1
|
Hashmi MZ, Shoukat A, Pongpiachan S, Kavil YN, Alelyani SS, Alkasbi MM, Hussien M, Niloy MTA. Polychlorinated biphenyls induced toxicities upon cell lines and stem cells: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:56. [PMID: 39853600 DOI: 10.1007/s10653-025-02362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants emitted during e-waste activities. Upon release into the environment, PCBs can pose harmful effects to the humans and environment. The present review focused on the effects of PCBs on cell proliferation, apoptosis, functional and developmental toxicity and potential possible molecular mechanisms upon cells and stem cells. The review also highlights the effects of low- and high-chlorinated, and dioxin and non-dioxin PCBs. The review suggested that high chlorinated and dioxin like PCBs at higher concentrations posed more toxic effects to cells and stem cells. PCBs at higher levels induced hepatotoxicity, carcinogenicity, reproductive toxicity, neurotoxicity and lung cell toxicity. PCBs triggered reactive oxygen species which actives mitogen activated pathways, nuclear factor and cytochrome pathway for cell proliferation and apoptosis. Further, review highlights PCBs induced toxicity in stem cells with the focus on developmental and functional toxicity. The review could be useful to understand the PCBs toxicities and mechanisms and will guide to policy makers to design policies for e-waste pollutant.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Anaela Shoukat
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Yasar N Kavil
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Renewable Environment Company for Environmental Consulting (REC), 21589, Jeddah, Saudi Arabia
| | - Saeed Saad Alelyani
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Renewable Environment Company for Environmental Consulting (REC), 21589, Jeddah, Saudi Arabia
| | - Mohammed M Alkasbi
- Department of Chemical and Waste Management, Environment Authority, PO. Box 323, 100, Muscat, Sultanate of Oman
| | - Mohamed Hussien
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Md Toushik Ahmed Niloy
- School of Planning, Design and Construction, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
2
|
Walker KA, Rhodes ST, Liberman DA, Gore AC, Bell MR. Microglial responses to inflammatory challenge in adult rats altered by developmental exposure to polychlorinated biphenyls in a sex-specific manner. Neurotoxicology 2024; 104:95-115. [PMID: 39038526 PMCID: PMC11548868 DOI: 10.1016/j.neuro.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex-specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.
Collapse
Affiliation(s)
- Katherine A Walker
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Simone T Rhodes
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Deborah A Liberman
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Margaret R Bell
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA; Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
3
|
Gómez VA, Pozo K, Clérandeau C, Cachot J, Montes C, Přibylová P, Glabán-Malagón C, Clarke B, Klanova J, Morin B. Plastic debris, persistent organic pollutants and their toxicity impacts in coastal areas in Central Chile. MARINE POLLUTION BULLETIN 2023; 194:115361. [PMID: 37579596 DOI: 10.1016/j.marpolbul.2023.115361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
The chemical components of plastic wastes have made their disposal a major economic, social, and environmental problem worldwide. This study evaluated the acute toxicity and genotoxicity of marine plastic debris on the beaches of Concepción Bay, Central Chile, taken during three periods (spring, summer, and winter). An integrated approach was used, including chemical and toxicological data, using the Microtox® test with Vibrio fischeri and SOS chromotest with Escherichia coli and concentrations of polychlorinated biphenyls (PCBs), Organochlorine Pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs). The results presented here exclusively include the novel data obtained from the winter campaign, revealing high concentrations of PBDEs (238 ± 521 ng g-1). In addition, the genotoxicity and acute toxicity tests were sensitive for most of the samples studied. This investigation is the first attempt to analyse the toxicity of plastic debris in coastal areas along the Chilean coast.
Collapse
Affiliation(s)
- Victoria A Gómez
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Italy,; Centro GEMA (Genómica, Ecología y Medio Ambiente), Universidad Mayor, Huechuraba, Santiago 8580000, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile.
| | - Karla Pozo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur, 1457, Concepción 4080871, Chile; Masaryk University, Faculty of Science (RECETOX), Kamenice 753/5, 62500, Brno, Czech Republic.
| | | | - Jérôme Cachot
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Caroline Montes
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4070386, Chile
| | - Petra Přibylová
- Masaryk University, Faculty of Science (RECETOX), Kamenice 753/5, 62500, Brno, Czech Republic
| | - Cristóbal Glabán-Malagón
- Centro GEMA (Genómica, Ecología y Medio Ambiente), Universidad Mayor, Huechuraba, Santiago 8580000, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Institute of Environment, Florida International University, Miami, FL, USA
| | - Bradley Clarke
- School of Chemistry, Australian Laboratory for Emerging Contaminants (ALEC), The University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia
| | - Jana Klanova
- Masaryk University, Faculty of Science (RECETOX), Kamenice 753/5, 62500, Brno, Czech Republic
| | - Bénédicte Morin
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
4
|
Xu W, Li C, Ma B, Lu Z, Wang Y, Jiang H, Luo Y, Yang Y, Wang X, Liao T, Ji Q, Wang Y, Wei W. Identification of Key Functional Gene Signatures Indicative of Dedifferentiation in Papillary Thyroid Cancer. Front Oncol 2021; 11:641851. [PMID: 33996555 PMCID: PMC8113627 DOI: 10.3389/fonc.2021.641851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Differentiated thyroid cancer (DTC) is the most common type of thyroid cancer. Many of them can relapse to dedifferentiated thyroid cancer (DDTC) and exhibit different gene expression profiles. The underlying mechanism of dedifferentiation and the involved genes or pathways remained to be investigated. Methods: A discovery cohort obtained from patients who received surgical resection in the Fudan University Shanghai Cancer Center (FUSCC) and two validation cohorts derived from Gene Expression Omnibus (GEO) database were used to screen out differentially expressed genes in the dedifferentiation process. Weighted gene co-expression network analysis (WGCNA) was constructed to identify modules highly related to differentiation. Gene Set Enrichment Analysis (GSEA) was used to identify pathways related to differentiation, and all differentially expressed genes were grouped by function based on the GSEA and literature reviewing data. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to control the number of variables in each group. Next, we used logistic regression to build a gene signature in each group to indicate differentiation status, and we computed receiver operating characteristic (ROC) curve to evaluate the indicative performance of each signature. Results: A total of 307 upregulated and 313 downregulated genes in poorly differentiated thyroid cancer (PDTC) compared with papillary thyroid cancer (PTC) and normal thyroid (NT) were screened out in FUSCC cohort and validated in two GEO cohorts. WGCNA of 620 differential genes yielded the seven core genes with the highest correlation with thyroid differentiation score (TDS). Furthermore, 395 genes significantly correlated with TDS in univariate logistic regression analysis were divided into 11 groups. The areas under the ROC curve (AUCs) of the gene signature of group transcription and epigenetic modification, signal and substance transport, extracellular matrix (ECM), and metabolism in the training set [The Cancer Genome Atlas (TCGA) cohort] and validation set (combined GEO cohort) were both >0.75. The gene signature based on group transcription and epigenetic modification, cilia formation and movement, and proliferation can reflect the patient's disease recurrence state. Conclusion: The dedifferentiation of DTC is affected by a variety of mechanisms including many genes. The gene signature of group transcription and epigenetic modification, signal and substance transport, ECM, and metabolism can be used as biomarkers for DDTC.
