1
|
Gill R, Wang Q, Takaku-Pugh S, Lytle E, Wang M, Bennett DH, Park J, Petreas M. Trends in flame retardant levels in upholstered furniture and children's consumer products after regulatory action in California. CHEMOSPHERE 2024; 351:141152. [PMID: 38218243 DOI: 10.1016/j.chemosphere.2024.141152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
In 2013, California revised its upholstered furniture flammability standard TB 117-2013 to improve fire safety without the need for flame retardant (FR) chemicals. Subsequent legislation (SB 1019) required disclosure of FR content. In 2020 California expanded restriction on FR chemicals to include juvenile products and upholstered furniture (AB 2998). To monitor trends in FR use, and assess the effectiveness of the new regulations, we analyzed 346 samples from upholstered furniture (n = 270) and children's consumer products (n = 76), collected pre- and post-regulatory intervention for added FR chemicals (i.e., ∑FR > 1000 mg/kg). Upholstered furniture samples, collected from products before enactment of the new regulations, had a median FR concentration of 41,600 mg/kg (range: 1360-92,900 mg/kg), with 100% of the foam samples and 13.7% of the textile samples containing ∑FR > 1000 mg/kg. Firemaster formulations (FM 550 and FM 600), a mixture of triphenyl phosphate (TPHP), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (BEH-TEBP) and a mixture of isopropyl- or tert-butyl-triphenyl phosphates (ITPs or TBPPs), were the most frequently detected FR (34%), followed by tris(1,3-dichloroisopropyl) phosphate (TDCIPP; 25%), TPHP with a mixture of polybrominated diphenyl ethers (BDE-47, 99, 100, 153 and 154; 20%) and tris(2-chloroethyl) phosphate (TCEP; 11%). Upholstered furniture components collected after enactment of the new legislation had a median FR concentration of 2600 mg/kg (range: 1160-49,800 mg/kg, outlier sample 282,200 mg/kg), with 11.9% of the foam samples and no textile samples containing ∑FR > 1000 mg/kg. Of these samples, tris(1-chloro-2-propyl) phosphate (TCIPP) was the most frequently detected FR (55%), followed by TDCIPP (30%) and Firemaster (FM 550, 15%). No PBDEs were detected in the post-regulatory intervention products. Our initial work on children's products showed 15% of the samples contained ∑FR > 1000 mg/kg. In our post- AB 2998 work, no regulated children's product components failed compliance (i.e., ∑FR > 1000 mg/kg). The data confirm successful adoption of the new regulations with most samples in compliance, demonstrating the efficacy of regulatory intervention. Given these results, environmental FR exposure is expected to decrease as older FR treated consumer products are replaced with FR free products.
Collapse
Affiliation(s)
- R Gill
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States.
| | - Q Wang
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States
| | - S Takaku-Pugh
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States
| | - E Lytle
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States
| | - M Wang
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States
| | - D H Bennett
- University of California, Davis, Department of Public Health Sciences, Davis, CA, 95616, United States
| | - J Park
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States; University of California, San Francisco, Department of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, CA, 94158, United States
| | - M Petreas
- California Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, CA, 94710, United States
| |
Collapse
|
2
|
Xu Q, Fan K, Wei D, Wang L, Wang J, Song Y, Wang M, Zhao M, Liu X, Huo W, Li L, Hou J, Jing T, Wang C, Mao Z. Higher HDL-C levels attenuated the association of plasma polybrominated diphenyl ethers with prediabetes and type 2 diabetes mellitus in rural Chinese adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115524. [PMID: 37776820 DOI: 10.1016/j.ecoenv.2023.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Plasma polybrominated diphenyl ethers (PBDE) were used as flame retardants widely, however, epidemiological evidence for the association between PBDEs and type 2 diabetes mellitus (T2DM) is inconsistent. Moreover, the combined effects of PBDEs and blood lipid indicators on impaired fasting glucose (IFG) and T2DM remains largely unknown in rural areas lacking good waste recycling infrastructure. METHODS In this study, a total of 2607 subjects aged 18-79 years were included from the Henan Rural Cohort. Generalized linear and logistic regression models were applied to evaluate the associations of various PBDE pollutants on IFG and T2DM. Quantile g-computation regression and PBDE pollution score created by the adaptive elastic net were applied to evaluate the impact of PBDEs mixtures on IFG and T2DM. Interaction effects of individual PBDE pollutants and blood lipid indicators on IFG and T2DM were assessed by using Interaction plots. RESULTS The geometric mean concentrations (detection rates) were 0.09 ng/mL (100.0%), 0.12 ng/mL (97.8%), 0.22 ng/mL (94.7%), 0.16 ng/mL (99.2%) and 0.28 ng/mL (100.0%) for PBDE-28, PBDE-47, PBDE-99, and PBDE-153 respectively. However, PBDE-28, PBDE-99, PBDE-100, and ΣPBDEs were positively associated with IFG (odds ratios (ORs) (95% confidence intervals (CIs)): 1.14 (1.06, 1.23), 1.16 (1.04, 1.29), 1.25 (1.14, 1.37), and 1.27 (1.08, 1.50)). Similarly, PBDE-28, PBDE-47, PBDE-99, PBDE-100, and ΣPBDEs were positively associated with T2DM (ORs (95% CIs): 1.30 (1.10, 1.54), 1.13 (1.06, 1.22), 1.27 (1.13, 1.43), 1.27 (1.15, 1.40), and 1.30 (1.10, 1.54)). Moreover, five PBDE mixtures or jointly as PBDE pollution score, were significantly associated with an increased risk of T2DM (P < 0.05 for all). In addition, the harmful effect of PBDE exposure on T2DM was decreased with accompanying high-density lipoprotein cholesterol (HDL-C) levels increased. CONCLUSIONS Our findings highlight the importance of managing PBDEs contamination and suggest that HDL-C may be a novel way to prevent T2DM.
Collapse
Affiliation(s)
- Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Keliang Fan
- Teaching and Training Department, Affiliated Hospital of Jiaxing University/ The First Hospital of Jiaxing, 314000 Zhejiang, China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Song
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mengzhen Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
3
|
Lamkin DM, Chen S, Bradshaw KP, Xu S, Faull KF, Sloan EK, Cole SW. Low-dose exposure to PBDE disrupts genomic integrity and innate immunity in mammary tissue. Front Genet 2022; 13:904607. [PMID: 36035174 PMCID: PMC9413140 DOI: 10.3389/fgene.2022.904607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The low-dose mixture hypothesis of carcinogenesis proposes that exposure to an environmental chemical that is not individually oncogenic may nonetheless be capable of enabling carcinogenesis when it acts in concert with other factors. A class of ubiquitous environmental chemicals that are hypothesized to potentially function in this low-dose capacity are synthesized polybrominated diphenyl ethers (PBDEs). PBDEs can affect correlates of carcinogenesis that include genomic instability and inflammation. However, the effect of low-dose PBDE exposure on such correlates in mammary tissue has not been examined. In the present study, low-dose long-term (16 weeks) administration of PBDE to mice modulated transcriptomic indicators of genomic integrity and innate immunity in normal mammary tissue. PBDE increased transcriptome signatures for the Nuclear Factor Erythroid 2 Like 2 (NFE2L2) response to oxidative stress and decreased signatures for non-homologous end joining DNA repair (NHEJ). PBDE also decreased transcriptome signatures for the cyclic GMP-AMP Synthase - Stimulator of Interferon Genes (cGAS-STING) response, decreased indication of Interferon Stimulated Gene Factor 3 (ISGF3) and Nuclear Factor Kappa B (NF-κB) transcription factor activity, and increased digital cytometry estimates of immature dendritic cells (DCs) in mammary tissue. Replication of the PBDE exposure protocol in mice susceptible to mammary carcinogenesis resulted in greater tumor development. The results support the notion that ongoing exposure to low levels of PBDE can disrupt facets of genomic integrity and innate immunity in mammary tissue. Such effects affirm that synthesized PBDEs are a class of environmental chemicals that reasonably fit the low-dose mixture hypothesis.
Collapse
Affiliation(s)
- Donald M. Lamkin
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Donald M. Lamkin,
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Karen P. Bradshaw
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neuroscience, Stanford University School of Medicine, Stanford, CA, United States
| | - Shili Xu
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kym F. Faull
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Erica K. Sloan
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre-Victorian Comprehensive Cancer Centre, Melbourne, VIC, Austalia
| | - Steve W. Cole
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Marquès M, Nadal M, Domingo JL. Human exposure to polybrominated diphenyl ethers (PBDEs) through the diet: An update of the scientific literature. Food Chem Toxicol 2022; 167:113322. [PMID: 35872254 DOI: 10.1016/j.fct.2022.113322] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame-retardants (BFRs). As for other persistent organic pollutants, dietary intake (followed by dust inhalation) is the main route of human exposure to PBDEs. In 2012, we reviewed the scientific literature on the concentrations of PBDEs in foodstuffs and their dietary exposure. The current review is aimed at updating the results of recent studies (2012-2022) focused on determining the levels of PBDEs in food samples, as well as the dietary intake of these compounds. We have revised studies conducted over the world. The current information on the concentrations of PBDEs in food and their dietary intake is now much more notable than that available in our previous review, being China the country contributing with the highest number of studies. Because of the important differences in materials and methods used in the available studies, the comparison of results is certainly complicated. However, there seems to be a general trend towards a decrease in the levels of PBDEs in foods, and consequently, in the dietary intake of these contaminants. The lack of tolerable daily intakes of PBDEs is an issue that needs to be solved for assessing human health risks of these BFRs.
