1
|
Zhang Y, Huang W, Xu R, Ye T, Chen G, Yue X, Coêl MDSZS, Saldiva PHN, Song J, Guo Y, Li S. Wildfire-sourced fine particulate matter and preterm birth risks in Brazil: A nationwide population-based cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136290. [PMID: 39476695 DOI: 10.1016/j.jhazmat.2024.136290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 12/01/2024]
Abstract
Wildfire-specific particulate matter with diameters ≤ 2.5 µm (PM2.5) is the key component of wildfire smoke, with potentially higher toxicity than PM2.5 from other sources. In this nationwide population-based cohort study, we included 22,163,195 births from Brazil during 20102019. Daily wildfire-specific PM2.5 was estimated through the chemical transport model. Time-varying Cox proportional hazards models were used to characterize the exposure-time-response (E-T-R) relationship between weekly wildfire-specific PM2.5 exposure and preterm birth (PTB) risks, followed by subgroup analyses. A 10 µg/m3 increment in wildfire-specific PM2.5 was associated with a hazard ratio of 1.047 (95 % confidence interval [CI]: 1.032-1.063) for PTB. Stronger associations between wildfire-specific PM2.5 and PTB were observed during earlier pregnancy, among female infants, and pregnant women < 18 years old, in ethnic minorities, with a length of education ≥ 11 years, from low-income or high-temperature municipalities, and residing in North/Northeast regions. An estimated 1.47 % (95 % CI: 1.01 %1.94 %) of PTBs were attributable to wildfire-specific PM2.5 in Brazil, increasing from 2010 to 2019. The PTBs attributable to wildfire-specific PM2.5 surpassed those attributed to non-wildfire PM2.5 (0.31 %, 95% CI: 0.09 %0.57 %). Wildfire emerged as a critical source contributing to the PM2.5-linked PTBs. Prioritized fire management and emission control strategies are warranted for PTB prevention.
Collapse
Affiliation(s)
- Yiwen Zhang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenzhong Huang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | | | | | - Jiangning Song
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
2
|
Desye B, Berihun G, Geto AK, Berhanu L, Daba C. Exposure to ambient air pollutions and its association with adverse birth outcomes: a systematic review and meta-analysis of epidemiological studies. Front Public Health 2024; 12:1488028. [PMID: 39606063 PMCID: PMC11600733 DOI: 10.3389/fpubh.2024.1488028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Air pollution is a significant global public health concern. However, there is a lack of updated and comprehensive evidence regarding the association between exposure to ambient air pollution and adverse birth outcomes (preterm birth, low birth weight, and stillbirth). Furthermore, the existing evidence is highly inconsistent. Therefore, this study aims to estimate the overall association between ambient air pollution and adverse birth outcomes. Methods In this study, initially a total of 79,356 articles were identified. Finally, a total of 49 articles were included. We conducted compressive literature searches using various databases, including PubMed, Scientific Direct, HINARI, and Google Scholar. Data extraction was performed using Microsoft Excel, and the data were exported to STATA 17 software for analysis. We used the Joanna Briggs Institute's quality appraisal tool to ensure the quality of the included studies. A random effects model was employed to estimate the pooled prevalence. Publication bias was assessed using funnel plots and Egger's regression test. Results In this study, the pooled prevalence of at least one adverse birth outcome was 7.69% (95% CI: 6.70-8.69), with high heterogeneity (I 2 = 100%, p-value < 0.001). In this meta-analysis, high pooled prevalence was found in preterm birth (6.36%), followed by low birth weights (5.07%) and stillbirth (0.61%). Exposure to PM2.5 (≤10 μg/m3) throughout the entire pregnancy, PM2.5 (≤10 μg/m3) in the first trimester, PM10 (>10 μg/m3) during the entire pregnancy, and O3 (≤10 μg/m3) during the entire pregnancy increased the risk of preterm birth by 4% (OR = 1.04, 95% CI: 1.03-1.05), 5% (OR = 1.05, 95% CI: 1.01-1.09), 49% (OR = 1.49, 95% CI: 1.41-1.56), and 5% (OR = 1.05, 95% CI: 1.04-1.07), respectively. For low birth weight, exposure to PM2.5 (≤10 μg/m3) and PM2.5 (>10 μg/m3) throughout the entire pregnancy was associated with an increased risk of 13% (OR = 1.13, 95% CI: 1.05-1.21) and 28% (OR = 1.28, 95% CI: 1.23-1.33), respectively. Conclusion This study highlighted a significant association between ambient air pollution and adverse birth outcomes. Therefore, it is crucial to implement a compressive public health intervention. Systematic review registration The review protocol was registered with the record ID of CRD42024578630.
Collapse
Affiliation(s)
- Belay Desye
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Gete Berihun
- Department of Environmental Health, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Kassa Geto
- Department of Nursing and Midwifery, Dessie Health Science College, Dessie, Ethiopia
| | - Leykun Berhanu
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Chala Daba
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
3
|
Requia WJ, Moore JP, Yang J. Air pollution exposure during pregnancy and preterm birth in Brazil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117116. [PMID: 39357377 DOI: 10.1016/j.ecoenv.2024.117116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Ambient air pollution is a significant environmental risk factor for adverse pregnancy outcomes, including preterm birth. However, the impact of different pollutants across various regions and trimesters of pregnancy has not been fully investigated in Brazil. This study aimed to examine the associations between exposure to PM2.5, NO2, and O3 during different trimesters of pregnancy and the risk of preterm birth across five regions of Brazil. We used logistic regression models to estimate the odds ratios (OR) of preterm birth associated with PM2.5, NO2, and O3 adjusting for potential confounders such as maternal age, education, and socioeconomic status. Our study included over 9.9 million live births from 2001 to 2018, with data obtained from the Ministry of Health in Brazil. On average, for each 1-μg/m3 increase in PM2.5, we estimated a 0.26 % (95 % CI: 0.08-0.44 %) increase in the risk of preterm birth nationally in the first trimester. For NO2, each 1ppb increase was associated with a percentage increase in preterm birth risk of 7.26 % (95 % CI: 4.77-9.74 %) in the first trimester, 8.05 % (95 % CI: 5.73-10.38 %) in the second trimester, and 7.48 % (95 % CI: 5.25-9.72 %) in the third trimester. For O3, each 1ppb increase was associated with a percentage increase in preterm birth risk of 1.24 % (95 % CI: 0.29-2.18 %) in the first trimester, 1.51 % (95 % CI: 0.60-2.41 %) in the second trimester, and 0.72 % (95 % CI: -0.18-1.62 %) in the third trimester. This study highlights the significant impact of ambient air pollution on preterm birth risk in Brazil, with significant regional variations. Our findings underscore the need for targeted public health interventions to mitigate the effects of air pollution on pregnancy outcomes, particularly in the most affected regions.