Collapse
Affiliation(s)
- Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cuiwei Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongyi Jiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Luo
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yichen Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Simhadri JJ, Loffredo CA, Trnovec T, Murinova LP, Nunlee-Bland G, Koppe JG, Schoeters G, Jana SS, Ghosh S. Biomarkers of metabolic disorders and neurobehavioral diseases in a PCB- exposed population: What we learned and the implications for future research. ENVIRONMENTAL RESEARCH 2020; 191:110211. [PMID: 32937175 PMCID: PMC7658018 DOI: 10.1016/j.envres.2020.110211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 05/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are one of the original twelve classes of toxic chemicals covered by the Stockholm Convention on Persistent Organic Pollutants (POP), an international environmental treaty signed in 2001. PCBs are present in the environment as mixtures of multiple isomers at different degree of chlorination. These compounds are manmade and possess useful industrial properties including extreme longevity under harsh conditions, heat absorbance, and the ability to form an oily liquid at room temperature that is useful for electrical utilities and in other industrial applications. They have been widely used for a wide range of industrial purposes over the decades. Despite a ban in production in 1979 in the US and many other countries, they remain persistent and ubiquitous in environment as contaminants due to their improper disposal. Humans, independent of where they live, are therefore exposed to PCBs, which are routinely found in random surveys of human and animal tissues. The prolonged exposures to PCBs have been associated with the development of different diseases and disorders, and they are classified as endocrine disruptors. Due to its ability to interact with thyroid hormone, metabolism and function, they are thought to be implicated in the global rise of obesity diabetes, and their potential toxicity for neurodevelopment and disorders, an example of gene by environmental interaction (GxE). The current review is primarily intended to summarize the evidence for the association of PCB exposures with increased risks for metabolic dysfunctions and neurobehavioral disorders. In particular, we present evidence of gene expression alterations in PCB-exposed populations to construct the underlying pathways that may lead to those diseases and disorders in course of life. We conclude the review with future perspectives on biomarker-based research to identify susceptible individuals and populations.
Collapse
Affiliation(s)
- Jyothirmai J Simhadri
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Christopher A Loffredo
- Departments of Oncology and of Biostatistics, Georgetown University, Washington, DC, USA
| | - Tomas Trnovec
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | | | - Gail Nunlee-Bland
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Janna G Koppe
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | - Greet Schoeters
- Dept. Biomedical Sciences, University of Antwerp, Antwerp, Belgium & Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Somiranjan Ghosh
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA; Department of Biology, Howard University, Washington, DC, USA.
| |
Collapse
|
6
|
Matelski L, Keil Stietz KP, Sethi S, Taylor SL, Van de Water J, Lein PJ. The influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. Curr Res Toxicol 2020; 1:85-103. [PMID: 34296199 PMCID: PMC8294704 DOI: 10.1016/j.crtox.2020.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are pervasive environmental contaminants implicated as risk factors for neurodevelopmental disorders (NDDs). Immune dysregulation is another NDD risk factor, and developmental PCB exposures are associated with early life immune dysregulation. Studies of the immunomodulatory effects of PCBs have focused on the higher-chlorinated congeners found in legacy commercial mixtures. Comparatively little is known about the immune effects of contemporary, lower-chlorinated PCBs. This is a critical data gap given recent reports that lower-chlorinated congeners comprise >70% of the total PCB burden in serum of pregnant women enrolled in the MARBLES study who are at increased risk for having a child with an NDD. To examine the influence of PCBs, sex, and genotype on cytokine levels, mice were exposed throughout gestation and lactation to a PCB mixture in the maternal diet, which was based on the 12 most abundant PCBs in sera from MARBLES subjects. Using multiplex array, cytokines were quantified in the serum and hippocampus of weanling mice expressing either a human gain-of-function mutation in ryanodine receptor 1 (T4826I mice), a human CGG premutation repeat expansion in the fragile X mental retardation gene 1 (CGG mice), or both mutations (DM mice). Congenic wildtype (WT) mice were used as controls. There were dose-dependent effects of PCB exposure on cytokine concentrations in the serum but not hippocampus. Differential effects of genotype were observed in the serum and hippocampus. Hippocampal cytokines were consistently elevated in T4826I mice and also in WT animals for some cytokines compared to CGG and DM mice, while serum cytokines were usually elevated in the mutant genotypes compared to the WT group. Males had elevated levels of 19 cytokines in the serum and 4 in the hippocampus compared to females, but there were also interactions between sex and genotype for 7 hippocampal cytokines. Only the chemokine CCL5 in the serum showed an interaction between PCB dose, genotype, and sex. Collectively, these findings indicate differential influences of PCB exposure and genotype on cytokine levels in serum and hippocampal tissue of weanling mice. These results suggest that developmental PCB exposure has chronic effects on baseline serum, but not hippocampal, cytokine levels in juvenile mice.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sandra L. Taylor