Collapse
Affiliation(s)
- Montse Marquès
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorens 21, 43201, Reus, Catalonia, Spain
| | - Martí Nadal
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorens 21, 43201, Reus, Catalonia, Spain
| | - José L Domingo
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
5
|
Wan MLY, Co VA, El-Nezami H. Endocrine disrupting chemicals and breast cancer: a systematic review of epidemiological studies. Crit Rev Food Sci Nutr 2021; 62:6549-6576. [PMID: 33819127 DOI: 10.1080/10408398.2021.1903382] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Endocrine-disrupting compounds (EDCs) are ubiquitous substances that are found in our everyday lives, including pesticides, plasticizers, pharmaceutical agents, personal care products, and also in food products and food packaging. Increasing epidemiological evidence suggest that EDCs may affect the development or progression of breast cancer and consequently lead to lifelong harmful health consequences, especially when exposure occurs during early life in humans. Yet so far no appraisal of the available evidence has been conducted on this topic. OBJECTIVE To systematically review all the available epidemiological studies about the association of the levels of environmental exposures of EDCs with breast cancer risk. METHODS The search was performed in accordance with the PRISMA guidelines. We retrieved articles from PubMed (MEDLINE) until 10 March 2021. The key words used in this research were: "Endocrine disruptor(s)" OR "Endocrine disrupting chemical(s)" OR any of the EDCs mentioned below AND "Breast cancer" to locate all relevant articles published. We included only cohort studies and case-control studies. All relevant articles were accessed in full text and were evaluated and summarized in tables. RESULTS We identified 131 studies that met the search criteria and were included in this systematic review. EDCs reviewed herein included pesticides (e.g. p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), atrazine, 2,3,7,8-tetrachloridibenzo-p-dioxin (TCDD or dioxin)), synthetic chemicals (e.g. bisphenol A (BPA), phthalates, per- and polyfluoroalkyl substances (PFAS), parabens, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), contraceptive pills), phytoestrogens (e.g. genistein, resveratrol), and certain mycotoxins (e.g. zearalenone). Most studies assessed environmental EDCs exposure via biomarker measurements. CONCLUSION We identified certain EDC exposures could potentially elevate the risk of breast cancer. As majority of EDCs are highly persistent in the environment and bio-accumulative, it is essential to assess the long-term impacts of EDC exposures, especially multi-generational and transgenerational. Also, since food is often a major route of exposure to EDCs, well-designed exposure assessments of potential EDCs in food and food packing are necessary and their potential link to breast cancer development need to be carefully evaluated for subsequent EDC policy making and regulations.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Vanessa Anna Co
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Hani El-Nezami
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Bleak TC, Calaf GM. Breast and prostate glands affected by environmental substances (Review). Oncol Rep 2021; 45:20. [PMID: 33649835 PMCID: PMC7879422 DOI: 10.3892/or.2021.7971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
Environmental endocrine disruptor chemicals are substances that can alter the homeostasis of the endocrine system in living organisms. They can be released from several products used in daily activities. Once in the organism, they can disrupt the endocrine function by mimicking or blocking naturally occurring hormones due to their similar chemical structure. This endocrine disruption is the most important cause of the well‑known hormone‑associate types of cancer. Additionally, it is decisive to determine the susceptibility of each organ to these compounds. Therefore, the present review aimed to summarize the effect of different environmental substances such as bisphenol A, dichlorodiphenyltrichloroethane and polychlorinated biphenyls in both the mammary and the prostate tissues. These organs were chosen due to their association with the hormonal system and their common features in carcinogenic mechanisms. Outcomes derived from the present review may provide evidence that should be considered in future debates regarding the effects of endocrine disruptors on carcinogenesis.
Collapse
Affiliation(s)
- Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica 1000000, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica 1000000, Chile
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Li X, Gao H, Li P, Chen W, Tang S, Liu L, Zhou G, Xia T, Wang A, Zhang S. Impaired sperm quantity and motility in adult rats following gestational and lactational exposure to environmentally relevant levels of PBDE-47: A potential role of thyroid hormones disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115773. [PMID: 33065364 DOI: 10.1016/j.envpol.2020.115773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants and the congener 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) is capable of inducing thyroid endocrine disruption and developmental toxicity. However, little is known about whether developmental PBDE-47 exposure-elicited alterations in semen quality is associated with thyroid hormones (THs) perturbation. In this research, we sought to explore the impacts of gestational and lactational PBDE-47 exposure on adult sperm quantity and motility, and its link with THs levels. For this purpose, female Sprague-Dawley rats were administered environmentally relevant PBDE-47 levels (0.1, 1.0, 10 mg/kg/day) by oral gavage from prepregnancy through lactation cessation to achieve early-life exposure of offspring and to mimic the actual exposure. Sperm quantity and motility together with serum THs levels from male offspring were determined on postnatal day 88. In utero and lactational exposure to PBDE-47 boosted the weight gain while reduced the relative testis weight in adult male offspring. These were accompanied with the reductions in sperm counts (total and living sperm counts), the percentage of progressive sperm motility, sperm velocities (curvilinear velocity, straight-line velocity and average path velocity), motion path (beat cross frequency, linearity and wobble) and linear motile sperm parameters (count, motility and concentration). Further studies identified that the levels of serum triiodothyronine (T3) were increased by PBDE-47 exposure and negatively associated with those differential semen parameters on quantity and motility. Collectively, our results indicate that exposure to low-level PBDE-47 during early-life development impairs semen quality in adult rats, which could be mediated partially by abnormal T3 levels.
Collapse
Affiliation(s)
- Xiaoning Li
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Pei Li
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Wei Chen
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Sha Tang
- Department of Environment and Health, Xiangxi Center for Disease Control and Prevention, 37 South Renmin Road, Jishou, China
| | - Luming Liu
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Tao Xia
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Shun Zhang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China.
| |
Collapse
|
8
|
Arvaniti OS, Kalantzi OI. Determinants of flame retardants in non-occupationally exposed individuals - A review. CHEMOSPHERE 2021; 263:127923. [PMID: 32835974 DOI: 10.1016/j.chemosphere.2020.127923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Flame retardants (FRs) constitute a large group of different substances, some of which have been phased out of the market due to health concerns, while others are still used in many common consumer products to prevent fire hazards. This review addressed the determinants of FRs in non-occupationally exposed individuals based on surveys and questionnaire data. For this literature review, three databases (Scopus, Pubmed and Web of Knowledge) were searched by applying suitable terms, inclusion and exclusion criteria, producing a final selection of 78 articles for review. Based on these surveys there is epidemiological evidence for a significant association (p < 0.05) among human exposure and demographic factors, as well as a significant correlation between exposure to FRs and behavioural and environmental factors. Age, gender, housing characteristics, electrical and electronic equipment and mouthing behaviour (in children) play a leading role in human exposure to FRs as published studies demonstrated. However, the methodological differences among studies such as population size, questionnaire design and statistical analysis did not reveal a complete pattern of human exposure routes. Risk perception and communication are also discussed based on limited available data. Knowledge gaps and future perspectives relating to standardized protocols, elucidation of contamination sources, and risk response of health information from different target groups were also identified.
Collapse
Affiliation(s)
- Olga S Arvaniti
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece
| | - Olga-Ioanna Kalantzi
- Department of Environment, University of the Aegean, University Hill, Mytilene, 81100, Greece.
