: 38931146 PMCID: PMC11207486 DOI: 10.3390/plants13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
An extremely hazardous heavy metal called cadmium (Cd) is frequently released into the soil, causing a considerable reduction in plant productivity and safety. In an effort to reduce the toxicity of Cd, silicon dioxide nanoparticles were chosen because of their capability to react with metallic substances and decrease their adsorption. This study examines the processes that underlie the stress caused by Cd and how SiO2NPs may be able to lessen it through modifying antioxidant defense, oxidative stress, and photosynthesis. A 100 μM concentration of Cd stress was applied to the hydroponically grown wild rice line, and 50 μM of silicon dioxide nanoparticles (SiO2NPs) was given. The study depicted that when 50 μM SiO2NPs was applied, there was a significant decrease in Cd uptake in both roots and shoots by 30.2% and 15.8% under 100 μM Cd stress, respectively. The results illustrated that Cd had a detrimental effect on carotenoid and chlorophyll levels and other growth-related traits. Additionally, it increased the levels of ROS in plants, which reduced the antioxidant capability by 18.8% (SOD), 39.2% (POD), 32.6% (CAT), and 25.01% (GR) in wild rice. Nevertheless, the addition of silicon dioxide nanoparticles reduced oxidative damage and the overall amount of Cd uptake, which lessened the toxicity caused by Cd. Reduced formation of reactive oxygen species (ROS), including MDA and H2O2, and an increased defense system of antioxidants in the plants provided evidence for this. Moreover, SiO2NPs enhanced the Cd resistance, upregulated the genes related to antioxidants and silicon, and reduced metal transporters' expression levels.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiabin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiming Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Sun W, He Y, Deng Y, Hu Y, Cao M, Luo J. Interaction effects of magnetized water irrigation and wounding stress on Cd phytoremediation effect of Arabidopsis halleri. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1016-1026. [PMID: 38037794 DOI: 10.1080/15226514.2023.2288896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In this study, the phytoremediation efficiency of Arabidopsis halleri L. in response to mechanical injury were compared between those irrigated with magnetized water and those irrigated with normal water. Under normal irrigation treatment, wounding stress increased malondialdehyde (MDA) concentrations and hydrogen peroxide (H2O2) levels in A. halleri leaves significantly, by 46.7-86.1% and 39.4-77.4%, respectively, relative to those in the intact tissues. In addition, wounding stresses decreased the content of Cd in leaves by 26.8-52.2%, relative to the control, indicating that oxidative damage in plant tissues was induced by mechanical injury, rather than Cd accumulation. There were no significant differences in MDA and H2O2 between A. halleri irrigated with magnetized water and with normal water under wounding conditions; however, the activities of catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) in the leaves of plants treated with magnetized water were significantly increased by 25.1-56.7%, 47.3-183.6%, and 44.2-109.4%, respectively. Notably, under the magnetic field, the phytoremediation effect of 30% wounded A. halleri nearly returned to normal levels. We find that irrigation with magnetized water is an economical pathway to improve the tolerance of A. halleri to inevitable mechanical injury and may recover its phytoremediation effect.
Collapse
Affiliation(s)
- Weiheng Sun
- Hubei Geological & Mining Exploration Co., Ltd, Wuhan, China
| | - Yue He
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yuping Deng
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yuwei Hu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, Leicester, UK
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| |
Collapse
|
5
|
Kępczyński J, Kępczyńska E. Plant-Derived Smoke and Karrikin 1 in Seed Priming and Seed Biotechnology. PLANTS (BASEL, SWITZERLAND) 2023; 12:2378. [PMID: 37376003 DOI: 10.3390/plants12122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Plant-derived smoke and smoke water (SW) can stimulate seed germination in numerous plants from fire-prone and fire-free areas, including cultivated plants and agricultural weeds. Smoke contains thousands of compounds; only several stimulants and inhibitors have been isolated from smoke. Among the six karrikins present in smoke, karrikin 1 (KAR1) seems to be key for the stimulating effect of smoke. The discovery and activity of highly diluted SW and KAR1 at extremely low concentrations (even at ca. 10-9 M) inducing seed germination of a wide array of horticultural and agricultural plants have created tremendous opportunities for the use of these factors in pre-sowing seed treatment through smoke- or KAR1-priming. This review presents examples of effects exerted by the two types of priming on seed germination and seedling emergence, growth, and development, as well as on the content of some compounds and enzyme activity. Seed biotechnology may involve both SW and KAR1. Some examples demonstrate that SW and/or KAR1 increased the efficiency of somatic embryogenesis, somatic embryo germination and conversion to plantlets. It is also possible to stimulate in vitro seed germination by SW, which allows to use in orchid propagation.