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA,MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Corresponding author at: Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Sun R, Zhou G, Liu L, Ren L, Xi Y, Zhu J, Huang H, Li Z, Li Y, Cheng X, Ba Y. Fluoride exposure and CALCA methylation is associated with the bone mineral density of Chinese women. CHEMOSPHERE 2020; 253:126616. [PMID: 32283421 DOI: 10.1016/j.chemosphere.2020.126616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Excessive exposure to fluoride has been reported to affect bone mineral density (BMD). CALCA expression plays a critical part in bone formation. However, the role of CALCA in the association between fluoride and BMD is not known. We conducted a cross-sectional study and recruited 722 women in rural areas of Henan Province, China, to assess the relationship between fluoride exposure, CALCA methylation, and BMD. Urinary levels of fluoride, CALCA methylation, and BMD were measured by a fluoride ion-selective electrode, standalone ultrasound bone densitometer, and quantitative methylation-specific polymerases chain reaction, respectively. The association among fluoride exposure, CALCA methylation, and BMD was age-specific. Specifically, BMD was negatively correlated with methylation (β: -0.008; 95% CI: -0.016, 0.000) and fluoride exposure (β: -0.063; 95% CI: -0.129, -0.002) in women over 45 years and 50-54 years of age, respectively, whereas methylation was positively correlated with fluoride exposure (β: 4.953; 95% CI: 1.162, 8.743) in women aged 40-44 years. Besides, increased BMD in women aged 45-49 years induced by the interactive effect of the highest methylation of CALCA exon 1 (tertile 3) and fluoride exposure was observed (P for interaction < 0.05). Our findings suggest an age-specific association between exposure to excessive fluoride, CALCA methylation, and BMD in a rural population of women in China. Notably, the susceptibility of BMD to fluoride exposure may be modified by CALCA methylation.
Collapse
Affiliation(s)
- Renjie Sun
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lihua Liu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lijun Ren
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, 475000, China
| | - Yu Xi
- Tongxu Center for Disease Control and Prevention, Kaifeng, Henan, 475400, China
| | - Jingyuan Zhu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hui Huang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyuan Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yan Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xuemin Cheng
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
8
|
Impact of Cytokines and Phosphoproteins in Response to Chronic Joint Infection. BIOLOGY 2020; 9:biology9070167. [PMID: 32708756 PMCID: PMC7407198 DOI: 10.3390/biology9070167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
The early cellular response to infection has been investigated extensively, generating valuable information regarding the mediators of acute infection response. Various cytokines have been highlighted for their critical roles, and the actions of these cytokines are related to intracellular phosphorylation changes to promote infection resolution. However, the development of chronic infections has not been thoroughly investigated. While it is known that wound healing processes are disrupted, the interactions of cytokines and phosphoproteins that contribute to this dysregulation are not well understood. To investigate these relationships, this study used a network centrality approach to assess the impact of individual cytokines and phosphoproteins during chronic inflammation and infection. Tissues were taken from patients undergoing total knee arthroplasty (TKA) and total knee revision (TKR) procedures across two tissue depths to understand which proteins are contributing most to the dysregulation observed at the joint. Notably, p-c-Jun, p-CREB, p-BAD, IL-10, IL-12p70, IL-13, and IFN-γ contributed highly to the network of proteins involved in aseptic inflammation caused by implants. Similarly, p-PTEN, IL-4, IL-10, IL-13, IFN-γ, and TNF-α appear to be central to signaling disruptions observed in septic joints. Ultimately, the network centrality approach provided insight into the altered tissue responses observed in chronic inflammation and infection.
Collapse
|
9
|
Leijs MM, Gan L, De Boever P, Esser A, Amann PM, Ziegler P, Fietkau K, Schettgen T, Kraus T, Merk HF, Baron JM. Altered Gene Expression in Dioxin-Like and Non-Dioxin-Like PCB Exposed Peripheral Blood Mononuclear Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122090. [PMID: 31200452 PMCID: PMC6617415 DOI: 10.3390/ijerph16122090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are well known carcinogenic persistent environmental pollutants and endocrine disruptors. Our aim was to identify the possible dysregulation of genes in PCB exposed peripheral blood mononuclear cells (PBMCs) in order to give more insight into the differential pathophysiological effects of PCB congeners and mixtures, with an emphasis on immunological effects and oxidative stress. The PBMCs of a healthy volunteer (male, 56 years old) were exposed to a mixture of dioxin-like (DL)-PCBs (PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, and 189, 250 µg/L resp.) or non-dioxin-like (NDL)-PCBs (PCB 28, 52, 101, 138, 153, 180, 250 µg/L resp.) or single PCB congener (no.28, 138, 153, 180, 250 µg/L resp.). After an incubation period of 24 h, a microarray gene expression screening was performed, and the results were compared to gene expression in control samples (PBMCs treated with the vehicle iso-octane). Treatment of PBMCs with the DL-PCB mixture resulted in the largest number of differentially regulated genes (181 upregulated genes >2-fold, 173 downregulated >2-fold). Treatment with the NDL-PCB mix resulted in 32 upregulated genes >2-fold and 12 downregulated genes >2-fold. A gene set enrichment analysis (GSEA) on DL-PCB treated PBMCs resulted in an upregulation of 125 gene sets and a downregulation of 76 gene sets. Predominantly downregulated gene sets were involved in immunological pathways (such as response to virus, innate immune response, defense response). An upregulation of pathways related to oxidative stress could be observed for all PCB congeners except PCB-28; the latter congener dysregulated the least number of genes. Our experiment augments the information known about immunological and cellular stress responses following DL- as well as NDL-PCB exposure and provides new information on PCB 28. Further studies should be performed to evaluate how disruption of these pathways contributes to the development of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Marike M Leijs
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Lin Gan
- IZKF, RWTH Aachen University, 52074 Aachen, Germany.
| | - Patrick De Boever
- Flemish Institute for Technological Research (VITO), Health unit, 2400 Mol, Belgium.