| |
Collapse
|
9
|
Kozlova EV, Chinthirla BD, Pérez PA, DiPatrizio NV, Argueta DA, Phillips AL, Stapleton HM, González GM, Krum JM, Carrillo V, Bishay AE, Basappa KR, Currás-Collazo MC. Maternal transfer of environmentally relevant polybrominated diphenyl ethers (PBDEs) produces a diabetic phenotype and disrupts glucoregulatory hormones and hepatic endocannabinoids in adult mouse female offspring. Sci Rep 2020; 10:18102. [PMID: 33093533 PMCID: PMC7582149 DOI: 10.1038/s41598-020-74853-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated flame retardant chemicals and environmental contaminants with endocrine-disrupting properties that are associated with diabetes and metabolic syndrome in humans. However, their diabetogenic actions are not completely characterized or understood. In this study, we investigated the effects of DE-71, a commercial penta-mixture of PBDEs, on glucoregulatory parameters in a perinatal exposure model using female C57Bl/6 mice. Results from in vivo glucose and insulin tolerance tests and ex vivo analyses revealed fasting hyperglycemia, glucose intolerance, reduced sensitivity and delayed glucose clearance after insulin challenge, decreased thermogenic brown adipose tissue mass, and exaggerated hepatic endocannabinoid tone in F1 offspring exposed to 0.1 mg/kg DE-71 relative to control. DE-71 effects on F0 dams were more limited indicating that indirect exposure to developing offspring is more detrimental. Other ex vivo glycemic correlates occurred more generally in exposed F0 and F1, i.e., reduced plasma insulin and altered glucoregulatory endocrines, exaggerated sympathoadrenal activity and reduced hepatic glutamate dehydrogenase enzymatic activity. Hepatic PBDE congener analysis indicated maternal transfer of BDE-28 and -153 to F1 at a collective level of 200 ng/g lipid, in range with maximum values detected in serum of human females. Given the persistent diabetogenic phenotype, especially pronounced in female offspring after developmental exposure to environmentally relevant levels of DE-71, additional animal studies should be conducted that further characterize PBDE-induced diabetic pathophysiology and identify critical developmental time windows of susceptibility. Longitudinal human studies should also be conducted to determine the risk of long-lasting metabolic consequences after maternal transfer of PBDEs during early-life development.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Pedro A Pérez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | | | | | - Gwendolyn M González
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Valeria Carrillo
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Karthik R Basappa
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Margarita C Currás-Collazo
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
10
|
Wu Z, He C, Han W, Song J, Li H, Zhang Y, Jing X, Wu W. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review. ENVIRONMENTAL RESEARCH 2020; 187:109531. [PMID: 32454306 DOI: 10.1016/j.envres.2020.109531] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/21/2020] [Accepted: 04/12/2020] [Indexed: 05/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are extensively used as brominated flame retardants (BFRs) in different types of materials, which have been listed as Persistent Organic Pollutants (POPs) by the Stockholm Convention in 2009 and 2017. Due to their ubiquities in the environment and toxicities, PBDEs have posed great threat to both human health and ecosystems. The aim of this review is to offer a comprehensive understanding of the exposure pathways, levels and trends and associated health risks of PBDEs in human body in a global scale. We systematically reviewed and described the scientific data of PBDE researches worldwide from 2010 to March 2020, focusing on the following three areas: (1) sources and human external exposure pathways of PBDEs; (2) PBDE levels and trends in humans; (3) human data of PBDEs toxicity. Dietary intake and dust ingestion are dominant human exposure pathways. PBDEs were widely detected in human samples, especially in human serum and human milk. Data showed that PBDEs are generally declining in human samples worldwide as a result of their phasing out. Due to the common use of PBDEs, their levels in humans from the USA were generally higher than that in other countries. High concentrations of PBDEs have been detected in humans from PBDE production regions and e-waste recycling sites. BDE-47, -153 and -99 were proved to be the primary congeners in humans. Human toxicity data demonstrated that PBDEs have extensively endocrine disruption effects, developmental effects, and carcinogenic effects among different populations.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Chang He
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102, Brisbane, Australia
| | - Wei Han
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yadi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaohua Jing
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455002, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
11
|
Calaf GM, Ponce-Cusi R, Aguayo F, Muñoz JP, Bleak TC. Endocrine disruptors from the environment affecting breast cancer. Oncol Lett 2020; 20:19-32. [PMID: 32565930 PMCID: PMC7286136 DOI: 10.3892/ol.2020.11566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Evaluation of carcinogenic substances from the environment is a challenge for scientists. Recently, a novel approach based on 10 key characteristics of human carcinogens classified by the International Agency for Research on Cancer (IARC) has emerged. Carcinogenesis depends on different mechanisms and factors, including genetic, infectious (bacteria, viruses) and environmental (chemicals) factors. Endocrine disruptors are exogenous chemicals that can interfere and impair the function of the endocrine system due to their interaction with estrogen receptors or their estrogen signaling pathways inducing adverse effects in the normal mammary development, originating cancer. They are heterogeneous chemicals and include numerous synthetic substances used worldwide in agriculture, industry and consumer products. The most common are plasticizers, such as bisphenol A (BPA), pesticides, such as dichlorodiphenyltrichloroethane, and polychlorinated biphenyls (PCBs). Xenoestrogens appear to serve an important role in the increased incidence of breast cancer in the United States and numerous other countries. Several studies have demonstrated the role of organochlorine xenoestrogens in breast cancer. Therefore, the overall cumulative exposure of women to estrogens results in an increased risk for this type of cancer. Factors like lifestyle and diet also serve a role in the increased incidence of this disease. The aim of the present study was to analyze these chemical compounds based on the key characteristics given by the IARC, with a special focus on breast cancer, to establish whether these compounds are carcinogens, and to create a model for future analysis of other endocrine disruptors.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Richard Ponce-Cusi
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Aguayo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380000, Chile
| | - Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
12
|
Endocrine-Disrupting Chemicals and Their Effects during Female Puberty: A Review of Current Evidence. Int J Mol Sci 2020; 21:ijms21062078. [PMID: 32197344 PMCID: PMC7139481 DOI: 10.3390/ijms21062078] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Puberty is the process of physical changes between childhood and adulthood during which adolescents reach sexual maturity and become capable of reproduction. It is considered one of the main temporal windows of susceptibility for the influence of the endocrine-disrupting chemicals (EDCs). EDCs may act as single chemical agents or as chemical mixtures; they can be pubertal influencers, accelerating and anticipating the processing of maturation of secondary sexual characteristics. Moreover, recent studies have started to point out how exposure to EDCs during puberty may predispose to breast cancer later in life. In fact, the estrogen-mimicking endocrine disruptors (EEDs) may influence breast tissue development during puberty in two main ways: the first is the action on the proliferation of the breast stromal cells, the second concerns epigenetic mechanisms. The aim of this mini-review was to better highlight what is new and what is not completely known regarding the role of EDCs during puberty.
Collapse
|
13
|
Brown RH, Ng DK, Steele K, Schweitzer M, Groopman JD. Mobilization of Environmental Toxicants Following Bariatric Surgery. Obesity (Silver Spring) 2019; 27:1865-1873. [PMID: 31689012 DOI: 10.1002/oby.22618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/22/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Persistent organic pollutants (POPs) are lipophilic environmental toxicants that accumulate in adipose tissue. Weight loss leads to mobilization and increased redistribution of these toxicants. Many are obesogens and endocrine disruptors. Increased exposure could pose long-term health risks. The study objective was to measure the changes in serum concentrations of lipophilic POPs during significant weight loss. METHODS This study enrolled 27 patients at a university hospital in a longitudinal, 6-month, observational study examining changes in POP blood levels after bariatric surgery. The primary outcome was the changes in the concentrations of 24 polychlorinated biphenyls (PCBs), 9 organochlorine pesticides (OCPs), 11 polybrominated diphenyl ethers, 2,2',4,4',5,5'-hexabromobiphenyl, and 4 perfluorochemicals (PFCs). RESULTS Older adults (those born before 1976) had baseline levels of PCBs, OCPs, and PFCs that were two- to fivefold higher than younger adults (those born after 1976). Older adults had greater increases in PCBs, OCPs, and polybrominated diphenyl ethers associated with weight loss. Conversely, younger adults had greater increases in PFCs associated with weight loss. On average, blood POP levels increased as weight loss occurred. CONCLUSIONS Although weight loss is considered beneficial, the release and redistribution of POPs to other lipid-rich organs such as the brain, kidneys, and liver warrant further investigation. Interventions should be considered to limit organ exposure to POPs when weight loss interventions are planned.
Collapse
Affiliation(s)
- Robert H Brown
- Departments of Anesthesiology, Medicine, and Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Derek K Ng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kimberley Steele
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Michael Schweitzer
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - John D Groopman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Logerová H, Tůma P, Stupák M, Pulkrábová J, Dlouhý P. Evaluation of the Burdening on the Czech Population by Brominated Flame Retardants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214105. [PMID: 31653098 PMCID: PMC6862665 DOI: 10.3390/ijerph16214105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
Abstract
The completed environmental study was concerned with assessing the exposure of the Czech population to polybrominated diphenyl ethers (PBDEs). Simultaneously, the levels of polychlorinated pollutants such as polychlorinated biphenyls (PCBs) and chlorinated diphenyl ethanes (DDTs) were also monitored. The pollutant levels were newly measured in solid fat tissue removed during plastic surgery. A total of 107 samples of fat were taken from 19–76-year-old volunteers. A total of 16 PBDE congeners were determined, of which only six occur in more than 38% of fat tissue samples. The total PBDE level attains an average value of 3.31 ng/g, which is 25% less than was measured in 2009. On the other hand, there was an increase in the levels of two PCB congeners, which was caused by an increase of the total PCB concentration from level of 625.5 ng/g, published in 2009, to the current level of 776 ng/g. The level of DDTs decreased and currently has a value of 467.4 ng/g, which is about 24% lower than in 2009. The contamination of obese middle-aged women in Czechia by more modern types of pollutants, such as PBDEs, is incomparably lower than that by PCBs and DDTs and is also decreasing in time.
Collapse
Affiliation(s)
- Hana Logerová
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic.
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic.
| | - Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic.
| | - Michal Stupák
- University of Chemistry and Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technická 3,16628, Prague, Czech Republic.
| | - Jana Pulkrábová
- University of Chemistry and Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technická 3,16628, Prague, Czech Republic.
| | - Pavel Dlouhý
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic.
| |
Collapse
|
15
|
Zhong X, Kang J, Qiu J, Yang W, Wu J, Ji D, Yu Y, Ke W, Shi X, Wei Y. Developmental exposure to BDE-99 hinders cerebrovascular growth and disturbs vascular barrier formation in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105224. [PMID: 31255847 DOI: 10.1016/j.aquatox.2019.105224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/12/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are distributed throughout the environment. Despite a moratorium on their use, concentrations of PBDEs in the atmosphere and in residential environments remain high due to their persistence. The environmental health risks remain concerning and one of the major adverse effects is neurodevelopmental toxicity. However, the early response and effects of PBDEs exposure on the developing brain remain unknown. In the present study, we investigated the impacts of 2,2',4,4',5-pentabrominated diphenyl ether (BDE-99) on vascular growth and vascular barrier function with an emphasis on cerebral blood vessels, in the early life stages, using a zebrafish model. No general toxicity was observed in exposing zebrafish larvae to 0-0.5 μM BDE-99 at 72 hpf. BDE-99 exposure resulted in neither general toxicity nor pronounced developmental impairment in somatic blood vessels, including intersegmental vessels (ISV) and common cardinal veins (CCV). Meanwhile, both 0.05 μM and 0.5 μM of BDE-99 reduced cerebrovascular density as well as down-regulation of VEGFA and VEGFR2 in the head. In addition, BDE-99 exposure increased vascular leakage, both in cerebral and truncal vasculature at 72 hpf. The accentuated vascular permeability was observed in the head. The mRNA levels of genes encoding tight junction molecules decreased in the BDE-99-exposed larvae, and more robust reductions in Cldn5, Zo1 and Jam were detected in the head than in the trunk. Moreover, proinflammatory factors including TNF-α, IL-1β and ICAM-1 were induced, and the expression of neurodevelopment-related genes was suppressed in the head following BDE-99 exposure. Taken together, these results reveal that developmental exposure to BDE-99 impedes cerebrovascular growth and disturbs vascular barrier formation. The cerebral vasculature in developing zebrafish, a more sensitive target for BDE-99, may be a promising tool for the assessment of the early neurodevelopmental effects due to PBDEs exposure.