Collapse
Affiliation(s)
- Weeberb J Requia
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Julia Placido Moore
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
4
|
Daba C, Asmare L, Demeke Bayou F, Arefaynie M, Mohammed A, Tareke AA, Keleb A, Kebede N, Tsega Y, Endawkie A, Kebede SD, Mesfin K, Abeje ET, Bekele Enyew E. Exposure to indoor air pollution and adverse pregnancy outcomes in low and middle-income countries: a systematic review and meta-analysis. Front Public Health 2024; 12:1356830. [PMID: 38841656 PMCID: PMC11151685 DOI: 10.3389/fpubh.2024.1356830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Exposure to indoor air pollution such as biomass fuel and particulate matter is a significant cause of adverse pregnancy outcomes. However, there is limited information about the association between indoor air pollution exposure and adverse pregnancy outcomes in low and middle-income countries. Therefore, this meta-analysis aimed to determine the association between indoor air pollution exposure and adverse pregnancy outcomes in low and middle-income countries. Methods International electronic databases such as PubMed, Science Direct, Global Health, African Journals Online, HINARI, Semantic Scholar, and Google and Google Scholar were used to search for relevant articles. The study was conducted according to the updated Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A random effect model at a 95% confidence interval was used to determine the association between indoor air pollution exposure and adverse pregnancy outcomes using STATA version 14. Funnel plot and Higgs I2 statistics were used to determine the publication bias and heterogeneity of the included studies, respectively. Results A total of 30 articles with 2,120,228 study participants were included in this meta-analysis. The pooled association between indoor air pollution exposure and at least one adverse pregnancy outcome was 15.5% (95%CI: 12.6-18.5), with significant heterogeneity (I2 = 100%; p < 0.001). Exposure to indoor air pollution increased the risk of small for gestational age by 23.7% (95%CI: 8.2-39.3) followed by low birth weight (17.7%; 95%CI: 12.9-22.5). Exposure to biomass fuel (OR = 1.16; 95%CI: 1.12-1.2), particulate matter (OR = 1.28; 95%CI: 1.25-1.31), and kerosene (OR = 1.38; 95%CI: 1.09-1.66) were factors associated with developing at least one adverse pregnancy outcomes. Conclusions We found that more than one in seven pregnant women exposed to indoor air pollution had at least one adverse pregnancy outcome. Specifically, exposure to particulate matter, biomass fuel, and kerosene were determinant factors for developing at least one adverse pregnancy outcome. Therefore, urgent comprehensive health intervention should be implemented in the area to reduce adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Chala Daba
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Lakew Asmare
- Department of Epidemiology and Biostatistics School of Public Health, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Fekade Demeke Bayou
- Department of Epidemiology and Biostatistics School of Public Health, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Mastewal Arefaynie
- Department of Reproductive and Family Health, School of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Anissa Mohammed
- Department of Epidemiology and Biostatistics School of Public Health, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Abiyu Abadi Tareke
- Amref Health in Africa, West Gondar Zonal Health Department, Gondar, Ethiopia
| | - Awoke Keleb
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Natnael Kebede
- Department of Health Promotion, School of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Yawkal Tsega
- Department of Health System and Management, School of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Abel Endawkie
- Department of Epidemiology and Biostatistics School of Public Health, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Shimels Derso Kebede
- Department of Health Informatics, School of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Kaleab Mesfin
- Department of Health System and Management, School of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Eyob Tilahun Abeje
- Department of Epidemiology and Biostatistics School of Public Health, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Ermias Bekele Enyew
- Department of Health Informatics, School of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
5
|
Yan R, Ma D, Liu Y, Wang R, Fan L, Yan Q, Chen C, Wang W, Ren Z, Ku T, Ning X, Sang N. Developmental Toxicity of Fine Particulate Matter: Multifaceted Exploration from Epidemiological and Laboratory Perspectives. TOXICS 2024; 12:274. [PMID: 38668497 PMCID: PMC11054511 DOI: 10.3390/toxics12040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Particulate matter of size ≤ 2.5 μm (PM2.5) is a critical environmental threat that considerably contributes to the global disease burden. However, accompanied by the rapid research progress in this field, the existing research on developmental toxicity is still constrained by limited data sources, varying quality, and insufficient in-depth mechanistic analysis. This review includes the currently available epidemiological and laboratory evidence and comprehensively characterizes the adverse effects of PM2.5 on developing individuals in different regions and various pollution sources. In addition, this review explores the effect of PM2.5 exposure to individuals of different ethnicities, genders, and socioeconomic levels on adverse birth outcomes and cardiopulmonary and neurological development. Furthermore, the molecular mechanisms involved in the adverse health effects of PM2.5 primarily encompass transcriptional and translational regulation, oxidative stress, inflammatory response, and epigenetic modulation. The primary findings and novel perspectives regarding the association between public health and PM2.5 were examined, highlighting the need for future studies to explore its sources, composition, and sex-specific effects. Additionally, further research is required to delve deeper into the more intricate underlying mechanisms to effectively prevent or mitigate the harmful effects of air pollution on human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China; (R.Y.); (D.M.); (Y.L.); (R.W.); (L.F.); (Q.Y.); (C.C.); (W.W.); (Z.R.); (X.N.); (N.S.)
| | | | | |
Collapse
|
6
|
Khan W, Zaki N, Ghenimi N, Ahmad A, Bian J, Masud MM, Ali N, Govender R, Ahmed LA. Predicting preterm birth using explainable machine learning in a prospective cohort of nulliparous and multiparous pregnant women. PLoS One 2023; 18:e0293925. [PMID: 38150456 PMCID: PMC10752564 DOI: 10.1371/journal.pone.0293925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/21/2023] [Indexed: 12/29/2023] Open
Abstract
Preterm birth (PTB) presents a complex challenge in pregnancy, often leading to significant perinatal and long-term morbidities. "While machine learning (ML) algorithms have shown promise in PTB prediction, the lack of interpretability in existing models hinders their clinical utility. This study aimed to predict PTB in a pregnant population using ML models, identify the key risk factors associated with PTB through the SHapley Additive exPlanations (SHAP) algorithm, and provide comprehensive explanations for these predictions to assist clinicians in providing appropriate care. This study analyzed a dataset of 3509 pregnant women in the United Arab Emirates and selected 35 risk factors associated with PTB based on the existing medical and artificial intelligence literature. Six ML algorithms were tested, wherein the XGBoost model exhibited the best performance, with an area under the operator receiving curves of 0.735 and 0.723 for parous and nulliparous women, respectively. The SHAP feature attribution framework was employed to identify the most significant risk factors linked to PTB. Additionally, individual patient analysis was performed using the SHAP and the local interpretable model-agnostic explanation algorithms (LIME). The overall incidence of PTB was 11.23% (11 and 12.1% in parous and nulliparous women, respectively). The main risk factors associated with PTB in parous women are previous PTB, previous cesarean section, preeclampsia during pregnancy, and maternal age. In nulliparous women, body mass index at delivery, maternal age, and the presence of amniotic infection were the most relevant risk factors. The trained ML prediction model developed in this study holds promise as a valuable screening tool for predicting PTB within this specific population. Furthermore, SHAP and LIME analyses can assist clinicians in understanding the individualized impact of each risk factor on their patients and provide appropriate care to reduce morbidity and mortality related to PTB.
Collapse
Affiliation(s)
- Wasif Khan
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, UAE
- Department of Information Systems and Security, College of Information Technology, United Arab Emirates University, Al Ain, UAE
| | - Nazar Zaki
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, UAE
- Department of Information Systems and Security, College of Information Technology, United Arab Emirates University, Al Ain, UAE
| | - Nadirah Ghenimi
- Department Family Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Amir Ahmad
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, UAE
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mohammad M. Masud
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, UAE
- Department of Information Systems and Security, College of Information Technology, United Arab Emirates University, Al Ain, UAE
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Nasloon Ali
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Romona Govender
- Department Family Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Luai A. Ahmed
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, UAE
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| |
Collapse
|
7
|
Wang X, Wang X, Gao C, Xu X, Li L, Liu Y, Li Z, Xia Y, Fang X. Relationship Between Outdoor Air Pollutant Exposure and Premature Delivery in China- Systematic Review and Meta-Analysis. Int J Public Health 2023; 68:1606226. [PMID: 37876739 PMCID: PMC10590883 DOI: 10.3389/ijph.2023.1606226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Objective: Preterm birth (PTB) is considered as a public health problem and one of the main risk factors related to the global disease burden. The purpose of this study aims to explore the influence of exposure to major air pollutants at different pregnancies on PTB. Methods: The relationship between air pollutants and PTB in China was collected from cohort studies and case-control studies published before 30 April 2022. Meta-analysis was carried out with STATA 15.0 software. Results: A total of 2,115 papers were retrieved, of which 18 papers met the inclusion criteria. The comprehensive effect of pollutant exposure and PTB were calculated. PM2.5 during entire pregnancy and O3 exposure during third trimester were positively associated with preterm birth. Every 10 μg/m3 increase in the average concentration of PM2.5 during the whole pregnancy will increase the risk of premature delivery by 4%, and every 10 μg/m3 increase in the average concentration of O3 in the third trimester will increase the risk of premature delivery by 1%. Conclusion: Exposure to PM2.5 entire prenatal pregnancy and O3 in third trimester is associated with an increased risk of preterm birth occurrence.