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium.
| | - André Esser
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Philipp M Amann
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
- Department of Dermatology, SLK Hospital Heilbronn, 74078 Heilbronn, Germany.
| | - Patrick Ziegler
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Katharina Fietkau
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Hans F Merk
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Jens M Baron
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
10
|
Ghosh S, Loffredo CA, Mitra PS, Trnovec T, Palkovicova Murinova L, Sovcikova E, Hoffman EP, Makambi KH, Dutta SK. PCB exposure and potential future cancer incidence in Slovak children: an assessment from molecular finger printing by Ingenuity Pathway Analysis (IPA®) derived from experimental and epidemiological investigations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16493-16507. [PMID: 29143255 PMCID: PMC5953777 DOI: 10.1007/s11356-017-0149-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 05/20/2023]
Abstract
The risk of cancer due to PCB exposure in humans is highly debated. In eastern Slovakia, high exposure of the population to organochlorines (especially PCBs) was associated with various disease and disorder pathways, viz., endocrine disruption, metabolic disorder & diabetes, and cancer, thereby disturbing several cellular processes, including protein synthesis, stress response, and apoptosis. We have evaluated a Slovak cohort (45-month children, at lower and higher levels of PCB exposure from the environment) for disease and disorder development to develop early disease cancer biomarkers that could shed new light on possible mechanisms for the genesis of cancers under such chemical exposures, and identify potential avenues for prevention.Microarray studies of global gene expression were conducted from the 45-month-old children on the Affymetrix platform followed by Ingenuity Pathway Analysis (IPA®) to associate the affected genes with their mechanistic pathways. High-throughput qRT-PCR TaqMan low-density array (TLDA) was performed to further validate the selected genes on the whole blood cells of the most highly exposed children from the study cohort (n = 71). TP53, MYC, BCL2, and LRP12 differential gene expressions suggested strong relationships between potential future tumor promotion and PCB exposure in Slovak children. The IPA analysis further detected the most important signaling pathways, including molecular mechanism of cancers, prostate cancer signaling, ovarian cancer signaling, P53 signaling, oncostatin M signaling, and their respective functions (viz., prostate cancer, breast cancer, progression of tumor, growth of tumor, and non-Hodgkin's disease). The results suggest that PCB exposures, even at the early age of these children, may have lifelong consequences for the future development of chronic diseases.
Collapse
Affiliation(s)
- Somiranjan Ghosh
- Molecular Genetics Laboratory, Department of Biology, Howard University, 415 College Street, NW, Room 408, EE Just Hall, Washington, DC, 20059, USA.
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC, 20059, USA.
| | - Christopher A Loffredo
- Departments of Oncology and of Biostatistics, Georgetown University, Washington, DC, 20057, USA
| | - Partha S Mitra
- Molecular Genetics Laboratory, Department of Biology, Howard University, 415 College Street, NW, Room 408, EE Just Hall, Washington, DC, 20059, USA
| | - Tomas Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
| | - Eva Sovcikova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Science, Binghamton University, State University of New York, Binghamton, NY, 13902, USA
| | - Kepher H Makambi
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, 20057, USA
| | - Sisir K Dutta
- Molecular Genetics Laboratory, Department of Biology, Howard University, 415 College Street, NW, Room 408, EE Just Hall, Washington, DC, 20059, USA
| |
Collapse
|
11
|
Ghosh S, Trnovec T, Palkovicova L, Hoffman EP, Washington K, Dutta SK. Status of LEPR Gene in PCB-exposed Population: A Quick Look. INT J HUM GENET 2017; 13:27-32. [PMID: 23741107 DOI: 10.1080/09723757.2013.11886193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Earlier, we have reported that Polychlorinated Biphenyls (PCBs) exposure in Slovak population has made differential gene expression that has linked to the possibilities of some diseases and disorder development in the studied population. Here we report that down-regulation of LEPR (Leptin receptor) gene in the 45-month children may have been following consequences in developing obesity later in life. A pilot high-throughput qRT-PCR [Taqman Low Density Array (TLDA)] study in a small population also corroborated the gene-expression results, and their pathways underlying the consequences of the diseases, amid further detailed large-scale population validation. The study shows the opportunity of predicting long-term effects of chemical exposures using selected genomic classifiers may reflect exposure effect and risk from environmental toxicants.
Collapse
|
12
|
He F, Zuo L, Ward E, Arciero PJ. Serum Polychlorinated Biphenyls Increase and Oxidative Stress Decreases with a Protein-Pacing Caloric Restriction Diet in Obese Men and Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14010059. [PMID: 28075418 PMCID: PMC5295310 DOI: 10.3390/ijerph14010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 12/24/2022]
Abstract
The purposes were to compare the effects of a: (1) 12-week P-CR weight loss (WL) diet (Phase 1) between obese men and women and; (2) 52-week modified P-CR (mP-CR) vs. heart healthy (HH) weight maintenance (WM) diet (Phase 2) on serum PCBs and oxidative stress biomarkers (thiobarbituric acid reactive substances, TBARS; total antioxidant capacity, TAC) in 40 obese participants (men, n = 21; women, n = 19). Participants received dietary counseling and monitoring of compliance. PCBs, TBARS, and TAC were assessed at weeks -1 (CON), 12 (WL), and 64 (WM). Following WL (Week 12), concomitant with reductions in TBARS (0.24 ± 0.15 vs. 0.18 ± 0.11 µM; p < 0.01), PCB serum concentrations (86.7 ± 45.6 vs. 115.6 ± 65.9 ng/g lipid; p < 0.01) and TAC (18.9 ± 2.6 vs. 19.9 ± 2.3 nmol/mL; p < 0.02) were increased similarly in men and women. At the end of WM (Week 64), a significant effect of time × group interaction was observed for % change in PCB 170 and 187; whereby mP-CR values were higher compared to HH (PCB170: 19.31% ± 26.48% vs. -6.61% ± 28.88%, p = 0.02; PCB187: -3.04% ± 17.78% vs. -21.4% ± 27.31%, p = 0.04). PCB changes were positively correlated with TBARS levels (r > 0.42, p < 0.05) and negatively correlated with body weight, fat mass, and abdominal fat (r < -0.46, p < 0.02). Our results support mobilization of stored PCBs as well as enhanced redox status following a 12-week P-CR WL diet. Additionally, a 52-week mP-CR WM diet demonstrated an advantage in preventing weight gain relapse accompanied by an increase in circulating PCBs compared to a traditional HH diet.