Collapse
Affiliation(s)
- Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianmeng Kang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiahuang Qiu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenhan Yang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingwei Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuejin Yu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijian Ke
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiongjie Shi
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
16
|
Li AJ, Feldman SM, McNally RK, Kannan K. Distribution of Organohalogen and Synthetic Musk Compounds in Breast Adipose Tissue of Breast Cancer Patients in Ulster County, New York, USA. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:68-78. [PMID: 30949744 DOI: 10.1007/s00244-019-00621-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
We determined the concentrations of 98 halogenated organic compounds and synthetic musks in breast fat tissues of 50 breast cancer patients (age range: 34-77 years) collected during 1996-1998 in Ulster County, New York, USA. Polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated biphenyl 153 (PBB-153), polybrominated diphenyl ethers (PBDEs), and synthetic musk compounds (SMCs) were analyzed in breast fat tissues, and 46 analytes were found at a detection frequency of ≥ 65% and at concentrations in the decreasing order of OCPs > PCBs > SMCs > PBDEs > PBB-153. PCBs (median: 323 ng/g wet wt) and dichlorodiphenyltrichloroethanes (DDTs, median: 293 ng/g wet wt) were the major compounds found in breast fat tissues. Among PCB congeners, hexa- and hepta-chlorobiphenyls (60% of total PCBs) were the abundant ones. p,p'-DDE accounted for more than 99% of the total DDT concentrations. The concentrations of SMCs and PBDEs were 1-2 orders of magnitude lower than those of PCBs and DDTs. 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-r-2-benzopyran (median: 33 ng/g wet wt) was the most abundant SMC, whereas BDE-47 (median: 4.5 ng/g wet wt) was the most dominant PBDE congener present in breast tissues. A significant correlation (p < 0.05) between women's age and concentrations of DDTs, chlordanes, hexachlorobenzene and PCBs in breast tissues was found. Concentrations of PCBs, PBDEs, OCPs, and SMCs were not significantly different between malignant and benign tumor cases. This study adds baseline information on target tissue burdens of persistent organic contaminants in breast cancer patients.
Collapse
Affiliation(s)
- Adela Jing Li
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY, 12201-0509, USA
| | - Sheldon M Feldman
- Department of Surgery, Montefiore Medical Center, The University Hospital for the Albert Einstein College of Medicine, New York, NY, 10461-2374, USA
| | - Richard K McNally
- Pathology for Kingston Benedictine Hospital, Kingston, NY, 12401, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY, 12201-0509, USA.
- Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
17
|
Wen Q, Xie X, Zhao C, Ren Q, Zhang X, Wei D, Emanuelli B, Du Y. The brominated flame retardant PBDE 99 promotes adipogenesis via regulating mitotic clonal expansion and PPARγ expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:67-77. [PMID: 30903904 DOI: 10.1016/j.scitotenv.2019.03.201] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
"Obesogens" have been widely accepted as chemicals that promote obesity, and there are many environmental pollutants that were functionally identified as obesogens. PBDE 99 is one of the most abundant PBDE congeners detected in human. However, its obesogenic effects are poorly understood. Here, we explore the in vitro effects of PBDE 99 on adipogenesis, which is a key process in obesogenesis. We observed an increase in adipogenesis when differentiating cells were exposed to PBDE 99. Further, the promoting effects of PBDE 99 on adipogenesis were most efficient during the first 4 days of 3T3-L1 differentiation. Consistent with this, early transcriptional factor CCAAT/enhancer-binding proteins β (C/EBPβ) was upregulated at Days 1 and 2 during differentiation, which is accompanied with the acceleration of mitotic clonal expansion (MCE) and the upregulation of terminal transcriptional factors C/EBPα and PPARγ2 from Day 2 or Day 4. Additionally, bisulfite genomic sequencing analysis revealed that PBDE 99 decreased methylation status of the CpG sites at PPARγ promoter region. Collectively, these findings demonstrate that PBDE 99 may be a potential environmental obesogen by promoting adipogenesis through facilitating MCE progression at early differentiation stage and upregulating key adipogenic factor PPARγ2 expression both in direct transcriptional and epigenetic regulation dependent manner.
Collapse
Affiliation(s)
- Qing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chuanfang Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Wong S, Giulivi C. Autism, Mitochondria and Polybrominated Diphenyl Ether Exposure. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2017; 15:614-23. [PMID: 27071785 DOI: 10.2174/1871527315666160413122624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/29/2015] [Accepted: 01/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are a growing concern with more than 1 in every 68 children affected in the United States by age 8. Limited scientific advances have been made regarding the etiology of autism, with general agreement that both genetic and environmental factors contribute to this disorder. OBJECTIVE To explore the link between exposure to PBDE, mitochondrial dysfunction and autism risk. RESULTS Perinatal exposures to PBDEs may contribute to the etiology or morbidity of ASD including mitochondrial dysfunction based on (i) their increased environmental abundance and human exposures, (ii) their activity towards implicated in neuronal development and synaptic plasticity including mitochondria, and (iii) their bioaccumulation in mitochondria. CONCLUSION In this review, we propose that PBDE, and possibly other environmental exposures, during child development can induce or compound mitochondrial dysfunction, which in conjunction with a dysregulated antioxidant response, increase a child's susceptibility of autism.
Collapse
Affiliation(s)
| | - Cecilia Giulivi
- University of California, Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., 3009 VetMed3B, Davis, CA 95616, USA.
| |
Collapse
|
19
|
Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health 2017; 16:94. [PMID: 28865460 PMCID: PMC5581466 DOI: 10.1186/s12940-017-0287-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/17/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND In this review, we examine the continually expanding and increasingly compelling data linking radiation and various chemicals in our environment to the current high incidence of breast cancer. Singly and in combination, these toxicants may have contributed significantly to the increasing rates of breast cancer observed over the past several decades. Exposures early in development from gestation through adolescence and early adulthood are particularly of concern as they re-shape the program of genetic, epigenetic and physiological processes in the developing mammary system, leading to an increased risk for developing breast cancer. In the 8 years since we last published a comprehensive review of the relevant literature, hundreds of new papers have appeared supporting this link, and in this update, the evidence on this topic is more extensive and of better quality than that previously available. CONCLUSION Increasing evidence from epidemiological studies, as well as a better understanding of mechanisms linking toxicants with development of breast cancer, all reinforce the conclusion that exposures to these substances - many of which are found in common, everyday products and byproducts - may lead to increased risk of developing breast cancer. Moving forward, attention to methodological limitations, especially in relevant epidemiological and animal models, will need to be addressed to allow clearer and more direct connections to be evaluated.
Collapse
Affiliation(s)
- Janet M. Gray
- Department of Psychology and Program in Science, Technology, and Society, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604-0246 USA
| | - Sharima Rasanayagam
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Connie Engel
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Jeanne Rizzo
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| |
Collapse
|
20
|
Terry P, Towers CV, Liu LY, Peverly AA, Chen J, Salamova A. Polybrominated diphenyl ethers (flame retardants) in mother-infant pairs in the Southeastern U.S. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:205-214. [PMID: 28599595 DOI: 10.1080/09603123.2017.1332344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are commonly used flame retardants in foams, building material, electronics, and textiles. These chemicals leach into the environment, where they persist, and are found today in virtually every population worldwide. Several studies in recent years have detected the presence of PBDEs in maternal and infant samples. However, few of these studies were conducted in the U.S., and few examined paired or matched mother blood-cord blood samples. We analyzed serum from 10 mother-infant pairs for the presence of PBDEs in a patient population in the Southeastern U.S. Out of 35 measured PBDE congeners, five (BDE-28, -47, -99, -100, and -153) were present, with detection frequencies of 65-100 %. The total PBDE concentrations in maternal and infant sera were highly correlated (r2 = 0.710, p = 0.0043). The levels of BDE-47, -99, and -100 and of total PBDEs were higher in the infant cord sera when compared with those in maternal sera (p < 0.017), suggesting that fetuses and neonates might have higher circulating concentrations of these potentially neurotoxic and endocrine disrupting chemicals compared with their mothers. The primary focus henceforward should be whether there are any deleterious effects from exposure to these chemicals on human health.