Collapse
Affiliation(s)
- Xue Wang
- School of Public Health of Inner Mongolia Medical University, Hohhot, China
| | - Xin Wang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Japan
| | - Chenghua Gao
- School of Public Health of Inner Mongolia Medical University, Hohhot, China
| | - Xiaoqian Xu
- School of Public Health of Inner Mongolia Medical University, Hohhot, China
| | - Lehui Li
- School of Public Health of Inner Mongolia Medical University, Hohhot, China
| | - Yan Liu
- School of Public Health of Inner Mongolia Medical University, Hohhot, China
| | - Zichao Li
- School of Public Health of Inner Mongolia Medical University, Hohhot, China
| | - Yuan Xia
- School of Public Health of Inner Mongolia Medical University, Hohhot, China
| | - Xin Fang
- School of Public Health of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
8
|
Wang W, Mu S, Yan W, Ke N, Cheng H, Ding R. Prenatal PM2.5 exposure increases the risk of adverse pregnancy outcomes: evidence from meta-analysis of cohort studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106145-106197. [PMID: 37723397 DOI: 10.1007/s11356-023-29700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
Adverse pregnancy outcomes (APOs) are a significant cause of fetal death. A wide range of maternal psychological, social, and environmental factors may contribute to these outcomes. Mounting epidemiological studies have indicated that PM2.5 may result in these unfavorable consequences. Previously published meta-analyses have been updated and extended. Cohort studies were searched from three databases (up to July 24, 2023), and their quality was assessed by Newcastle-Ottawa Scale (NOS). Publication bias was examined by Egger's test and funnel plot. Despite a large number of studies showing similar results, the inconsistencies between these findings require careful generalization before concluding. This meta-analysis included 67 cohort studies from 20 countries, and the findings revealed that maternal PM2.5 exposure and five APOs were correlated significantly throughout pregnancy: preterm birth (PTB) (RR = 1.05; 95% CI: 1.03, 1.07); low birth weight (LBW) (RR = 1.02; 95% CI: 1.01, 1.04); small for gestational age (SGA) (RR = 1.03; 95% CI: 1.01, 1.04); stillbirth (RR = 1.24; 95% CI: 1.06, 1.45); and change in birthweight (weight change = -6.82 g; 95% CI: -11.39, -2.25). A positive association was found between APOs and PM2.5 exposure in this meta-analysis, and the degree of increased risk of APOs varied due to different gestation periods. Therefore, it is necessary to protect pregnant women at specific times.
Collapse
Affiliation(s)
- Wanrong Wang
- First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
| | - Siqi Mu
- First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Weizhen Yan
- First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Naiyu Ke
- First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Han Cheng
- First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
9
|
Dong C, Zhang M, Zhang Y, Zhang X, Zhuang Y, Wang Y, Qian Q, Li W, Yu Y, Xia Y. Independent and combined effects of PM2.5 and its constituents on preterm birth: a retrospective study in a seaside city. AIR QUALITY, ATMOSPHERE & HEALTH 2023; 16:1661-1672. [DOI: 10.1007/s11869-023-01363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/20/2023] [Indexed: 08/27/2024]
|
10
|
Qiu Z, Li W, Qiu Y, Chen Z, Yang F, Xu W, Gao Y, Liu Z, Li Q, Jiang M, Liu H, Zhan Y, Dai L. Third trimester as the susceptibility window for maternal PM 2.5 exposure and preterm birth: A nationwide surveillance-based association study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163274. [PMID: 37019233 DOI: 10.1016/j.scitotenv.2023.163274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Maternal PM2.5 exposure has been identified as a potential risk factor for preterm birth, yet the inconsistent findings on the susceptible exposure windows may be partially due to the influence of gaseous pollutants. This study aims to examine the association between PM2.5 exposure and preterm birth during different susceptible exposure windows after adjusting for exposure to gaseous pollutants. We collected 2,294,188 records of singleton live births from 30 provinces of China from 2013 to 2019, and the gridded daily concentrations of air pollutants (including PM2.5, O3, NO2, SO2, and CO) were derived by using machine learning models for assessing individual exposure. We employed logistic regression to develop single-pollutant models (including PM2.5 only) and co-pollutant models (including PM2.5 and a gaseous pollutant) to estimate the odds ratio for preterm birth and its subtypes, with adjustment for maternal age, neonatal sex, parity, meteorological conditions, and other potential confounders. In the single-pollutant models, PM2.5 exposure in each trimester was significantly associated with preterm birth, and the third trimester exposure showed a stronger association with very preterm birth than that with moderate to late preterm birth. The co-pollutant models revealed that preterm birth might be significantly associated only with maternal exposure to PM2.5 in the third trimester, and not with exposure in the first or second trimester. The observed significant associations between preterm birth and maternal PM2.5 exposure in the first and second trimesters in single-pollutant models might primarily be influenced by exposure to gaseous pollutants. Our study provides evidence that the third trimester may be the susceptible window for maternal PM2.5 exposure and preterm birth. The association between PM2.5 exposure and preterm birth could be influenced by gaseous pollutants, which should be taken into consideration when evaluating the impact of PM2.5 exposure on maternal and fetal health.
Collapse
Affiliation(s)
- Zhimei Qiu
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; The Joint Laboratory for Pulmonary Development and Related Diseases, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyan Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Yang Qiu
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhiyu Chen
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Fumo Yang
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wenli Xu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Yuyang Gao
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Zhen Liu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Qi Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Min Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Dai
- The Joint Laboratory for Pulmonary Development and Related Diseases, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Zhang Y, Ye T, Yu P, Xu R, Chen G, Yu W, Song J, Guo Y, Li S. Preterm birth and term low birth weight associated with wildfire-specific PM 2.5: A cohort study in New South Wales, Australia during 2016-2019. ENVIRONMENT INTERNATIONAL 2023; 174:107879. [PMID: 36958111 DOI: 10.1016/j.envint.2023.107879] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/25/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Exposure to wildfire smoke has been linked with a range of health outcomes. However, to date, evidence is limited for the association between wildfire-specific PM2.5, a primary emission of wildfire smoke, and adverse birth outcomes. OBJECTIVE We aimed to estimate the risk and burden of preterm birth/term low birth weight, associated with maternal exposure to wildfire-specific PM2.5. METHODS A total of 330,884 birth records with maternal information were collected from the New South Wales Australia from 2015 to 2019, covering 523 residential communities. Daily wildfire-specific PM2.5 at a 0.25° × 0.25° (≈ 25 km × 25 km) resolution was estimated by a machine learning method combining 3-D chemical transport model (GEOS-Chem) and reanalysis meteorological data. Cox proportional hazards models were implemented to evaluate the association between wildfire-specific PM2.5 and preterm birth/term low birth weight. Number and fraction of preterm birth/term low birth weight attributable to wildfire-specific PM2.5 during pregnancy were calculated. RESULTS Per one interquartile-range rise in wildfire-specific PM2.5 was found to be associated with 6.9% (HR: 1.069, 95% CI: 1.058-1.081) increased risk of preterm birth and 3.6% (HR: 1.036, 95% CI: 1.014-1.058) higher risk of term low birth weight. The most susceptible gestational window was the 2nd trimester for preterm birth whereas the 1st for term low birth weight. We estimated that 14.30% preterm births and 8.04% term low birth weight cases were attributable to maternal exposure to wildfire-specific PM2.5 during the whole pregnancy. Male infants and mothers aged ≥ 40, experiencing temperature extremes or living in the inner region, and concepted during spring had higher risks of preterm birth/term low birth weight associated with wildfire-specific PM2.5. Comparatively, mothers with advanced age have a higher risk of preterm birth while younger mothers were more likely to deliver term newborns with low birth weight, when being exposed to wildfire-specific PM2.5. Pregnancy-induced hypertension enhanced the risk of preterm birth associated with wildfire-specific PM2.5. CONCLUSIONS This study strengthened robust evidence on the enhanced risk of preterm birth/term low birth weight associated with maternal exposure to wildfire-specific PM2.5. In light of higher frequency and intensity of wildfire occurrences globally, more special attention should be paid to pregnant women by policy makers.