Collapse
Affiliation(s)
- Jan Kępczyński
- Institute of Biology, University of Szczecin, Waska 13, 71-415 Szczecin, Poland
| | - Ewa Kępczyńska
- Institute of Biology, University of Szczecin, Waska 13, 71-415 Szczecin, Poland
| |
Collapse
|
6
|
He S, Lian X, Zhang B, Liu X, Yu J, Gao Y, Zhang Q, Sun H. Nano silicon dioxide reduces cadmium uptake, regulates nutritional homeostasis and antioxidative enzyme system in barley seedlings (Hordeum vulgare L.) under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67552-67564. [PMID: 37115454 DOI: 10.1007/s11356-023-27130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/16/2023] [Indexed: 05/25/2023]
Abstract
Cadmium (Cd) toxicity is one of the most severe environmental threats inhibiting crop growth and productivity. Strategies to mitigate the adverse effects of Cd stress on plants are under scrutiny. Nano silicon dioxide (nSiO2) is an emerging material and could protect plants against abiotic stress. Can nSiO2 alleviate Cd toxicity in barley, and the possible mechanisms are poorly understood. A hydroponic experiment was conducted to study the mitigation effects of nSiO2 on Cd toxicity in barley seedlings. The results showed that the application of nSiO2 (5, 10, 20, and 40 mg/L) increased barley plant growth and chlorophyll and protein content, improving photosynthesis, compared with Cd-treated alone. Specifically, 5-40 mg/L nSiO2 addition increased net photosynthetic rate (Pn) by 17.1, 38.0, 30.3, and - 9.7%, respectively, relative to the Cd treatment alone. Furthermore, exogenous nSiO2 reduced Cd concentration and balanced mineral nutrient uptake. The application of 5-40 mg/L nSiO2 decreased Cd concentration in barley leaves by 17.5, 25.4, 16.7, and 5.8%, respectively, relative to the Cd treatment alone. Moreover, exogenous nSiO2 lowered malondialdehyde (MDA) content by 13.6-35.0% in roots, and by 13.5-27.2% in leaves, respectively, compared with Cd-treated alone. Besides, nSiO2 altered antioxidant enzyme activities and alleviated detrimental effects on Cd-treated plants, attaining maximal values at 10 mg/L nSiO2. These findings revealed that exogenous nSiO2 application may be a viable option for addressing Cd toxicity of barley plants.
Collapse
Affiliation(s)
- Songjie He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
- School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Xin Lian
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Bo Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Xianjun Liu
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Jia Yu
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Yifan Gao
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Qingmei Zhang
- School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Hongyan Sun
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China.
| |
Collapse
|
7
|
Singh S, Uddin M, Chishti AS, Bhat UH, Singh S, Khan MMA. Plant-derived smoke water and karrikinolide (KAR 1) enhance physiological activities, essential oil yield and bioactive constituents of Mentha arvensis L. FRONTIERS IN PLANT SCIENCE 2023; 14:1129130. [PMID: 37152142 PMCID: PMC10159057 DOI: 10.3389/fpls.2023.1129130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 05/09/2023]
Abstract
Introduction The current study was carried out with the hypothesis that foliar application of plant-derived smoke water (PDSW) and karrikinolide (KAR1) might enhanced the plant growth, physiology, and essential oil production of the Mentha arvensis L. Karrikinolide (KAR1) is one of the most important bioactive constituents of PDSW. Methods Mint (Mentha arvensis L.) was grown in natural conditions in the net-house. Different concentrations of PDSW (1:125, 1:250, 1:500 and 1:1000 v/v) and KAR1 (10-9 M, 10-8 M, 10-7 M and 10-6 M) were used as foliar-spray treatments, using double-distilled water as control. The PDSW was prepared by burning the dried wheat-straw that acted as a growth-promoting substance. Results Foliar-spray treatment 1:500 v/v of PDSW and 10-8 M of KAR1 proved optimal for enhancing all morphological, physiological, and essential-oil yield related parameters. In comparison with the control, 1:500 v/v of PDSW and 10-8 M of KAR1 increased significantly (p ≤ 0.05) the height of mint plant (19.23% and 16.47%), fresh weight (19.30% and 17.44%), dry weight (35.36% and 24.75%), leaf area (18.22% and 17.46%), and leaf yield per