Collapse
Affiliation(s)
- Paul Terry
- a Departments of Medicine , University of Tennessee Medical Center , Knoxville , TN , USA
| | - Craig V Towers
- b Obstetrics and Gynecology , University of Tennessee Medical Center , Knoxville , TN , USA
| | - Liang-Ying Liu
- c School of Environment and Guangzhou Key Laboratory of Environmental Exposure and Health , Jinan University , Guangzhou , China
| | - Angela A Peverly
- d Science and Mathematics Department , Eureka College , Eureka , IL , USA
| | - Jiangang Chen
- e Department of Public Health , University of Tennessee , Knoxville , TN , USA
| | - Amina Salamova
- f School of Public and Environmental Affairs, Indiana University , Bloomington , IN , USA
| |
Collapse
|
21
|
He Y, Peng L, Huang Y, Peng X, Zheng S, Liu C, Wu K. Association of breast adipose tissue levels of polychlorinated biphenyls and breast cancer development in women from Chaoshan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4778-4790. [PMID: 27981482 DOI: 10.1007/s11356-016-8208-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023]
Abstract
Polychlorinated biphenyls (PCBs) are implied to be potential risk factors for breast cancer in wildlife and in in vivo and in vitro studies. Epidemiological studies revealed some individual or groups of PCB congeners associated with breast cancer risk, but consistent conclusions are scarce. This study aimed to explore the association between PCB exposure and breast cancer development. Breast adipose tissues were collected, and seven PCB congeners were analyzed by gas chromatography-mass spectrometry (GC-MS). Demographic characteristics, basic clinical data, and pathological diagnosis information were obtained from medical records. The differences in PCB exposure levels among different groups and indices were compared, and the correlation among PCB congeners was evaluated. The order of congener profile by molar concentration was PCB-153 > PCB-138 > PCB-180 > PCB-118 > PCB-101 > PCB-52 > PCB-28. ∑PCB level differed by occupation and residence and was significantly higher at 55-59-year-old group than at the other age groups. ∑PCB level was higher in postmenopausal than in premenopausal women. Decreasing ∑PCB levels were related with increasing parity among women with progesterone receptor (PR)-positive breast tumors. With increased clinical stage, the ∑PCB level increased significantly. ∑PCB level did not differ by tumor-node-metastasis classification and PR or human epidermal growth factor receptor 2 (HER2) expression but did differ by estrogen receptor (ER) expression (P = 0.04) without a regularly increasing trend in breast adipose tissue. These results suggest a potential association between PCB exposure and breast cancer development. Further in vitro and in vivo studies are needed to confirm these findings and explain the underlying mechanisms. Graphical Abstract Total PCBs level among different clinical stages in breast cancer patients.
Collapse
Affiliation(s)
- Yuanfang He
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Rd, Shantou, Guangdong, 515041, China
| | - Lin Peng
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yiteng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xiaodong Peng
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Rd, Shantou, Guangdong, 515041, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Rd, Shantou, Guangdong, 515041, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Rd, Shantou, Guangdong, 515041, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, No. 22, Xinling Rd, Shantou, Guangdong, 515041, China.
| |
Collapse
|
22
|
Vassilopoulou L, Psycharakis C, Petrakis D, Tsiaoussis J, Tsatsakis AM. Obesity, Persistent Organic Pollutants and Related Health Problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:81-110. [PMID: 28585196 DOI: 10.1007/978-3-319-48382-5_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present review aims to delve into persistent organic pollutants (POPs) , as xenobiotics, in correlation to human health. POPs exhibit a group of common characteristics, including lipophilicity, persistence to decomposition and bioaccumulation in tissues. POPs have been thoroughly studied by former researchers, as they offer a particular interest in the elucidation of metabolic, endocrine and immune perturbation caused by their synergy with intracellular mechanisms. Herein particular focus is attributed to the relationship of POPs with obesity provocation. Obesity nowadays receives epidemic dimensions, as its prevalence elevates in an exponential degree. POPs-induced obesity rotates around interfering in metabolic and endocrinal procedures and interacting with peroxisome-proliferator and retinoic receptors. Moreover, polymorphisms in CYP gene families exert a negative result, as they incapacitate detoxification of POPs. Obesity could be deemed as a multidimensional condition, as various factors interact to lead to an obesogenic result. Therefore, concomitant disorders may occur, from mild to lethal, and get intensified due to POPs exposure. POPs exact function mechanisms remain rather enigmatic, thus further investigation should be prospectively performed, for a more lucid picture of this issue, and, consequently for the establishment of alternative solutions.
Collapse
Affiliation(s)
- Loukia Vassilopoulou
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409, Heraklion, Crete, Greece
| | - Christos Psycharakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409, Heraklion, Crete, Greece
| | - Demetrios Petrakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409, Heraklion, Crete, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy, Medical School, University of Crete, Voutes, 71110, Heraklion, Crete, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Voutes, 71003, Heraklion, Crete, Greece.
| |
Collapse
|
23
|
Zhao Q, Zhao H, Quan X, He X, Chen S. Photochemical Formation of Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) from Polybrominated Diphenyl Ethers (PBDEs) in Aqueous Solution under Simulated Solar Light Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9092-9099. [PMID: 26134578 DOI: 10.1021/acs.est.5b01240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are of great concern due to their higher toxicity compared to PBDEs. However, the abiologic process whereby PBDEs are converted to OH-PBDEs in the aquatic environment is not well understood. To explore the possibility of OH-PBDEs photoformation in natural water, the photohydroxylation of BDE-47 has been investigated in aqueous Fe(III) and/or fulvic acid (FA) solutions and in natural lake water under simulated solar light irradiation. The results showed that 6-OH-BDE-47 and 2'-OH-BDE-68 were generated from BDE-47 under these conditions. Based on the identification of derivatives and reactive radicals, OH-PBDEs formation can be ascribed to an addition reaction of ortho-tetra-BDE radical and hydroxyl radical ((•)OH), with or without a subsequent Smiles rearrangement reaction. Since the ortho-tetra-BDE radical could be readily produced by the photolysis of BDE-47, even in pure water, (•)OH production was considered as critical for the photoformation of OH-PBDEs. Thus, it is reasonable to deduce that the photoreactive components (Fe(III), FA) in aqueous solution played an important role through influencing (•)OH generation. Although the yields of OH-PBDEs did not increase regularly with increasing concentration of these photoreactive components in solution, this study suggests a possible abiotic origin of OH-PBDEs formation in the aquatic environment.
Collapse
Affiliation(s)
- Qian Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin He
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
24
|
Cao H, Han D, Li M, Li X, He M, Wang W. Theoretical Investigation on Mechanistic and Kinetic Transformation of 2,2′,4,4′,5-Pentabromodiphenyl Ether. J Phys Chem A 2015; 119:6404-11. [DOI: 10.1021/acs.jpca.5b04022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haijie Cao
- Environment Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Dandan Han
- Environment Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Mingyue Li
- Environment Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Xin Li
- Environment Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Maoxia He
- Environment Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
25
|
Erkin-Cakmak A, Harley KG, Chevrier J, Bradman A, Kogut K, Huen K, Eskenazi B. In utero and childhood polybrominated diphenyl ether exposures and body mass at age 7 years: the CHAMACOS study. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:636-42. [PMID: 25738596 PMCID: PMC4455588 DOI: 10.1289/ehp.1408417] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 02/24/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are lipophilic flame retardants that bioaccumulate in humans. Child serum PBDE concentrations in California are among the highest worldwide. PBDEs may be associated with obesity by disrupting endocrine systems. OBJECTIVE In this study, we examined whether pre- and postnatal exposure to the components of pentaBDE mixture was associated with childhood obesity in a population of Latino children participating in a longitudinal birth cohort study in the Salinas Valley, California. METHODS We measured PBDEs in serum collected from 224 mothers during pregnancy and their children at 7 years of age, and examined associations with body mass index (BMI) at age 7 years. RESULTS Maternal PBDE serum levels during pregnancy were associated with higher BMI z-scores in boys (BMI z-score βadjusted = 0.26; 95% CI: -0.19, 0.72) but lower scores in girls (BMI z-score βadjusted = -0.41; 95% CI: -0.87, -0.05) at 7 years of age (pinteraction = 0.04). In addition, child's serum BDE-153 concentration (log10), but not other pentaBDE congeners, demonstrated inverse associations with BMI at age 7 years (BMI z-score βadjusted = -1.15; 95% CI: -1.53, -0.77), but there was no interaction by sex. CONCLUSIONS We estimated sex-specific associations with maternal PBDE levels during pregnancy and BMI at 7 years of age, finding positive associations in boys and negative associations in girls. Children's serum BDE-153 concentrations were inversely associated with BMI at 7 years with no difference by sex. Future studies should examine the longitudinal trends in obesity with PBDE exposure and changes in hormonal environment as children transition through puberty, as well as evaluate the potential for reverse causality.
Collapse
Affiliation(s)
- Ayca Erkin-Cakmak
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Ellsworth RE, Mamula KA, Costantino NS, Deyarmin B, Kostyniak PJ, Chi LH, Shriver CD, Ellsworth DL. Abundance and distribution of polychlorinated biphenyls (PCBs) in breast tissue. ENVIRONMENTAL RESEARCH 2015; 138:291-297. [PMID: 25749124 DOI: 10.1016/j.envres.2015.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Many environmental chemicals accumulate in human tissues and may contribute to cancer risk. Polychlorinated biphenyls (PCBs) are associated with adverse health effects, but relationships between PCB exposure and breast cancer are unclear. In this study, we sought to determine whether bioaccumulation of PCBs differs within regions of the human breast and whether PCB levels are associated with clinical and pathological characteristics in breast cancer patients. Tissue sections (n=245) were collected from breast quadrants from 51 women with a diagnosis ranging from disease-free to metastatic breast cancer. Ninety-seven PCB congeners were assayed by high resolution gas chromatography. ANOVA was used to examine PCB distribution within the breast and relationships with clinical/pathological variables. Pearson product-moment correlations assessed relationships between age at mastectomy and PCB levels. PCBs were abundant in breast tissues with a median concentration of 293.4ng/g lipid (range 15.4-1636.3ng/g). PCB levels in breast tissue were significantly different (p<0.001) among functional groupings of congeners defined by structure-activity properties: Group I (28.2ng/g), Group II (96.6ng/g), Group III (166.0ng/g). Total PCB concentration was highly correlated with age at mastectomy, but the distribution of PCBs did not differ by breast quadrant. PCB levels were not associated with patient status or tumor characteristics. In conclusion, PCB congeners with carcinogenic potential were present at high levels in the human breast, but were not associated with clinical or pathological characteristics in breast cancer patients.