Collapse
Affiliation(s)
- Yiwen Zhang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Pei Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenhua Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jiangning Song
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
12
|
Shen X, Meng X, Wang C, Chen X, Chen Q, Cai J, Zhang J, Zhang Q, Fan L. Prenatal exposure to fine particulate matter and newborn anogenital distance: a prospective cohort study. Environ Health 2023; 22:16. [PMID: 36755317 PMCID: PMC9909868 DOI: 10.1186/s12940-023-00969-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Considerable attention has been paid to reproductive toxicity of fine particulate matter (PM2.5). However, the relationship between prenatal PM2.5 exposure and anogenital distance (AGD) has not been well studied. We aim to investigate the potential effects of prenatal exposure to PM2.5 on newborn AGD. METHODS Prenatal PM2.5 exposure of 2332 participates in Shanghai (2013-2016) was estimated using high-performance machine learning models. Anoscrotal distance (AGDas) in male infants and anofourchette distance (AGDaf) in female infants were measured by well-trained examiners within 3 days after birth. We applied multiple linear regression models and multiple informant models to estimate the association between prenatal PM2.5 exposure and AGD. RESULTS Multiple linear regression models showed that a 10 μg/m3 increase in PM2.5 exposure during full pregnancy, the second and third trimesters was inversely associated with AGDas (adjusted beta = - 1.76, 95% CI: - 2.21, - 1.31; - 0.73, 95% CI: - 1.06, - 0.40; and - 0.52; 95% CI: - 0.87, - 0.18, respectively) in males. A 10 μg/m3 increase in PM2.5 exposure during the full pregnancy, the first, second, and third trimesters was inversely associated with AGDaf (adjusted beta = - 4.55; 95% CI: - 5.18, - 3.92; - 0.78; 95% CI: - 1.10, - 0.46; - 1.11; 95% CI: - 1.46, - 0.77; - 1.45; 95% CI: - 1.78, - 1.12, respectively) in females after adjusting for potential confounders. Multiple informant models showed consistent but slightly attenuated associations. CONCLUSION Our study observed a significant association between gestational PM2.5 exposure during pregnancy and shortened AGD in newborns, and provided new evidence on potential reproductive toxicity of prenatal PM2.5 exposure.
Collapse
Affiliation(s)
- Xiaoli Shen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cuiping Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangfeng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
- Shanghai Human Sperm Bank, Shanghai, 200135, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lichun Fan
- Women and Children's Medical Center of Hainan Province, No.75, Longkunnan Road, Haikou, 570100, Hainan, China.
| |
Collapse
|
13
|
Su YF, Li C, Xu JJ, Zhou FY, Li T, Liu C, Wu YT, Huang HF. Associations between short-term and long-term exposure to particulate matter and preterm birth. CHEMOSPHERE 2023; 313:137431. [PMID: 36455656 DOI: 10.1016/j.chemosphere.2022.137431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Despite the longstanding evidence on the effect of air pollutants on preterm birth (PTB), few studies have focused on its subtypes, including spontaneous preterm birth (sPTB) and medically indicated preterm birth (miPTB). Most studies evaluated only the short-term or long-term effects of particulate matter (PM) on PTB. Thus, we designed this study, based on a cohort of 179,385 women, to evaluate both short- and long-term effects of PM with diameters ≤2.5 μm and ≤10 μm (PM2.5 and PM10) on PTB, sPTB and miPTB in Shanghai. Generalized additive models (GAMs) were applied to evaluate short-term effects. Lagged effects were identified using different lag structures. Exposure-response correlation curves were plotted using GAMs after adjustment for confounders. ORs and 95% CIs were calculated using logistic regression to estimate the long-term effect after adjustment for confounders. There was 5.67%, 3.70% and 1.98% daily incidence of PTB, sPTB, and miPTB on average. Every 10 μg/m3 increase in PM2.5 and PM10 was positively associated with PTB and sPTB at lag 2 day. The exposure-response curves (lag 2 day) indicated a rapid increase in sPTB for PM2.5 and a linear increase for PM10, in PTB for PM2.5 and PM10 at concentrations over 100 μg/m3. Regarding long-term exposure, positive associations were found between 10 μg/m3 increases in PM2.5 and PM10 in 3rd trimester and greater odds of sPTB (aOR: 1.042, 95% CI: 1.018-1.065, and 1.018, 95% CI:1.002-1.034), and during the 3 months before conception and miPTB (aOR: 1.023, 95% CI: 1.003-1.042, and 1.017, 95% CI: 1.000-1.036). Acute exposure to PM2.5 and PM10 at lag 2 day and chronic exposure in 3rd trimester was significantly associated with sPTB, while miPTB was related to chronic exposure during the 3 months before pregnancy. These findings indicate that susceptibility windows of PM exposure can be influenced by different underlying etiologies of PTB.
Collapse
Affiliation(s)
- Yun-Fei Su
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Jing-Jing Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Fang-Yue Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Tao Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - He-Feng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
14
|
Ju L, Hua L, Xu H, Li C, Sun S, Zhang Q, Cao J, Ding R. Maternal atmospheric particulate matter exposure and risk of adverse pregnancy outcomes: A meta-analysis of cohort studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120704. [PMID: 36436666 DOI: 10.1016/j.envpol.2022.120704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Ambient air particulate exposure not only capable of elevating the risks of adverse pregnancy outcomes, but also has profound implications for human health, but the results are discrepant. This meta-analysis aimed to provide higher grade evidence on the impacts of air particulate on specific pregnancy outcomes. A total of 81 eligible cohort studies were included in this meta-analysis, of which the outcomes included preterm birth (PTB), moderate PTB, very PTB, extreme PTB, term low birth weight (TLBW), term birth weight (TBW), stillbirth (SB) and small for gestational age (SGA). The results showed that every 10 μg/m3 increase of PM2.5 exposure associated with 2.7%-9.3% increase of PTB risk in entire pregnancy, 2nd and 3rd trimesters; 10.5%-19.3% increase of very PTB risk in entire pregnancy, 1st and 2nd trimesters; 8.3% and 10.1% increase of TLBW and SGA risk in entire pregnancy; 25.6% and 10.1% increase of SB in entire pregnancy and 3rd trimester; and -13.274 g and -4.916 g reduce of TBW during entire pregnancy and 2nd trimester, respectively. Every 10 μg/m3 increase of PM10 exposure associated with 12.1% and 2.6% increase of PTB risk in entire pregnancy and 3rd trimester; 48.9% and 5.0% increase of moderate PTB risk in entire pregnancy and 2nd trimester; 14.4% and 10.3% increase of very PTB risk in 1st and 3rd trimesters; 2.9% increase of extremely PTB risk in 2nd trimester; 1.5%-3.8% and 2.9%-3.7% increase of TLBW and SGA risk in entire pregnancy, 1st and 2nd trimesters; 7.0% increase of SB risk in 3rd trimesters; and -4.537 g and -5.263 g reduce of TBW in 1st and 2nd trimesters, respectively. High mean annual PM concentrations were associated with more extreme adverse pregnancy outcomes (PTBs, SGA and SB), while low mean annual PM concentrations were associated with decreased TBW and increased risk of TLBW.