Collapse
Affiliation(s)
- Feng He
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.
- Department of Kinesiology, California State University-Chico, Chico, CA 95929, USA.
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Emery Ward
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.
| | - Paul J Arciero
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.
| |
Collapse
|
13
|
Franco FC, Alves AA, Godoy FR, Avelar JB, Rodrigues DD, Pedroso TMA, da Cruz AD, Nomura F, de Melo E Silva D. Evaluating genotoxic risks in Brazilian public health agents occupationally exposed to pesticides: a multi-biomarker approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19723-19734. [PMID: 27406225 DOI: 10.1007/s11356-016-7179-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
This is the first study demonstrating genotoxic effects and whole transcriptome analysis on community health agents (CHAs) occupationally exposed to pesticides in Central Brazil. For the transcriptome analysis, we found some genes related to Alzheimer's disease (LRP1), an insulin-like growth factor receptor (IGF2R), immunity genes (IGL family and IGJ), two genes related to inflammatory reaction (CXCL5 and CCL3), one gene related to maintenance of cellular morphology (NHS), one gene considered to be a strong apoptosis inductor (LGALS14), and several transcripts of the neuroblastoma breakpoint family (NBPF). Related to comet assay, we demonstrated a significant increase in DNA damage, measured by the olive tail moment (OTM), in the exposed group compared to the control group. Moreover, we also observed a statistically significant difference in OTM values depending on GSTM1 genotypes. Therefore, Brazilian epidemiological surveillance, an organization responsible for the assessment and management of health risks associated to pesticide exposure to CHA, needs to be more proactive and considers the implications of pesticide exposure for CHA procedures and processes.
Collapse
Affiliation(s)
- Fernanda Craveiro Franco
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Mutagênese e Radiobiologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alessandro Arruda Alves
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Mutagênese e Radiobiologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fernanda Ribeiro Godoy
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Juliana Boaventura Avelar
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Mutagênese e Radiobiologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Douglas Dantas Rodrigues
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Thays Millena Alves Pedroso
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Mutagênese e Radiobiologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Aparecido Divino da Cruz
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Fausto Nomura
- Campus II, Itatiaia, Departamento de Genética, Instituto de Ciências Biológicas 1, Universidade Federal de Goiás, Goiânia, Goiás, Cep 74001-970, Brazil
| | - Daniela de Melo E Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Mutagênese e Radiobiologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
- Campus II, Itatiaia, Departamento de Genética, Instituto de Ciências Biológicas 1, Universidade Federal de Goiás, Goiânia, Goiás, Cep 74001-970, Brazil.
- Programa de Pós-Graduação em Ciências Ambientais, Laboratório de Mutagênese e Radiobiologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
14
|
Aumsuwan P, Khan SI, Khan IA, Walker LA, Dasmahapatra AK. Gene expression profiling and pathway analysis data in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin. Data Brief 2016; 8:272-9. [PMID: 27331101 PMCID: PMC4905937 DOI: 10.1016/j.dib.2016.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022] Open
Abstract
Microarray technology (Human OneArray microarray, phylanxbiotech.com) was used to compare gene expression profiles of non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells exposed to dioscin (DS), a steroidal saponin isolated from the roots of wild yam, (Dioscorea villosa). Initially the differential expression of genes (DEG) was identified which was followed by pathway enrichment analysis (PEA). Of the genes queried on OneArray, we identified 4641 DEG changed between MCF-7 and MDA-MB-231 cells (vehicle-treated) with cut-off log2 |fold change|≧1. Among these genes, 2439 genes were upregulated and 2002 were downregulated. DS exposure (2.30 μM, 72 h) to these cells identified 801 (MCF-7) and 96 (MDA-MB-231) DEG that showed significant difference when compared with the untreated cells (p<0.05). Within these gene sets, DS was able to upregulate 395 genes and downregulate 406 genes in MCF-7 and upregulate 36 and downregulate 60 genes in MDA-MB-231 cells. Further comparison of DEG between MCF-7 and MDA-MB-231 cells exposed to DS identified 3626 DEG of which 1700 were upregulated and 1926 were down-regulated. Regarding to PEA, 12 canonical pathways were significantly altered between these two cell lines. However, there was no alteration in any of these pathways in MCF-7 cells, while in MDA-MB-231 cells only MAPK pathway showed significant alteration. When PEA comparison was made on DS exposed cells, it was observed that only 2 pathways were significantly affected. Further, we identified the shared DEG, which were targeted by DS and overlapped in both MCF-7 and MDA-MB-231 cells, by intersection analysis (Venn diagram). We found that 7 DEG were overlapped of which six are reported in the database. This data highlight the diverse gene networks and pathways in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin.