Collapse
Affiliation(s)
- Rachel E Ellsworth
- Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Kimberly A Mamula
- Clinical Breast Care Project, Windber Research Institute, Windber, PA, USA
| | | | - Brenda Deyarmin
- Clinical Breast Care Project, Windber Research Institute, Windber, PA, USA
| | - Paul J Kostyniak
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lai-Har Chi
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Craig D Shriver
- Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | |
Collapse
|
27
|
Reaves DK, Ginsburg E, Bang JJ, Fleming JM. Persistent organic pollutants and obesity: are they potential mechanisms for breast cancer promotion? Endocr Relat Cancer 2015; 22:R69-86. [PMID: 25624167 PMCID: PMC4352112 DOI: 10.1530/erc-14-0411] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dietary ingestion of persistent organic pollutants (POPs) is correlated with the development of obesity. Obesity alters metabolism, induces an inflammatory tissue microenvironment, and is also linked to diabetes and breast cancer risk/promotion of the disease. However, no direct evidence exists with regard to the correlation among all three of these factors (POPs, obesity, and breast cancer). Herein, we present results from current correlative studies indicating a causal link between POP exposure through diet and their bioaccumulation in adipose tissue that promotes the development of obesity and ultimately influences breast cancer development and/or progression. Furthermore, as endocrine disruptors, POPs could interfere with hormonally responsive tissue functions causing dysregulation of hormone signaling and cell function. This review highlights the critical need for advanced in vitro and in vivo model systems to elucidate the complex relationship among obesity, POPs, and breast cancer, and, more importantly, to delineate their multifaceted molecular, cellular, and biochemical mechanisms. Comprehensive in vitro and in vivo studies directly testing the observed correlations as well as detailing their molecular mechanisms are vital to cancer research and, ultimately, public health.
Collapse
Affiliation(s)
- Denise K Reaves
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - Erika Ginsburg
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - John J Bang
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - Jodie M Fleming
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| |
Collapse
|
28
|
Ryan JJ, Rawn DFK. The brominated flame retardants, PBDEs and HBCD, in Canadian human milk samples collected from 1992 to 2005; concentrations and trends. ENVIRONMENT INTERNATIONAL 2014; 70:1-8. [PMID: 24879366 DOI: 10.1016/j.envint.2014.04.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 05/19/2023]
Abstract
Human milk samples were collected from individuals residing in various regions across Canada mostly in the years 1992 to 2005. These included five large cities in southern Canada as well as samples from Nunavik in northern Quebec. Comparative samples were also collected from residents of Austin, Texas, USA in 2002 and 2004. More than 300 milk samples were analysed for the brominated flame retardants (BFRs), PBDEs and HBCD, by extraction, purification and quantification using either isotope dilution gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-MS. The Canadian total PBDE values in the years 2002-2005 show median levels of about 20μg/kg on a lipid basis; a value significantly higher than in the 1980s and 1990s. Milk samples from Inuit donors in the northern region of Nunavik were slightly lower in PBDE concentrations than those from populated regions in the south of Quebec. Milk samples from Ontario contained slightly lower amounts of PBDEs in two time periods than those from Texas. HBCD levels in most milk samples were usually less than 1ppb milk lipid and dominated by the α-isomer. This large data set of BFRs in Canadian human milk demonstrates an increase in the last few decades in human exposure to BFRs which now appears to have stabilized.
Collapse
Affiliation(s)
- John Jake Ryan
- Bureau Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada.
| | - Dorothea F K Rawn
- Bureau Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
29
|
Choi G, Kim S, Kim S, Kim S, Choi Y, Kim HJ, Lee JJ, Kim SY, Lee S, Moon HB, Choi S, Choi K, Park J. Occurrences of major polybrominated diphenyl ethers (PBDEs) in maternal and fetal cord blood sera in Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 491-492:219-226. [PMID: 24636800 DOI: 10.1016/j.scitotenv.2014.02.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/16/2014] [Accepted: 02/16/2014] [Indexed: 06/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are of growing public health concern because of their potential toxicities which range from endocrine disruption to neurodevelopment. However, information on their exposure among sensitive human populations is limited. The objectives of this study were to determine the levels of major PBDEs in blood sera of pregnant women and their matching newborn infants. For this purpose, a total of 198 maternal blood samples and 118 matching umbilical cord blood samples were collected from four regions of South Korea in 2011, and were determined for 19 PBDE congeners. Various demographic, dietary, and behavioral characteristics were asked in a questionnaire survey. Average concentration of total PBDEs in maternal blood serum was 3.34 ± 8.42 ng/g lipid weight (lw) at delivery and 3.14 ± 7.46 ng/g lw at 6 months of pregnancy, respectively. In cord blood serum, an average of 9.37 ± 12.60 ng/g lw was detected. Among the measured PBDE congeners, BDE-47, BDE-99 and BDE-153 were most dominant in both maternal and cord blood sera. Relatively higher levels of BDE-99 were detected in cord blood serum. Strong positive correlations were detected between maternal and cord blood serum samples, indicating the importance of maternal transfer. Health consequences of transplacental exposure to PBDEs among fetuses and newborn infants warrant further investigation.
Collapse
Affiliation(s)
- Gyuyeon Choi
- College of Medicine, Soonchunhyang University, Seoul, Republic of Korea
| | - Sungjoo Kim
- College of Medicine, Hallym University, Seoul, Republic of Korea
| | - Sunmi Kim
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sungkyoon Kim
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Youngeun Choi
- College of Natural Sciences, Soonchunhyang University, Ansan, Republic of Korea
| | - Hai-Joong Kim
- College of Medicine, Korea University, Ansan, Republic of Korea
| | - Jeong Jae Lee
- College of Medicine, Soonchunhyang University, Seoul, Republic of Korea
| | - Su Young Kim
- College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Republic of Korea
| | - Sooran Choi
- College of Medicine, Hallym University, Seoul, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jeongim Park
- College of Natural Sciences, Soonchunhyang University, Ansan, Republic of Korea.
| |
Collapse
|
30
|
|
31
|
Rawat S, Bruce ED. Designing quantitative structure activity relationships to predict specific toxic endpoints for polybrominated diphenyl ethers in mammalian cells. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:527-549. [PMID: 24738916 DOI: 10.1080/1062936x.2014.899512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are known as effective flame retardants and have vast industrial application in products like plastics, building materials and textiles. They are found to be structurally similar to thyroid hormones that are responsible for regulating metabolism in the body. Structural similarity with the hormones poses a threat to human health because, once in the system, PBDEs have the potential to affect thyroid hormone transport and metabolism. This study was aimed at designing quantitative structure-activity relationship (QSAR) models for predicting toxic endpoints, namely cell viability and apoptosis, elicited by PBDEs in mammalian cells. Cell viability was evaluated quantitatively using a general cytotoxicity bioassay using Janus Green dye and apoptosis was evaluated using a caspase assay. This study has thus modelled the overall cytotoxic influence of PBDEs at an early and a late endpoint by the Genetic Function Approximation method. This research was a twofold process including running in vitro bioassays to collect data on the toxic endpoints and modeling the evaluated endpoints using QSARs. Cell viability and apoptosis responses for Hep G2 cells exposed to PBDEs were successfully modelled with an r(2) of 0.97 and 0.94, respectively.
Collapse
Affiliation(s)
- S Rawat
- a Department of Environmental Science , Baylor University , Waco , TX , USA
| | | |
Collapse
|
32
|
Abstract
The heritable component of breast cancer accounts for only a small proportion of total incidences. Environmental and lifestyle factors are therefore considered to among the major influencing components increasing breast cancer risk. Endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment. The estrogenic property of EDCs has thus shown many associations between ongoing exposures and the development of endocrine-related diseases, including breast cancer. The environment consists of a heterogenous population of EDCs and despite many identified modes of action, including that of altering the epigenome, drawing definitive correlations regarding breast cancer has been a point of much discussion. In this review, we describe in detail well-characterized EDCs and their actions in the environment, their ability to disrupt mammary gland formation in animal and human experimental models and their associations with exposure and breast cancer risk. We also highlight the susceptibility of early-life exposure to each EDC to mediate epigenetic alterations, and where possible describe how these epigenome changes influence breast cancer risk.
Collapse
Affiliation(s)
- Kevin C Knower
- Cancer Drug Discovery, MIMR-PHI Institute of Medical Research, PO BOX 5152, Clayton, Victoria 3168, Australia Department of Molecular Biology and Biochemistry, Monash University, Clayton, Victoria, Australia Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
33
|
Cao H, He M, Han D, Li J, Li M, Wang W, Yao S. OH-initiated oxidation mechanisms and kinetics of 2,4,4'-Tribrominated diphenyl ether. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8238-8247. [PMID: 23855483 DOI: 10.1021/es400088v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
2,4,4'-Tribromodiphenyl ether (BDE-28) was selected as a typical congener of polybrominated diphenyl ethers (PBDEs) to examine its fate both in the atmosphere and in water solution. All the calculations were obtained at the ground state. The mechanism result shows that the oxidations between BDE-28 and OH radicals are highly feasible especially at the less-brominated phenyl ring. Hydroxylated dibrominated diphenyl ethers (OH-PBDEs) are formed through direct bromine-substitution reactions (P1∼P3) or secondary reactions of OH-adducts (P4∼P8). Polybrominated dibenzo-p-dioxins (PBDDs) resulting from o-OH-PBDEs are favored products compared with polybrominated dibenzofurans (PBDFs) generated by bromophenols and their radicals. The complete degradation of OH adducts in the presence of O2/NO, which generates unsaturated ketones and aldehydes, is less feasible compared with the H-abstraction pathways by O2. Aqueous solution reduces the feasibility between BDE-28 and the OH radical. The rate constant of BDE-28 and the OH radical is determined to be 1.79 × 10(-12) cm(3) molecule(-1) s(-1) with an atmospheric lifetime of 6.7 days.