Collapse
Affiliation(s)
- Liangliang Ju
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Lei Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Hanbing Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Changlian Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Qi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
15
|
Li C, Yu JL, Xu JJ, He YC, Qin KZ, Chen L, Huang HF, Wu YT. Interactive effects of ambient air pollution and sunshine duration on the risk of intrahepatic cholestasis of pregnancy. ENVIRONMENTAL RESEARCH 2022; 215:114345. [PMID: 36116502 DOI: 10.1016/j.envres.2022.114345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION While the associations among ambient pollutants and various pregnancy complications are well documented, the effect of ambient pollutants on intrahepatic cholestasis of pregnancy (ICP) has not been examined. This study aimed to explore the effects of ambient pollutants and sunshine duration on ICP. METHODS The study enrolled 169,971 pregnant women who delivered between 2015 and 2020 in two hospitals. The associations between ICP and exposure to ambient pollutants and sunshine duration, averaged throughout different periods (including the 3 months before conception, 1st trimester and 2nd trimester), were estimated using a generalized linear model. The interaction effects of ambient pollutants and sunshine duration on ICP were estimated. RESULTS The fitted curves for ICP incidence were similar to the temporal trends of PM2.5, PM10, SO2, CO and NO2 but not that of O3. The risk of ICP was significantly elevated following a 10-μg/m3 increase in PM2.5 (aOR [adjusted odds ratio] = 1.057, 95% CI [confidence interval]: 1.017-1.099) and PM10 (aOR = 1.043, 95% CI: 1.013-1.074) and a 1-h decrease in sunshine duration (aOR = 1.039, 95% CI: 1.011-1.068) during the 3 months before conception. In the second trimester, a 1-μg/m3 increase in the concentration of SO2 was associated with an increased risk of ICP (aOR = 1.011, 95% CI: 1.001-1.021). Increased concentrations of PM2.5 and PM10 had interactive effects with reduced sunshine duration during the 3 months before conception on increasing the risk of ICP. CONCLUSIONS Exposure to PM2.5 and PM10 during the 3 months before conception and exposure to SO2 in the second trimester were associated with an increased ICP risk. Reduced sunshine duration had an interactive effect with increased concentrations of PM2.5 and PM10 during the 3 months before conception on the occurrence of ICP.
Collapse
Affiliation(s)
- Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Jia-Le Yu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Jing Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yi-Chen He
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Kai-Zhou Qin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Lei Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Zhang Q, Meng X, Shi S, Kan L, Chen R, Kan H. Overview of particulate air pollution and human health in China: Evidence, challenges, and opportunities. Innovation (N Y) 2022; 3:100312. [PMID: 36160941 PMCID: PMC9490194 DOI: 10.1016/j.xinn.2022.100312] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Ambient particulate matter (PM) pollution in China continues to be a major public health challenge. With the release of the new WHO air quality guidelines in 2021, there is an urgent need for China to contemplate a revision of air quality standards (AQS). In the recent decade, there has been an increase in epidemiological studies on PM in China. A comprehensive evaluation of such epidemiological evidence among the Chinese population is central for revision of the AQS in China and in other developing countries with similar air pollution problems. We thus conducted a systematic review on the epidemiological literature of PM published in the recent decade. In summary, we identified the following: (1) short-term and long-term PM exposure increase mortality and morbidity risk without a discernible threshold, suggesting the necessity for continuous improvement in air quality; (2) the magnitude of long-term associations with mortality observed in China are comparable with those in developed countries, whereas the magnitude of short-term associations are appreciably smaller; (3) governmental clean air policies and personalized mitigation measures are potentially effective in protecting public and individual health, but need to be validated using mortality or morbidity outcomes; (4) particles of smaller size range and those originating from fossil fuel combustion appear to show larger relative health risks; and (5) molecular epidemiological studies provide evidence for the biological plausibility and mechanisms underlying the hazardous effects of PM. This updated review may serve as an epidemiological basis for China’s AQS revision and proposes several perspectives in designing future health studies. Acute effects of PM are smaller in China compared with developed countries Health effects caused by PM depend on particle composition, source, and size There are no thresholds for the health effects of PM Mechanistic studies support the biological plausibility of PM’s health effects
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lena Kan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, MD 21205, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
17
|
He J, Cao N, Hei J, Wang H, He J, Liu Y, Ren Y. Relationship between ambient air pollution and preterm birth: a retrospective birth cohort study in Yan'an, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73271-73281. [PMID: 35624365 DOI: 10.1007/s11356-022-20852-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Preterm birth (PTB) has been associated with exposure to air pollution, but it is unclear whether effects might vary among air pollution sources in a valley city, and yet few studies have investigated refined susceptible windows for PTB. We performed a retrospective birth cohort study in Yan'an city, a typical valley city in the west of China, and analyze the effects of air pollutants on premature delivery, identify critical windows for maternal air pollutants exposure and PTB. The pregnant women who gave birth in the Affiliated Hospital of Yan'an University and Yan'an people's Hospital from January 1, 2018 to December 31, 2019 were selected as the research objects. A questionnaire survey and medical records were conducted. The daily average concentrations of particulate matter with aerodynamic diameters of ≤ 2.5 μm (PM2.5) and ≤ 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2) and ozone (O3) in Yan'an City from January 1, 2017 to December 31, 2019 were collected. After controlling the confounding factors of PTB by logistic regression model, the effect of air pollutants on preterm birth was analyzed. After controlling the confounding factors such as maternal age, gestational times and gestational hypertension syndrome, PTB was associated with exposure to third trimester PM10 (adjusted odds ratio [aOR] = 1.019, 95% confidence interval [95%CI] = 1.004-1.035). PTB risk increased with second trimester exposure to SO2 (aOR = 1.039, CI = 1.011-1.068), also with third trimester (aOR = 1.031, CI = 1.010-1.053). PTB was also associated with third trimester O3 (aOR = 1.023, CI = 1.005-1.041). This study indicates that maternal exposure to PM10, SO2 and O3 might lead to increased risk of PTB, and critical exposure windows were inconsistent.
Collapse
Affiliation(s)
- Jinwei He
- Medical School of Yan'an University, No. 580 Shengdi Road, Yan'an, 716000, Shaanxi Province, China.