plant (28.41% and 23.74%). In addition, these treatments also significantly increased the photosynthetic parameters, including chlorophyll fluorescence (12.10% and 11.41%), total chlorophyll content (25.70% and 20.77%), and total carotenoid content (29.77% and 27.18%). Likewise, 1:500 v/v of PDSW and 10-8 M of KAR1 significantly increased the essential-oil content (37.09% and 32.25%), essential oil productivity per plant (72.22% and 66.66%), menthol content (29.94% and 25.42%), menthyl acetate content (36.90% and 31.73%), and menthone content (44.38% and 37.75%). Furthermore, the TIC chromatogram of the GCMS analysis revealed the presence of 34 compounds, 12 of which showed major peak areas. Discussion Treatment 1: 500 v/v of PDSW proved better than the treatment 10-8 M of KAR1 with regard to most of the parameters studied. The outcome of the study can be used as a recommendation tool for agricultural and horticultural crops, since it costs much lesser than that of KAR1. In fact, the foliar application of PDSW proved economical and played bioactive role at very low concentrations.
Collapse
Affiliation(s)
- Sarika Singh
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- *Correspondence: Sarika Singh,
| | - Moin Uddin
- Botany Section, Women’s College, Aligarh Muslim University, Aligarh, India
| | - Aman Sobia Chishti
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Urooj Hassan Bhat
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Sangram Singh
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - M. Masroor A. Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
8
|
Zhang QC, Wang J, Wang JG. Use of plant growth regulators to reduce 2-methyl-4-chlorophenoxy acetic acid-Na (MPCA-Na) damage in cotton (Gossypium hirsutum). BMC PLANT BIOLOGY 2022; 22:533. [PMID: 36380296 PMCID: PMC9667669 DOI: 10.1186/s12870-022-03917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND 2-methyl-4-chlorophenoxy acetic acid-Na (MPCA-Na) is a phenoxy carboxylic acid selective hormone herbicide that is widely used in the crop fields. However, drift of MPCA-Na during application is highly damaging to cotton (Gossypium hirsutum) and other crop plants. This study was carried out from 2019 to 2020 to determine the effects of different concentrations of MPCA-Na on physiological and metabolic activities besides growth and yield of cotton plants at seedling, budding, flowering and boll stages. Moreover, we evaluated the different combinations of 24-epibrassinolide, gibberellin (GA3), phthalanilic acid and seaweed fertilizer to ameliorate herbicide damage. RESULTS 2-methyl-4-chlorophenoxy acetic acid-Na (MPCA-Na) exposure caused a decrease in the chlorophyll content, and an increase in the soluble protein content, Malondialdehyde (MDA) content and protective enzyme activity. It also caused significant reductions in plant height, boll number and the single boll weight at the seedling and budding stages, but had little effects on plant height and the single boll weight at flowering and boll stage. Under the maximum recommended dose of MPCA-Na (130 g/L), the number of cotton bolls at seedling and budding stages decreased by 75.33 and 79.50%, respectively, and the single boll weight decreased by 46.42 and 36.31%, respectively. Nevertheless, the number of G. hirsutum bolls and single boll weight at flowering and boll stage decreased by 48.15 and 5.38%, respectively. Application of plant growth regulators decreased the MDA content, and increased chlorophyll, soluble protein content and protective enzyme activity, and alleviated MCPA-Na toxicity. Positive effects in case of growth regulators treated plants were also observed in terms of G. hirsutum yield. Phthalanilic acid + seaweed fertilizer, 24-epibrassinolide + seaweed fertilizer, and GA3 + seaweed fertilizer should be used at the seedling, budding, and flowering and boll stages, respectively. CONCLUSIONS The results of current study suggest that certain plant growth regulators could be used to alleviate MPCA-Na damage and maintain G. hirsutum yield. When the cotton exposed to MCPA-Na at the seedling stage, it should be treated with phthalanilic acid + seaweed fertilizer, while plants exposed at the budding stage should be treated with 24-epibrassinolide + seaweed fertilizer, and those exposed at the flowering and boll stages should be treated with GA3 + seaweed fertilizer to mitigate stress.