Collapse
Affiliation(s)
- Haijie Cao
- Environment Research Institute, Shandong University, Jinan 250100, PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
Napoli E, Hung C, Wong S, Giulivi C. Toxicity of the flame-retardant BDE-49 on brain mitochondria and neuronal progenitor striatal cells enhanced by a PTEN-deficient background. Toxicol Sci 2013; 132:196-210. [PMID: 23288049 DOI: 10.1093/toxsci/kfs339] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) represent an important group of flame retardants extensively used, tonnage of which in the environment has been steadily increasing over the past 25 years. PBDEs or metabolites can induce neurotoxicity and mitochondrial dysfunction (MD) through a variety of mechanisms. Recently, PBDEs with < 5 Br substitutions (i.e., 2,2',4,4'-tetrabromodiphenyl ether [BDE-47] and 2,2',4,5'-tetrabromodiphenyl ether [BDE-49]) have gained interest because of their high bioaccumulation. In particular, congeners such as BDE-49 arise as one of the most biologically active, with concentrations typically lower than those observed for BDE-47 in biological tissues; however, its potential to cause MD at biologically relevant concentrations is unknown. To this end, the effect of BDE-49 was studied in brain mitochondria and neuronal progenitor striatal cells (NPC). BDE-49 uncoupled mitochondria at concentrations < 0.1 nM, whereas at > 1 nM, it inhibited the electron transport at Complex V (mixed type inhibition; IC(50) = 6 nM) and Complex IV (noncompetitive inhibition; IC(50) = 40 nM). These concentrations are easily achieved in plasma concentrations considering that BDE-49 (this study, 400-fold) and other PBDEs accumulate 1-3 orders of magnitude in the cells, particularly in mitochondria and microsomes. Similar effects were observed in NPC and exacerbated with PTEN (negative modulator of the PI3K/Akt pathway) deficiency, background associated with autism-like behavior, schizophrenia, and epilepsy. PBDE-mediated MD per se or enhanced by a background that confers susceptibility to this exposure may have profound implications in the energy balance of brain.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | | | | | | |
Collapse
|
35
|
Nash JT, Szabo DT, Carey GB. Polybrominated diphenyl ethers alter hepatic phosphoenolpyruvate carboxykinase enzyme kinetics in male Wistar rats: implications for lipid and glucose metabolism. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:142-156. [PMID: 23294302 DOI: 10.1080/15287394.2012.738457] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Xenobiotics such as phenobarbital, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and Aroclor 1254 significantly suppress the activity of a key gluconeogenic and glyceroneogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK), suggesting that xenobiotics disrupt hepatic glucose and fat metabolism. The effects of polybrominated diphenyl ethers (PBDE), a family of synthetic flame-retardant chemicals, on PEPCK activity is unknown. This study investigated the effect of DE-71, a commercial PBDE mixture, on PEPCK enzyme kinetics. Forty-eight 1-mo-old male Wistar rats were gavaged daily with either corn oil or corn oil containing 14 mg/kg DE-71 for 3, 14, or 28 d (n = 8/group). At each time point, fasting plasma glucose, insulin, and C-peptide were measured and hepatic PEPCK activity, lipid content, and three cytochrome P-450 enzymes (CYP1A, -2B, and -3A) were assayed. PBDE treatment for 28 d significantly decreased PEPCK Vmax ( μ mol/min/g liver weight) by 43% and increased liver lipid by 20%, compared to control. CYP1A, -2B, and -3A Vmax values were enhanced by 5-, 6-, and 39-fold, respectively, at both 14 and 28 d in treated rats compared to control. There was a significant inverse and temporal correlation between CYP3A and PEPCK Vmax for the treatment group. Fasting plasma glucose, insulin, and C-peptide levels were not markedly affected by treatment, but the glucose:insulin ratio was significantly higher in treated compared to control rats. Data suggest that in vivo PBDE treatment compromises liver glucose and lipid metabolism, and may influence whole-body insulin sensitivity.
Collapse
Affiliation(s)
- Jessica T Nash
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | |
Collapse
|
36
|
Li X, Wang X, Shi W, Liu H, Yu H. Analysis of Ah receptor binding affinities of polybrominated diphenyl ethers via in silico molecular docking and 3D-QSAR. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:75-87. [PMID: 23121134 DOI: 10.1080/1062936x.2012.729225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have become ubiquitous contaminations due to their use as flame retardants. The structural similarity of PBDE to some dioxin-like compounds suggested that they may share similar toxicological effects: they might activate the aryl hydrocarbon receptor (AhR) signal transduction pathway and thus might have adverse effects on wildlife and humans. In this study, in silico computational workflow combining molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) was performed to investigate the binding interactions between PBDEs and AhR and the structural features affecting the AhR binding affinity of PBDE. The molecular docking showed that hydrogen-bond and hydrophobic interactions were the major driving forces for the binding of ligands to AhR, and several key amino acid residues were also identified. The CoMSIA model was developed from the conformations obtained from molecular docking and exhibited satisfactory results as q (2) of 0.605 and r (2) of 0.996. Furthermore, the derived model had good robustness and statistical significance in both internal and external validations. The 3D contour maps generated from CoMSIA provided important structural features influence the binding affinity. The obtained results were beneficial to better understand the toxicological mechanism of PBDEs.
Collapse
Affiliation(s)
- X Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, P.R. China
| | | | | | | | | |
Collapse
|
37
|
Dodson RE, Perovich LJ, Covaci A, Van den Eede N, Ionas AC, Dirtu AC, Brody JG, Rudel RA. After the PBDE phase-out: a broad suite of flame retardants in repeat house dust samples from California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:13056-66. [PMID: 23185960 PMCID: PMC3525011 DOI: 10.1021/es303879n] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 05/17/2023]
Abstract
Higher house dust levels of PBDE flame retardants (FRs) have been reported in California than other parts of the world, due to the state's furniture flammability standard. However, changing levels of these and other FRs have not been evaluated following the 2004 U.S. phase-out of PentaBDE and OctaBDE. We analyzed dust collected in 16 California homes in 2006 and again in 2011 for 62 FRs and organohalogens, which represents the broadest investigation of FRs in homes. Fifty-five compounds were detected in at least one sample; 41 in at least 50% of samples. Concentrations of chlorinated OPFRs, including two (TCEP and TDCIPP) listed as carcinogens under California's Proposition 65, were found up to 0.01% in dust, higher than previously reported in the U.S. In 75% of the homes, we detected TDBPP, or brominated "Tris," which was banned in children's sleepwear because of carcinogenicity. To our knowledge, this is the first report on TDBPP in house dust. Concentrations of Firemaster 550 components (EH-TBB, BEH-TEBP, and TPHP) were higher in 2011 than 2006, consistent with its use as a PentaBDE replacement. Results highlight the evolving nature of FR exposures and suggest that manufacturers continue to use hazardous chemicals and replace chemicals of concern with chemicals with uncharacterized toxicity.
Collapse
Affiliation(s)
- Robin E Dodson
- Silent Spring Institute, 29 Crafts Street, Newton, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dodder NG, Maruya KA, Lauenstein GG, Ramirez J, Ritter KJ, Schiff KC. Distribution and sources of polybrominated diphenyl ethers in the Southern California Bight. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2239-45. [PMID: 22833350 DOI: 10.1002/etc.1957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/13/2012] [Accepted: 06/13/2012] [Indexed: 05/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) were measured in surface sediments from 121 locations within the Southern California Bight. Site selection was based on a probabilistic approach to determine the spatial extent and magnitude of PBDE concentrations with known confidence intervals. Coastal embayments (including estuaries, marinas, ports, and bays) and the continental shelf out to the lower slope were sampled. Thirteen PBDEs were detected at 92 of the sites, with a geometric mean and maximum of 4.7 and 560 ng/g dry weight (sum of 13 congeners), respectively. The PBDE concentrations were higher in coastal embayments than in offshore locations. Embayments had an area-weighted geometric mean total PBDE concentration of 12 (95% confidence interval, 8.0-17) ng/g dry weight and a total PBDE mass of 110 (77-160) kg. The offshore stratum, which is 99% of the total area, had an area-weighted geometric mean total PBDE concentration of 2.0 (1.6-2.5) ng/g dry weight and a total PBDE mass of 860 (700-1,100) kg. The five highest PBDE concentrations were associated with the mouths of urban rivers, indicating that urban runoff is likely a major input of PBDEs to these coastal marine waters. The outfalls of wastewater treatment plants were not observed to be major sources.
Collapse
Affiliation(s)
- Nathan G Dodder
- Southern California Coastal Water Research Project, Costa Mesa, California, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Evans RM, Scholze M, Kortenkamp A. Additive mixture effects of estrogenic chemicals in human cell-based assays can be influenced by inclusion of chemicals with differing effect profiles. PLoS One 2012; 7:e43606. [PMID: 22912892 PMCID: PMC3422259 DOI: 10.1371/journal.pone.0043606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/26/2012] [Indexed: 12/18/2022] Open
Abstract
A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a ‘balanced’ design with components present in proportion to a common effect concentration (e.g. an EC10) and 2) a ‘non-balanced’ design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation.
Collapse
Affiliation(s)
- Richard Mark Evans
- Institute for the Environment, Brunel University, Uxbridge, Middlesex, United Kingdom.
| | | | | |
Collapse
|
40
|
Al-Salman F, Plant N. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner. Toxicol Appl Pharmacol 2012; 263:7-13. [PMID: 22664347 DOI: 10.1016/j.taap.2012.05.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/18/2012] [Accepted: 05/25/2012] [Indexed: 12/29/2022]
Abstract
The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation of PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs.