| | - Na Cao
- Medical School of Yan'an University, No. 580 Shengdi Road, Yan'an, 716000, Shaanxi Province, China
| | - Jiangrong Hei
- Affiliated Hospital of Yan'an University, No. 34 North Street, Yan'an, Shaanxi Province, China
| | - Huiling Wang
- Yan'an People's Hospital, No. 16 Qilipu Street, Yan'an, Shaanxi Province, China
| | - Jinrong He
- College of Mathematics and Computer Science, No. 580 Shengdi Road, Yan'an, 716000, Shaanxi Province, China
| | - Yizhao Liu
- Medical School of Yan'an University, No. 580 Shengdi Road, Yan'an, 716000, Shaanxi Province, China
| | - Yuanyuan Ren
- Medical School of Yan'an University, No. 580 Shengdi Road, Yan'an, 716000, Shaanxi Province, China
| |
Collapse
|
18
|
Gajski G, Gerić M, Pehnec G, Matković K, Rinkovec J, Jakovljević I, Godec R, Žužul S, Bešlić I, Cvitković A, Wild P, Guseva Canu I, Hopf NB. Associating Air Pollution with Cytokinesis-Block Micronucleus Assay Parameters in Lymphocytes of the General Population in Zagreb (Croatia). Int J Mol Sci 2022; 23:ijms231710083. [PMID: 36077482 PMCID: PMC9455971 DOI: 10.3390/ijms231710083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Air pollution is recognized as one of the most serious public health issues worldwide and was declared to be a leading environmental cause of cancer deaths. At the same time, the cytokinesis-block micronucleus (CBMN) assay serves as a cancer predictive method that is extensively used in human biomonitoring for populations exposed to environmental contamination. The objective of this cross-sectional study is two-fold: to evaluate genomic instability in a sample (N = 130) of healthy, general population residents from Zagreb (Croatia), chronically exposed to different levels of air pollution, and to relate them to air pollution levels in the period from 2011 to 2015. Measured frequencies of CBMN assay parameters were in agreement with the baseline data for the general population of Croatia. Air pollution exposure was based on four factors obtained from a factor analysis of all exposure data obtained for the examined period. Based on the statistical results, we did not observe a significant positive association between any of the CBMN assay parameters tested and measured air pollution parameters for designated time windows, except for benzo(a)pyrene (B[a]P) that showed significant negative association. Our results show that measured air pollution parameters are largely below the regulatory limits, except for B[a]P, and as such, they do not affect CBMN assay parameters’ frequency. Nevertheless, as air pollution is identified as a major health threat, it is necessary to conduct prospective studies investigating the effect of air pollution on genome integrity and human health.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1468-2500
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Gordana Pehnec
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Katarina Matković
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Jasmina Rinkovec
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivana Jakovljević
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ranka Godec
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Silva Žužul
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivan Bešlić
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ante Cvitković
- Teaching Institute of Public Health Brod-Posavina County, 35000 Slavonski Brod, Croatia
- Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Pascal Wild
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1011 Lausanne, Switzerland
- PW Statistical Consulting, 54520 Laxou, France
| | - Irina Guseva Canu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1011 Lausanne, Switzerland
| | - Nancy B. Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
19
|
Yu Z, Zhang X, Zhang J, Feng Y, Zhang H, Wan Z, Xiao C, Zhang H, Wang Q, Huang C. Gestational exposure to ambient particulate matter and preterm birth: An updated systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 212:113381. [PMID: 35523275 DOI: 10.1016/j.envres.2022.113381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Previous studies on gestational particulate matter (PM) exposure and preterm birth (PTB) showed inconsistent results, and no study systematically examined the short-term effect of PM exposure on PTB subtypes. To investigate both long- and short-term effects of the evidence to date in general population, we searched for epidemiological studies on PM exposure and PTB that published in PubMed, Web of Science, Embase and Cochrane Library up to March 31, 2022. The protocol for this review was registered with PROSPERO (CRD42021265202). Heterogeneity was assessed by Cochran's Q test and I2 statistic. Publication bias was evaluated using funnel plots and Egger's tests. Subgroup analysis, meta-regression and sensitivity analysis were performed. Of 16,801 records, 84 eligible studies were finally included. The meta-analysis of long-term effect showed that per 10 μg/m3 increase in PM2.5 and PM10 during entire pregnancy were associated with PTB, the pooled odds ratios (ORs) were 1.084 (95% CI: 1.055-1.113) and 1.034 (95% CI: 1.018-1.049). Positive associations were found between PM2.5 in second trimester and PTB subtypes. For the short-term exposure, we observed that PTB was positively associated with a 10 μg/m3 increment in PM2.5 on lag day 2 and 3, the pooled ORs and 95% CIs were 1.003 (1.001-1.004) and 1.003 (1.001-1.005), with I2 of 65.30% and 76.60%. PM10 exposure on ave day 1 increased the risk of PTB, the pooled OR was 1.001 (95% CI: 1.000, 1.001). We also found that PM10 exposure in 2 weeks prior to birth increased PTB risk. Our results support the hypothesis of both long- and short-term PM2.5 exposure increase the risk of PTB. Further well-designed longitudinal studies and investigations into potential biological mechanisms are warranted.
Collapse
Affiliation(s)
- Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- National Health Commission Key Laboratory of Birth Defects Prevention; Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Yang Feng
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Han Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhongxiao Wan
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chenglong Xiao
- School of Earth Sciences, Chengdu University of Technology, Chengdu, China
| | - Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China; National Health Commission Key Laboratory of Birth Defects Prevention; Key Laboratory of Population Defects Prevention, Zhengzhou, China.
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Zhang H, Zhang X, Zhang H, Luo H, Feng Y, Wang J, Huang C, Yu Z. Assessing the effect of fine particulate matter on adverse birth outcomes in Huai River Basin, Henan, China, 2013-2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119357. [PMID: 35489530 DOI: 10.1016/j.envpol.2022.119357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/25/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Previous studies have indicated that maternal exposure to particles with aerodynamic diameter <2.5 μm (PM2.5) is associated with adverse birth outcomes. However, the critical exposure windows remain inconsistent. A retrospective cohort study was conducted in Huai River Basin, Henan, China during 2013-2018. Daily PM2.5 concentration was collected using Chinese Air Quality Reanalysis datasets. We calculated exposures for each participant based on the residential address during pregnancy. Binary logistic regression was used to examine the trimester-specific association of PM2.5 exposure with preterm birth (PTB), low birth weight (LBW) and term LBW (tLBW), and we further estimated monthly and weekly association using distributed lag models. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for each 10 μg/m3 increase in PM2.5 exposure. Stratified analyses were performed by maternal age, infant gender, parity, and socioeconomic status (SES). In total, 196,780 eligible births were identified, including 4257 (2.2%) PTBs, 3483 (1.8%) LBWs and 1770 (0.9%) tLBWs. Maternal PM2.5 exposure during the second trimester were associated with the risk of PTB and LBW. At the monthly level, the PTB and LBW risks were associated with PM2.5 exposure mainly in the 4th -6th month. By estimating the weekly-specific association, we observed that critical exposure windows of PM2.5 exposure and PTB were in the 18th- 27th gestational weeks. Stronger associations were found in younger, multiparous mothers and those with a female baby and in low SES. In conclusion, the results indicate that maternal PM2.5 exposure during the second trimester was associated with PTB and LBW. Younger, multiparous mothers and those with female babies and in low SES were susceptible.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Han Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hongyan Luo
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yang Feng
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jingzhe Wang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China; National Health Commission Key Laboratory of Birth Defects Prevention, Key Laboratory of Population Defects Prevention, Zhengzhou, China
| |
Collapse
|
21
|
"Advances in Preterm Delivery"-How Can We Advance Further? J Clin Med 2022; 11:jcm11123436. [PMID: 35743509 PMCID: PMC9225181 DOI: 10.3390/jcm11123436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Preterm delivery (PTD: <37 gestational weeks) complicates 5−13% of deliveries worldwide [...]
Collapse
|
22
|
Association of Prematurity and Low Birth Weight with Gestational Exposure to PM 2.5 and PM 10 Particulate Matter in Chileans Newborns. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106133. [PMID: 35627670 PMCID: PMC9142096 DOI: 10.3390/ijerph19106133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023]
Abstract
Fetal growth can be affected by gestational exposure to air pollution. The aim of the study was to determine the association between prematurity and low birth weight (LBW) with gestational exposure to PM2.5 and PM10 particulate matter in Chileans newborns. This cross-sectional analytical study included 595,369 newborns. Data were extracted from the live newborn records of the Chilean Ministry of Health. Sex, gestational age, birth weight, and living variables were analyzed. We used the Air Quality Information System of the Chilean Ministry of the Environment to obtain mean PM2.5 and PM10 emissions. A multivariate logistic regression model was performed with STATA 15.0 software at α < 0.05. Prevalence was 7.4% prematurity and 5.5% LBW. Mean PM2.5 and PM10 concentrations were 25.5 µg/m3 and 55.3 µg/m3, respectively. PM2.5 was associated with an increased the risk of LBW (OR: 1.031; 95%CI: 1.004−1.059) when exposure occurred in the second trimester, while PM10 affected the whole pregnancy. In addition, PM10 exposure in any gestational trimester was associated with an increased the risk of prematurity. The PM10 particulate matter was associated with both prematurity and LBW in all of the trimesters of exposure. The PM2.5 particulate matter was only associated with LBW when exposure occurred in the second gestational trimester.