Collapse
Affiliation(s)
- Quan-Cheng Zhang
- College of Agriculture, Shihezi University, Shihezi, 832003, China
| | - Jing Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, China
| | - Jun-Gang Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
9
|
Babashpour-Asl M, Farajzadeh-Memari-Tabrizi E, Yousefpour-Dokhanieh A. Foliar-applied selenium nanoparticles alleviate cadmium stress through changes in physio-biochemical status and essential oil profile of coriander (Coriandrum sativum L.) leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80021-80031. [PMID: 35397029 DOI: 10.1007/s11356-022-19941-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Since large areas of agricultural soils around the world are contaminated by Cd, a cost-effective and practical method is needed for the safe production of edible plants. The effective role of many nanomaterials to improve plant yield by mitigating environmental pollutions is addressed; however, the impacts of selenium nanoparticles (Se-NPs) have not been well-known yet. The aim of this work was to investigate foliar application of Se-NPs on yield, water content, proline concentration, phenolic content, lipid peroxidation, and essential oil (EO) attributes of coriander (Coriandrum sativum L.) under Cd stress. The plants were exposed to Cd contamination (0, 4, and 8 mg L-1) and foliar application of Se-NPs (0, 20, 40, and 60 mg L-1). The results showed increased Cd accumulation in roots and shoots of coriander plants upon Cd stress; however, Se-NPs alleviated the uptake of Cd. Cd toxicity, particularly 8 mg L-1, decreased shoot and root weight, chlorophyll (Chl), and relative water content (RWC), while Se-NPs improved these attributes. The Cd concentration at 4 mg L-1 and Se-NPs at 40 or 60 mg L-1 increased phenolic and flavonoid contents as well as EO yield. Proline concentration and malondialdehyde (MDA) increased by enhancing Cd stress, but Se-NPs decreased MDA. The GC/MS analysis showed that the main EO constitutes were n-decanal (18.80-29.70%), 2E-dodecanal (14.23-19.87%), 2E-decanal (12.60-19.40%), and n-nonane (7.23-12.87%), representing different amounts under Cd pollution and Se-NPs. To sum up, Se-NPs at 40-60 mg L-1 are effective in alleviating Cd stress.
Collapse
Affiliation(s)
- Marzieh Babashpour-Asl
- Department of Horticultural Science, Maragheh Branch, Islamic Azad University, Maragheh, Iran.
| | | | | |
Collapse
|
10
|
Sardar R, Ahmed S, Yasin NA. Titanium dioxide nanoparticles mitigate cadmium toxicity in Coriandrum sativum L. through modulating antioxidant system, stress markers and reducing cadmium uptake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118373. [PMID: 34662592 DOI: 10.1016/j.envpol.2021.118373] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 05/12/2023]
Abstract
Anthropogenic activities are the foremost reason of metal pollution in soils of the cultivated areas, resulting abnormal physiochemical processes in plants. Among metals contaminants, cadmium (Cd) is one of the most injurious contaminants that deleteriously affect physiological activities, growth and yield of the crop plants. Keeping in view the stress mitigation potential of titanium dioxide (TiO2), the existing research work was premeditated to inspect the beneficial role of seed priming with titanium dioxide nanoparticles (TiO2-NPs) on biochemical, morphological and physiological characteristics of Coriandrum sativum L. (coriander) plants under Cd stress. For this purpose, C. sativum seeds were primed with 0, 40, 80 and 160 mg L-1 TiO2-NPs. Cadmium stress triggered a significant decrease in chlorophyll a content (49%), chlorophyll b content (44%), photosynthetic rate (62%) and plant growth (51%) as compared with control. Tanium dioxide nanoparticles treated seedlings exhibited reduced Cd contents besides improved agronomic traits (seedlings biomass, number of seeds and yield). The TiO2-NPs treatment declined the magnitude of EL and MDA by 1.5 fold and 1.71 fold, respectively. Furthermore, TiO2-NPs diminished oxidative injuries in plants exposed to Cd stress. Additionally, TiO2-NPs enhanced the biosynthesis of osmatic regulators (proline) by 47% which helped in the mitigation of Cd persuaded toxicity in plants. Briefly, treatment of 80 mg L-1 TiO2-NPs perhaps ameliorates the deleterious influence of Cd stress and enhance the yield of coriander.
Collapse
Affiliation(s)
- Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|