Collapse
Affiliation(s)
- Fadheela Al-Salman
- Centre for Toxicology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | | |
Collapse
|
41
|
PBDEs in environmental samples: Sampling and analysis. Talanta 2012; 93:1-17. [DOI: 10.1016/j.talanta.2012.01.048] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/17/2012] [Accepted: 01/29/2012] [Indexed: 11/19/2022]
|
42
|
Kim TH, Bang DY, Lim HJ, Won AJ, Ahn MY, Patra N, Chung KK, Kwack SJ, Park KL, Han SY, Choi WS, Han JY, Lee BM, Oh JE, Yoon JH, Lee J, Kim HS. Comparisons of polybrominated diphenyl ethers levels in paired South Korean cord blood, maternal blood, and breast milk samples. CHEMOSPHERE 2012; 87:97-104. [PMID: 22236587 DOI: 10.1016/j.chemosphere.2011.11.074] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 05/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), commonly used flame retardants, have been reported as potential endocrine disruptor and neurodevelopmental toxicants, thus giving rise to the public health concern. The goal of this study was to investigate the relationship between umbilical cord blood, maternal blood, and breast milk concentrations of PBDEs in South Korean. We assessed PBDE levels in paired samples of umbilical cord blood, maternal blood, and breast milk. The levels of seven PBDE congeners were measured in 21 paired samples collected from the Cheil Woman's Hospital (Seoul, Korea) in 2008. We also measured thyroid hormones levels in maternal and cord blood to assess the association between PBDEs exposure and thyroid hormone levels. However, there was no correlation between serum thyroxin (T4) and total PBDEs concentrations. The total PBDEs concentrations in the umbilical cord blood, maternal blood, and breast milk were 10.7±5.1 ng g(-1) lipid, 7.7±4.2 ng g(-1) lipid, and 3.0±1.8 ng g(-1) lipid, respectively. The ranges of total PBDE concentrations observed were 2.28-30.94 ng g(-1) lipid in umbilical cord blood, 1.8-17.66 ng g(-1) lipid in maternal blood, and 1.08-8.66 ng g(-1) lipid in breast milk. BDE-47 (45-73% of total PBDEs) was observed to be present dominantly in all samples, followed by BDE-153. A strong correlation was found for major BDE-congeners between breast milk and cord blood or maternal blood and cord blood samples. The measurement of PBDEs concentrations in maternal blood or breast milk may help to determine the concentration of PBDEs in infant.
Collapse
Affiliation(s)
- Tae Hyung Kim
- Laboratory of Molecular Toxicology, MRC Center and College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan 609-735, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mechanistic and kinetic study on the reaction of 2;4-dibrominated diphenyl ether (BDE-7) with OH radicals. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2011.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Miller VM, Sanchez-Morrissey S, Brosch KO, Seegal RF. Developmental coexposure to polychlorinated biphenyls and polybrominated diphenyl ethers has additive effects on circulating thyroxine levels in rats. Toxicol Sci 2012; 127:76-83. [PMID: 22345314 DOI: 10.1093/toxsci/kfs089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are widespread environmental contaminants found in seafood and dairy products. PCBs and PBDEs are structurally similar chemicals and affect thyroid hormone function and behavior in children and laboratory rodents. Although coexposure frequently exists, the in vivo developmental effects of combined exposure to PCBs and PBDEs on thyroxine (T4) levels are unknown. We examined the effects of PCB and PBDE coexposure from gestational day 6 through postnatal day (p) 21, alone and in combination, on T4 levels in rat offspring. In males, exposure to PCBs and PBDEs at 1.7, 5, 10, 20, 40, and 60 μmol/kg/day induced equivalent and dose-dependent reductions in T4 from p 7 to p 21. Exposure to equimolar mixtures of PCBs and PBDEs at 3.4, 10, 20, 40, and 80 μmol/kg/day additively reduced T4 from p 7 to p 21 in males. In a second series of experiments, we determined sex effects on the mixture exposures and found that coexposure to PCBs and PBDEs had similar additive effects on T4 levels in male and female offspring. This study demonstrates that equimolar exposure to PCBs and PBDEs induces similar reductions in T4 levels and that coexposure to a mixture of PCBs and PBDEs has additive effects on T4 levels. These thyroid hormone effects of coexposure to PCBs and PBDEs are important when considering the cumulative effects of coexposure to multiple environmental thyroid hormone-disrupting agents in risk assessment for developmental disorders.
Collapse
Affiliation(s)
- Veronica M Miller
- School of Public Health, University at Albany, Albany, New York 12201, USA
| | | | | | | |
Collapse
|
45
|
Moon HB, Lee DH, Lee YS, Choi M, Choi HG, Kannan K. Polybrominated diphenyl ethers, polychlorinated biphenyls, and organochlorine pesticides in adipose tissues of Korean women. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:176-184. [PMID: 21594673 DOI: 10.1007/s00244-011-9679-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 05/04/2011] [Indexed: 05/30/2023]
Abstract
Studies on residue levels and accumulation profiles of persistent organic pollutants (POPs) in human adipose tissues of Korean populations are scarce. In this study, concentrations and accumulation features of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) were measured in adipose tissues of Korean women age 40-68 years. The highest concentrations were found for PCBs and DDTs, which were 1-2 orders of magnitude greater than the concentrations of hexachlorocyclohexanes, chlordanes, and PBDEs. The concentrations of PCBs and OCPs were lower than those reported for other countries. However, PBDE concentrations were greater than those reported for other countries, suggesting that ongoing exposure to PBDEs is a concern in Korea. The profiles of PBDEs were characterized by the predominance of BDE 209, followed by nona- and octa-BDEs, which are consistent with the consumption patterns of products containing PBDEs in Korea. The concentrations of PCBs and some OCPs were significantly correlated with each other, whereas PBDEs showed low or moderate correlations with other POPs, suggesting differences in exposure routes and biotransformation potentials of the compounds studied. The concentrations of organochlorines and PBDEs were not correlated with subjects' age and body mass index. The results of this study provide baseline information on POPs in adipose tissues of the general population in Korea.
Collapse
Affiliation(s)
- Hyo-Bang Moon
- Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University, Ansan, 426-791, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
46
|
Shy CG, Huang HL, Chao HR, Chang-Chien GP. Cord blood levels of thyroid hormones and IGF-1 weakly correlate with breast milk levels of PBDEs in Taiwan. Int J Hyg Environ Health 2011; 215:345-51. [PMID: 22088798 DOI: 10.1016/j.ijheh.2011.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 10/05/2011] [Accepted: 10/14/2011] [Indexed: 12/09/2022]
Abstract
In vivo studies indicate that prenatal or neonatal exposure of rodents to polybrominated diphenyl ethers (PBDEs) disrupts thyroid hormone balance, but few studies have reported an association of PBDEs and insulin-like growth factor 1 (IGF-1). The goal was to examine whether PBDEs exposure affects the levels of thyroid hormones and IGF-1 in cord blood. Study participants were healthy pregnant women recruited from the general population in central Taiwan between 2000 and 2001 and in southern Taiwan from 2007 to 2009. One-hundred-forty-nine breast milk samples (n=149), which were collected within one month after delivery, were analyzed using a high resolution gas chromatograph equipped with a high resolution mass spectrometer. The average and median levels of breast milk Σ(14)PBDEs were 5.34 and 3.38 ng/g lipid in 2000-2001 and 5.22 and 3.13 ng/g lipid in 2007-2009, respectively. In general, levels of PBDE congeners were very low in this study population and not significantly different between the years 2000-2001 and 2007-2009. Breast milk Σ(14)PBDEs were not significantly correlated with thyroid hormones and IGF-1 in cord blood. After examining multiple stepwise linear regression models with adjustment for maternal age, pre-pregnancy body mass index (BMI), parity, gestational age, and region (namely, central and southern Taiwan), we found that log of T4 in cord blood was significantly but slightly correlated with higher BDE-154 (B=0.113, p=0.017) in breast milk. The log of FT4 concentration was significantly related to a decrease in the log of BDE-99 level (B=-0.137, p=0.043) and an increase in the log of BDE-154 level (B=0.158, p=0.008). Meanwhile, the log of IGF-1 level was also significantly linked to an increase in the log of BDE-196 level (B=0.532, p=0.028) and decrease in the log of BDE-85 level (B=-0.235, p=0.018). Few epidemiological studies report an association between PBDEs exposure and IGF-1. Based on our findings, further in vivo and epidemiological studies are encouraged and needed to explore associations between PBDEs exposure and levels of thyroid hormones and IGF-1.
Collapse
Affiliation(s)
- Cherng-Gueih Shy
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, 912 Pingtung, Taiwan
| | | | | | | |
Collapse
|
47
|
Cao H, He M, Sun Y, Han D. Mechanical and Kinetic Studies of the Formation of Polyhalogenated Dibenzo-p-dioxins from Hydroxylated Polybrominated Diphenyl Ethers and Chlorinated Derivatives. J Phys Chem A 2011; 115:13489-97. [DOI: 10.1021/jp2059497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haijie Cao
- Environment Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Maoxia He
- Environment Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Yanhui Sun
- Environment Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Dandan Han
- Environment Research Institute, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
48
|
Determination of polybrominated diphenyl ethers and dechloraneplus in fish and fish oil supplements by gel permeation chromatography coupled with gas chromatography-negative chemical ionization mass spectrometry. Se Pu 2011; 29:543-8. [DOI: 10.3724/sp.j.1123.2011.00543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Adipose levels of polybrominated diphenyl ethers and risk of breast cancer. Breast Cancer Res Treat 2011; 129:505-11. [DOI: 10.1007/s10549-011-1481-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
|