Collapse
|
23
|
Jiang Y, He Y, Wu S, Chen R, Yang Y, Xu J, Zhang Y, Wang Q, Shen H, Zhang Y, Yan D, Peng Z, Dong X, Zhang H, Jiang L, Li H, Zhu Y, Liu C, Wang W, Meng X, Pei T, Song C, Cohen A, Ma X, Cai J, Kan H. Improved air quality and reduced burden of preterm birth in China: 2013-2017. Sci Bull (Beijing) 2022; 67:879-882. [PMID: 36546015 DOI: 10.1016/j.scib.2022.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yuan He
- National Research Institute for Health and Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China; Peking Union Medical College, Beijing 100730, China; Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shenpeng Wu
- National Research Institute for Health and Family Planning, Beijing 100081, China; Peking Union Medical College, Beijing 100730, China; Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Ying Yang
- National Research Institute for Health and Family Planning, Beijing 100081, China
| | - Jihong Xu
- National Research Institute for Health and Family Planning, Beijing 100081, China
| | - Ya Zhang
- National Research Institute for Health and Family Planning, Beijing 100081, China
| | - Qiaomei Wang
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing 100044, China
| | - Haiping Shen
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing 100044, China
| | - Yiping Zhang
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing 100044, China
| | - Donghai Yan
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing 100044, China
| | - Zuoqi Peng
- National Research Institute for Health and Family Planning, Beijing 100081, China
| | - Xudong Dong
- The Obstetrical Department of the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, China
| | - Hongping Zhang
- Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 305006, China
| | - Lifang Jiang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston 02115, USA
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Tao Pei
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ci Song
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Aaron Cohen
- Health Effects Institute, Boston 02110, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle 98195, USA
| | - Xu Ma
- National Research Institute for Health and Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China.
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
24
|
Palma A, Petrunyk I, Vuri D. Prenatal air pollution exposure and neonatal health. HEALTH ECONOMICS 2022; 31:729-759. [PMID: 35001469 DOI: 10.1002/hec.4474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Air pollution has been shown to have adverse effects on many health outcomes including respiratory effects, cardiovascular effects, and mortality. However, evidence on the effects of prenatal exposure is still limited. We investigate the causal impact of prenatal exposure to air pollution on neonatal health in Italy in the 2000s. We exploit variation in rainfall shocks to instrument for non-random air pollution exposure. Our empirical setting combines detailed information on mother's residential location from birth certificates with PM10 concentrations from air pollution monitors. Ten additional units in the average PM10 level (approximately one standard deviation) would decrease birth weight by about 0.5% and gestational age by 0.16%; it would increase the prevalence of low birth weight by 22% and of preterm birth by 16%. The effects are stronger in magnitude for third trimester exposure and for less educated mothers. These findings suggest that the health impacts of air pollution on newborns are unequally distributed in the population.
Collapse
Affiliation(s)
- Alessandro Palma
- Gran Sasso Science Institute (GSSI), Social Sciences Area, L'Aquila, Italy
- The Centre of Economic and International Studies (CEIS), University of Rome Tor Vergata, Rome, Italy
| | | | - Daniela Vuri
- The Centre of Economic and International Studies (CEIS), University of Rome Tor Vergata, Rome, Italy
- Department of Economics and Finance - DEF, University of Rome Tor Vergata, Rome, Italy
- Institute for the Study of Labor (IZA), University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
25
|
Jia ZL, Zhu CY, Rajendran RS, Xia Q, Liu KC, Zhang Y. Impact of airborne total suspended particles (TSP) and fine particulate matter (PM 2.5 )-induced developmental toxicity in zebrafish (Danio rerio) embryos. J Appl Toxicol 2022; 42:1585-1602. [PMID: 35315093 DOI: 10.1002/jat.4325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 01/11/2023]
Abstract
Airborne total suspended particles (TSP) and particulate matter (PM2.5 ) threaten global health and their potential impact on cardiovascular and respiratory diseases are extensively studied. Recent studies attest premature deaths, low birth weight, and congenital anomalies in the fetus of pregnant women exposed to air pollution. In this regard, only few studies have explored the effects of TSP and PM2.5 on cardiovascular and cerebrovascular development. As both TSP and PM2.5 differ in size and composition, this study is attempted to assess the variability in toxicity effects between TSP and PM2.5 on the development of cardiovascular and cerebrovascular systems and the underlying mechanisms in a zebrafish model. To explore the potential toxic effects of TSP and PM2.5 , zebrafish embryos/larvae were exposed to 25, 50, 100, 200, and 400 μg/ml of TSP and PM2.5 from 24 to 120 hpf (hours post-fertilization). Both TSP and PM2.5 exposure increased the rate of mortality, malformations, and oxidative stress, whereas locomotor behavior, heart rate, blood flow velocity, development of cardiovasculature and neurovasculature, and dopaminergic neurons were reduced. The expression of genes involved in endoplasmic reticulum stress (ERS), Wnt signaling, and central nervous system (CNS) development were altered in a dose- and time-dependent manner. This study provides evidence for acute exposure to TSP and PM2.5 -induced cardiovascular and neurodevelopmental toxicity, attributed to enhanced oxidative stress and aberrant gene expression. Comparatively, the effects of PM2.5 were more pronounced than TSP.
Collapse
Affiliation(s)
- Zhi-Li Jia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China.,School of life sciences, Henan University, Kaifeng, Henan Province, China
| | - Cheng-Yue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - R Samuel Rajendran
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, China
| |
Collapse
|
26
|
Cao K, Jin H, Li H, Tang M, Ge J, Li Z, Wang X, Wei X. Associations of maternal exposure to fine particulate matter with preterm and early-term birth in high-risk pregnant women. Genes Environ 2022; 44:9. [PMID: 35292103 PMCID: PMC8922917 DOI: 10.1186/s41021-022-00239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Environmental pollution is a risk factor for adverse birth outcomes, especially preterm birth (PTB) and early-term birth (ETB). It has been revealed that exposure to fine particulate matter (PM2.5) during pregnancy increase the prevalence of PTB. However, the relationship between PM2.5 exposure and ETB has not been elucidated. In high-risk pregnancies, whether PM2.5 exposure will bring higher risk of PTB and ETB than in normal pregnancies is still unclear, and the susceptible exposure window is obscure. Therefore, it is worthy of assessing the risk on PTB and ETB and identifying the susceptible exposure windows of PM2.5 exposure in high-risk pregnant women. Results This paper collected the clinical data of 7974 singletons, high-risk pregnant women in Peking University First Hospital from 2014 to 2018, and analyzed them using logistic regression and stratified analysis. We observed that exposure to high-level (≥ 75 µg/m3) of PM2.5 during the third trimester of pregnancy increases the risk of PTB and ETB (PTB: odds ratio[OR] = 1.43, 95% confidence interval [CI]:1.05–1.93. ETB: OR = 1.29, 95%CI: 1.09–1.54). Furthermore, the effects of each 10ug/m3 increase in PM2.5 on PTB and ETB were significant during the third trimester (PTB: OR = 1.35, 95%CI:1.16–1.58. ETB: OR = 1.12, 95%CI:1.02–1.22) and the entire pregnancy (PTB: OR = 6.12, 95%CI:4.27–8.89. ETB: OR = 1.96, 95%CI:1.59–2.43) in the high-level exposure group. Conclusions These results suggest that high-level PM2.5 exposure during pregnancy is associated with high risk of PTB and ETB in high-risk pregnancies. The third trimester of pregnancy is speculated to be the susceptible exposure window. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-022-00239-0.