Collapse
Affiliation(s)
- Pranapda Aumsuwan
- National Center for Natural Product Research, University of Mississippi, MS 38677, USA; Division of Pharmacology, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA
| | - Shabana I Khan
- National Center for Natural Product Research, University of Mississippi, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular sciences, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Product Research, University of Mississippi, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular sciences, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Larry A Walker
- National Center for Natural Product Research, University of Mississippi, MS 38677, USA; Division of Pharmacology, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA; University of Mississippi Cancer Institute (Oxford Campus), School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Asok K Dasmahapatra
- National Center for Natural Product Research, University of Mississippi, MS 38677, USA; Division of Pharmacology, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA; University of Mississippi Cancer Institute (Oxford Campus), School of Pharmacy, University of Mississippi, MS 38677, USA
| |
Collapse
|
15
|
Ghosh S, Mitra PS, Loffredo CA, Trnovec T, Murinova L, Sovcikova E, Ghimbovschi S, Zang S, Hoffman EP, Dutta SK. Transcriptional profiling and biological pathway analysis of human equivalence PCB exposure in vitro: indicator of disease and disorder development in humans. ENVIRONMENTAL RESEARCH 2015; 138:202-16. [PMID: 25725301 PMCID: PMC4739739 DOI: 10.1016/j.envres.2014.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Our earlier gene-expression studies with a Slovak PCBs-exposed population have revealed possible disease and disorder development in accordance with epidemiological studies. The present investigation aimed to develop an in vitro model system that can provide an indication of disrupted biological pathways associated with developing future diseases, well in advance of the clinical manifestations that may take years to appear in the actual human exposure scenario. METHODS We used human Primary Blood Mononuclear Cells (PBMC) and exposed them to a mixture of human equivalence levels of PCBs (PCB-118, -138, -153, -170, -180) as found in the PCBs-exposed Slovak population. The microarray studies of global gene expression were conducted on the Affymetrix platform using Human Genome U133 Plus 2.0 Array along with Ingenuity Pathway Analysis (IPA) to associate the affected genes with their mechanistic pathways. High-throughput qRT-PCR Taqman Low Density Array (TLDA) was done to further validate the selected 6 differentially expressed genes of our interest, viz., ARNT, CYP2D6, LEPR, LRP12, RRAD, TP53, with a small population validation sample (n=71). RESULTS Overall, we revealed a discreet gene expression profile in the experimental model that resembled the diseases and disorders observed in PCBs-exposed population studies. The disease pathways included endocrine system disorders, genetic disorders, metabolic diseases, developmental disorders, and cancers, strongly consistent with the evidence from epidemiological studies. INTERPRETATION These gene finger prints could lead to the identification of populations and subgroups at high risk for disease, and can pose as early disease biomarkers well ahead of time, before the actual disease becomes visible.
Collapse
Affiliation(s)
- Somiranjan Ghosh
- Molecular Genetics Laboratory, Department of Biology, Howard University, Washington, DC 20059, USA.
| | - Partha S Mitra
- Molecular Genetics Laboratory, Department of Biology, Howard University, Washington, DC 20059, USA
| | - Christopher A Loffredo
- Department of Oncology & Department of Biostatistics, Georgetown University, Washington, DC 20057, USA
| | - Tomas Trnovec
- Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - Lubica Murinova
- Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - Eva Sovcikova
- Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - Svetlana Ghimbovschi
- Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Shizhu Zang
- Molecular Genetics Laboratory, Department of Biology, Howard University, Washington, DC 20059, USA
| | - Eric P Hoffman
- Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Sisir K Dutta
- Molecular Genetics Laboratory, Department of Biology, Howard University, Washington, DC 20059, USA.
| |
Collapse
|
16
|
Fouz N, Amid A, Hashim YZHY. Gene Expression Analysis in MCF-7 Breast Cancer Cells Treated with Recombinant Bromelain. Appl Biochem Biotechnol 2014; 173:1618-39. [PMID: 24928548 DOI: 10.1007/s12010-014-0947-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
|
17
|
Mascarenhas CDC, Ferreira da Cunha A, Brugnerotto AF, Gambero S, de Almeida MH, Carazzolle MF, Pagnano KBB, Traina F, Costa FFD, de Souza CA. Identification of target genes using gene expression profile of granulocytes from patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. Leuk Lymphoma 2014; 55:1861-9. [PMID: 24144310 DOI: 10.3109/10428194.2013.855311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Differential gene expression analysis by suppression subtractive hybridization with correlation to the metabolic pathways involved in chronic myeloid leukemia (CML) may provide a new insight into the pathogenesis of CML. Among the overexpressed genes found in CML at diagnosis are SEPT5, RUNX1, MIER1, KPNA6 and FLT3, while PAN3, TOB1 and ITCH were decreased when compared to healthy volunteers. Some genes were identified and involved in CML for the first time, including TOB1, which showed a low expression in patients with CML during tyrosine kinase inhibitor treatment with no complete cytogenetic response. In agreement, reduced expression of TOB1 was also observed in resistant patients with CML compared to responsive patients. This might be related to the deregulation of apoptosis and the signaling pathway leading to resistance. Most of the identified genes were related to the regulation of nuclear factor κB (NF-κB), AKT, interferon and interleukin-4 (IL-4) in healthy cells. The results of this study combined with literature data show specific gene pathways that might be explored as markers to assess the evolution and prognosis of CML as well as identify new therapeutic targets.
Collapse
Affiliation(s)
- Cintia do Couto Mascarenhas
- Hematology and Hemotherapy Center, Institute of Biology, University of Campinas (UNICAMP) , Campinas, São Paulo , Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Roversi FM, da Cunha AF, Brugnerotto AF, Carazzolle MF, de Albuquerque DM, Lanaro C, Machado-Neto JA, Olalla Saad ST, da Costa FF. Gene Expression Analysis of the Brazilian Type of Hereditary Persistence of Fetal Hemoglobin: Identification of Genes that Could be Related to γ-Globin Activation. Hemoglobin 2013; 37:516-35. [DOI: 10.3109/03630269.2013.818016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
De Boever P, Wens B, Boix J, Felipo V, Schoeters G. Perinatal Exposure to Purity-Controlled Polychlorinated Biphenyl 52, 138, or 180 Alters Toxicogenomic Profiles in Peripheral Blood of Rats after 4 Months. Chem Res Toxicol 2013; 26:1159-67. [DOI: 10.1021/tx300510v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Patrick De Boever
- Unit Environmental Risk and
Health, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek,
Belgium
| | - Britt Wens
- Unit Environmental Risk and
Health, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, 2400 Mol, Belgium
| | - Jordi Boix
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Avenida
Autopista del Saler 16, 46012 Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Avenida
Autopista del Saler 16, 46012 Valencia, Spain
| | - Greet Schoeters
- Unit Environmental Risk and
Health, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, 2400 Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp,
Belgium
- Department of Environmental
Medicine, University of Southern Denmark, J.B. Winslowsvej 17A, 5100 Odense, Denmark
| |
Collapse
|
20
|
Chemokine (C-C motif) ligand 22 is down-regulated in a human B lymphoblastoid cell line by PCB153 and in residents from PCBs-contaminated areas. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 752:21-7. [DOI: 10.1016/j.mrgentox.2012.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/19/2012] [Accepted: 12/26/2012] [Indexed: 11/21/2022]
|
21
|
Wens B, De Boever P, Verbeke M, Hollanders K, Schoeters G. Cultured human peripheral blood mononuclear cells alter their gene expression when challenged with endocrine-disrupting chemicals. Toxicology 2012; 303:17-24. [PMID: 23146750 DOI: 10.1016/j.tox.2012.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/07/2012] [Indexed: 12/11/2022]
Abstract
Endocrine disrupting chemicals (EDCs) have the potential to interfere with the hormonal system and may negatively influence human health. Microarray analysis was used in this study to investigate differential gene expression in human peripheral blood cells (PBMCs) after in vitro exposure to EDCs. PBMCs, isolated from blood samples of four male and four female healthy individuals, were exposed in vitro for 18h to either a dioxin-like polychlorinated biphenyl (PCB126, 1μM), a non-dioxin-like polychlorinated biphenyl (PCB153, 10μM), a brominated flame retardant (BDE47, 10μM), a perfluorinated alkyl acid (PFOA, 10μM) or bisphenol (BPA, 10μM). ANOVA analysis revealed a significant change in the expression of 862 genes as a result of EDC exposure. The gender of the donors did not affect gene expression. Hierarchical cluster analysis created three groups and clustered: (1) PCB126-exposed samples, (2) PCB153 and BDE47, (3) PFOA and BPA. The number of differentially expressed genes varied per compound and ranged from 60 to 192 when using fold change and multiplicity corrected p-value as filtering criteria. Exposure to PCB126 induced the AhR signaling pathway. BDE47 and PCB153 are known to disrupt thyroid metabolism and exposure influenced the expression of the nuclear receptors PPARγ and ESR2, respectively. BPA and PFOA did not induce significant changes in the expression of known nuclear receptors. Overall, each compound produced a unique gene expression signature affecting pathways and GO processes linked to metabolism and inflammation. Twenty-nine genes were significantly altered in expression under all experimental conditions. Six of these genes (HSD11B2, MMP11, ADIPOQ, CEL, DUSP9 and TUB) could be associated with obesity and metabolic syndrome. In conclusion, microarray analysis identified that PBMCs altered their gene expression response in vitro when challenged with EDCs. Our screening approach has identified a number of gene candidates that warrant further study.
Collapse
Affiliation(s)
- B Wens
- Flemish Institute for Technological Research (VITO), Unit Environmental Risk and Health, Mol, Belgium
| | | | | | | | | |
Collapse
|
22
|
Li ZH, Li D, Ren JL, Wang LB, Yuan LJ, Liu YC. Optimization and application of accelerated solvent extraction for rapid quantification of PCBs in food packaging materials using GC-ECD. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Dutta SK, Mitra PS, Ghosh S, Zang S, Sonneborn D, Hertz-Picciotto I, Trnovec T, Palkovicova L, Sovcikova E, Ghimbovschi S, Hoffman EP. Differential gene expression and a functional analysis of PCB-exposed children: understanding disease and disorder development. ENVIRONMENT INTERNATIONAL 2012; 40:143-154. [PMID: 21855147 PMCID: PMC3247643 DOI: 10.1016/j.envint.2011.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/04/2011] [Accepted: 07/10/2011] [Indexed: 05/29/2023]
Abstract
The goal of the present study is to understand the probable molecular mechanism of toxicities and the associated pathways related to observed pathophysiology in high PCB-exposed populations. We have performed a microarray-based differential gene expression analysis of children (mean age 46.1 months) of Central European descent from Slovak Republic in a well-defined study cohort. The subset of children having high blood PCB concentrations (>75 percentile) were compared against their low PCB counterparts (<25 percentile), with mean lipid-adjusted PCB values of 3.02±1.3 and 0.06±0.03 ng/mg of serum lipid, for the two groups, respectively (18.1±4.4 and 0.3±0.1 ng/ml of serum). The microarray was conducted with the total RNA from the peripheral blood mononuclear cells of the children using an Affymetrix platform (GeneChip Human genome U133 Plus 2.0 Array) and was analyzed by Gene Spring (GX 10.0). A highly significant set of 162 differentially expressed genes between high and low PCB groups (p value <0.00001) were identified and subsequently analyzed using the Ingenuity Pathway Analysis tool. The results indicate that Cell-To-Cell Signaling and Interaction, Cellular Movement, Cell Signaling, Molecular Transport, and Vitamin and Mineral Metabolism were the major molecular and cellular functions associated with the differentially altered gene set in high PCB-exposed children. The differential gene expressions appeared to play a pivotal role in the development of probable diseases and disorders, including cardiovascular disease and cancer, in the PCB-exposed population. The analyses also pointed out possible organ-specific effects, e.g., cardiotoxicity, hepatotoxicity and nephrotoxicity, in high PCB-exposed subjects. A few notable genes, such as BCL2, PON1, and ITGB1, were significantly altered in our study, and the related pathway analysis explained their plausible involvement in the respective disease processes, as mentioned. Our results provided insight into understanding the associated molecular mechanisms of complex gene-environment interactions in a PCB-exposed population. Future endeavors of supervised genotyping of pathway-specific molecular epidemiological studies and population biomarker validations are already underway to reveal individual risk factors in these PCB-exposed populations.
Collapse
Affiliation(s)
- Sisir K Dutta
- Molecular Genetics Laboratory, Howard University, Washington, DC, USA.
| | - Partha S Mitra
- Molecular Genetics Laboratory, Howard University, Washington, DC, USA
| | - Somiranjan Ghosh
- Molecular Genetics Laboratory, Howard University, Washington, DC, USA
| | - Shizhu Zang
- Molecular Genetics Laboratory, Howard University, Washington, DC, USA
| | - Dean Sonneborn
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Tomas Trnovec
- Slovak Medical University, Bratislava, Slovak Republic
| | | | - Eva Sovcikova
- Slovak Medical University, Bratislava, Slovak Republic
| | - Svetlana Ghimbovschi
- Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Eric P Hoffman
- Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
24
|
Mitra PS, Ghosh S, Zang S, Sonneborn D, Hertz-Picciotto I, Trnovec T, Palkovicova L, Sovcikova E, Ghimbovschi S, Hoffman E, Dutta SK. Analysis of the toxicogenomic effects of exposure to persistent organic pollutants (POPs) in Slovakian girls: correlations between gene expression and disease risk. ENVIRONMENT INTERNATIONAL 2012; 39:188-99. [PMID: 22208759 PMCID: PMC3259908 DOI: 10.1016/j.envint.2011.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/07/2011] [Accepted: 09/11/2011] [Indexed: 05/20/2023]
Abstract
The chemical composition of persistent organic pollutants (POPs) in the environment is not uniform throughout the world, and these contaminants contain many structurally different lipophilic compounds. In a well-defined study cohort in the Slovak Republic, the POP chemicals present in the peripheral blood of exposed children were chemically analyzed. The chemical analysis data revealed that the relative concentration and profile of structurally different organic pollutants, including polychlorinated biphenyls (PCBs), 2,2'-bis(4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), 2,2'-bis(4-chlorophenyl)-1,1,1-trichloro-ethane (p,p'-DDT), hexachlorobenzene (HCB) and β-hexachlorocyclohexane (β-HCH), may vary from individual to individual, even within the same exposure area. These chemicals can be broadly classified into two groups. The first group, the PCB congeners, primarily originated from industrial compounds and their byproducts. The second group of compounds originated from or was commonly used in the agricultural sector (e.g., DDT, HCB). The objective of this study was to examine the effects of the two POP exposure profiles on gene expression. For the study population, we selected pre-pubertal girls (mean age of 46.2±1.4 months) with high POP concentrations in their blood (>75% tile of total POP) and classified them in the high 'PCB' group when the total PCB concentration was significantly higher than the total concentration of other POP components and in the 'Other Than PCB' (OTP) group, when the total PCB concentration was significantly lower than the concentration of the other major POP constituents. A matched control group of girls (<25% tile of total POP) was selected for comparison purpose (n=5 per group). Our aims were to determine whether there were any common effects of high POP exposure at a toxicogenomic level and to investigate how exposure may affect physiological functions of the children in two different exposure scenarios. Global gene expression analysis using a microarray (Affymetrix Gene Chip Human genome U133 Plus 2.0 Array) platform was conducted on the total RNA of peripheral blood mononuclear cells from the girls. The results were analyzed by Partek GS, Louis, MI, which identified twelve genes (ATAD2B, BIVM, CD96, CXorf39, CYTH1 ETNK1, FAM13A, HIRA, INO80B, ODG1, RAD23B, and TSGA14) and two unidentified probe sets, as regulated differentially in both the PCB and OTP groups against the control group. The qRT-PCR method was used to validate the microarray results. The Ingenuity Pathway Analysis (IPA) software package identified the possible molecular impairments and disease risks associated with each gene set. Connective tissue disorders, genetic disorders, skeletal muscular disorders and neurological diseases were associated with the 12 common genes. The data therefore identified the potential molecular effects of POP exposure on a genomic level. This report underscores the importance of further study to validate the results in a random population and to evaluate the use of the identified genes as biomarkers for POP exposure.
Collapse
Affiliation(s)
| | | | - Shizhu Zang
- Howard University, Washington, DC, United States of America
| | - Dean Sonneborn
- University of California Davis, Davis, Davis, CA, United States of America
| | | | | | | | | | | | - Eric Hoffman
- Children’s National Medical Center, Washington, DC, United States of America
| | - Sisir K. Dutta
- Howard University, Washington, DC, United States of America
- Corresponding Author: 415 College Street, NW, Room 335, EE Just Hall, Washington, DC 20059, TEL: +1(202)-806-6942; FAX: +1(202) 806-5138;
| |
Collapse
|
25
|
Transcriptomics identifies differences between ultrapure non-dioxin-like polychlorinated biphenyls (PCBs) and dioxin-like PCB126 in cultured peripheral blood mononuclear cells. Toxicology 2011; 287:113-23. [PMID: 21703328 DOI: 10.1016/j.tox.2011.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/30/2011] [Accepted: 06/07/2011] [Indexed: 01/01/2023]
Abstract
Polychlorinated biphenyls (PCBs) remain ubiquitously present in human lipids despite the ban on their production and use. Their presence can be chemically monitored in peripheral blood samples of the general population. We tested whether in vitro exposure to different PCB congeners induced different gene expression profiles in peripheral blood cells. We have isolated peripheral blood mononuclear cells (PBMC) from whole blood of 8 healthy individuals and exposed these cells in vitro to individual non-dioxin-like (NDL)-PCB congeners (PCB52, 138 or 180; 10μM) or dioxin-like (DL)-PCB congener PCB126 (1μM) during 18h. Differential gene expression response was measured using Agilent whole-human genome microarrays. Two-way ANOVA analysis of the data showed that both gender and PCB exposure are important factors influencing gene expression responses in blood cells. Hierarchical cluster analysis of genes influenced by PCB exposure, revealed that DL-PCB126 induced a different gene expression response compared to the NDL-PCBs. Biological interpretation of the results revealed that exposure to PCB126 induced the AhR signaling pathway, whereas the induction of nuclear receptor pathways by the NDL-PCBs was limited in blood cells. Nevertheless, molecular responses of blood cells to individual PCB congeners revealed significantly expressed genes that play a role in biological functions and processes known to be affected by PCB exposure in vivo. Observed gene expression changes in this in vitro model were found to be related to hepatotoxicity, immune and inflammatory response and disturbance of lipid and cholesterol homeostasis.
Collapse
|