Collapse
Affiliation(s)
- Kaixin Cao
- School of Public Health, Peking University, 100191, Beijing, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 100191, Beijing, China.,Peking University First Hospital, 100191, Beijing, China
| | - Hongyan Jin
- Peking University First Hospital, 100191, Beijing, China
| | - Haoxin Li
- School of Public Health, Peking University, 100191, Beijing, China
| | - Mengmeng Tang
- School of Public Health, Peking University, 100191, Beijing, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 100191, Beijing, China
| | - Jianhong Ge
- School of Public Health, Peking University, 100191, Beijing, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 100191, Beijing, China
| | - Zekang Li
- School of Public Health, Peking University, 100191, Beijing, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 100191, Beijing, China
| | - Xiaoyun Wang
- School of Public Health, Peking University, 100191, Beijing, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 100191, Beijing, China
| | - Xuetao Wei
- School of Public Health, Peking University, 100191, Beijing, China. .,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 100191, Beijing, China.
| |
Collapse
|
27
|
He Y, Jiang Y, Yang Y, Xu J, Zhang Y, Wang Q, Shen H, Zhang Y, Yan D, Peng Z, Liu C, Wang W, Schikowski T, Li H, Yan B, Ji JS, Chen A, van Donkelaar A, Martin R, Chen R, Kan H, Cai J, Ma X. Composition of fine particulate matter and risk of preterm birth: A nationwide birth cohort study in 336 Chinese cities. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127645. [PMID: 34920912 DOI: 10.1016/j.jhazmat.2021.127645] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Potential hazards of fine particulate matter (PM2.5) constituents on preterm birth (PTB) have rarely been explored in China. OBJECTIVE To quantify the associations of PM2.5 constituents with PTB. METHODS This study was based on a nationwide cohort of 3,723,169 live singleton births delivered between January 2010 and December 2015 in China. We applied satellite-based estimates of 5 PM2.5 constituents (organic carbon; black carbon; sulfate; ammonium; and nitrate). We used Cox proportional hazards regression models adjusted for individual covariates, temperature, humidity, and seasonality to evaluate the associations. RESULTS During the entire pregnancy, each interquartile range (29 μg/m3) increase in PM2.5 concentrations was associated with a 7% increase in PTB risk [hazard ratio (HR): 1.07; 95% confidence interval (CI): 1.07-1.08). We observed the largest effect estimates on carbonaceous components (HR: 1.09; 95% CI: 1.08-1.10 for organic carbon and black carbon). Early pregnancy appeared to be the critical exposure window for most constituents. Women who were older, exposed to second-hand smoke, overweight or obese before pregnancy, conceived during winter, and living in northern China or rural areas were more susceptible. CONCLUSIONS Carbonaceous components of PM2.5 were associated with higher PTB risk. Findings on characteristics of vulnerability underlined targeted protections on susceptible subgroups.
Collapse
Affiliation(s)
- Yuan He
- National Research Institute for Health and Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Ying Yang
- National Research Institute for Health and Family Planning, Beijing, China
| | - Jihong Xu
- National Research Institute for Health and Family Planning, Beijing, China
| | - Ya Zhang
- National Research Institute for Health and Family Planning, Beijing, China
| | - Qiaomei Wang
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Haiping Shen
- National Research Institute for Health and Family Planning, Beijing, China
| | - Yiping Zhang
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Donghai Yan
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Zuoqi Peng
- National Research Institute for Health and Family Planning, Beijing, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Beizhan Yan
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USA
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA, USA
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Xu Ma
- National Research Institute for Health and Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China.
| |
Collapse
|
28
|
Zhou W, Ming X, Yang Y, Hu Y, He Z, Chen H, Li Y, Zhou X, Yin P. Association between Maternal Exposure to Ambient Air Pollution and the Risk of Preterm Birth: A Birth Cohort Study in Chongqing, China, 2015-2020. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042211. [PMID: 35206398 PMCID: PMC8871940 DOI: 10.3390/ijerph19042211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022]
Abstract
Recent study results on the association between maternal exposure to ambient air pollution with preterm birth have been inconsistent. The sensitive window of exposure and influence level of air pollutants varied greatly. We aimed to explore the association between maternal exposure to ambient air pollutants and the risk of preterm birth, and to estimate the sensitive exposure time window. A total of 572,116 mother–newborn pairs, daily concentrations of air pollutants from nearest monitoring stations were used to estimate exposures for each participant during 2015–2020 in Chongqing, China. We applied a generalized additive model and estimated RRs and 95% CIs for preterm birth in each trimester and the entire pregnancy period. In the single-pollutant model, we observed that each 10 μg/m3 increase in PM2.5 had a statistically significant effect on the third trimester and entire pregnancy, with RR = 1.036 (95% CI: 1.021, 1.051) and RR = 1.101 (95% CI: 1.075, 1.128), respectively. Similarly, for each 10 μg/m3 increase in PM10, there were 2.7% (RR = 1.027, 95% CI: 1.016, 1.038) increase for PTB on the third trimester, and 3.8% (RR = 1.038, 95% CI: 1.020, 1.057) increase during the whole pregnancy. We found that for each 10 mg/m3 CO increases, the relative risk of PTB increased on the first trimester (RR = 1.081, 95% CI: 1.007, 1.162), second trimester (RR = 1.116, 95% CI: 1.035, 1.204), third trimester (RR = 1.167, 95% CI: 1.090, 1.250) and whole pregnancy (RR = 1.098, 95% CI: 1.011, 1.192). No statistically significant RR was found for SO2 and NO2 on each trimester of pregnancy. Our study indicates that maternal exposure to high levels of PM2.5 and PM10 during pregnancy may increase the risk for preterm birth, especially for women at the late stage of pregnancy. Statistically increased risks of preterm birth were associated with CO exposure during each trimester and entire pregnancy. Reducing exposure to ambient air pollutants for pregnant women is clearly necessary to improve the health of infants.
Collapse
Affiliation(s)
- Wenzheng Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Xin Ming
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Yunping Yang
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Yaqiong Hu
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Ziyi He
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Hongyan Chen
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Yannan Li
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Xiaojun Zhou
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
- Correspondence: (X.Z.); (P.Y.)
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Correspondence: (X.Z.); (P.Y.)
| |
Collapse
|
29
|
A Simple Method to Establish Sufficiency and Stability in Meta-Analyses: With Application to Fine Particulate Matter Air Pollution and Preterm Birth. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042036. [PMID: 35206221 PMCID: PMC8871712 DOI: 10.3390/ijerph19042036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/02/2022]
Abstract
Fine particulate matter air pollution (PM2.5) is a potential cause of preterm birth. Inconsistent findings from observational studies have motivated researchers to conduct more studies, but some degree of study heterogeneity is inevitable. The consequence of this feedback is a burgeoning research effort that results in marginal gains. The aim of this study was to develop and apply a method to establish the sufficiency and stability of estimates of associations as they have been published over time. Cohort studies identified in a recent systematic review and meta-analysis on the association between preterm birth and whole-pregnancy exposure to PM2.5 were selected. The estimates of the cohort studies were pooled with cumulative meta-analysis, whereby a new meta-analysis was run for each new study published over time. The relative risks (RR) and 95% confidence interval (CI) limits needed for a new study to move the cumulative RR to 1.00 were calculated. Findings indicate that the cumulative relative risks (cRR) for PM2.5 (cRR 1.07, 95% CI 1.03, 1.12) converged in 2015 (RR 1.07, 95% CI 1.01, 1.14). To change conclusions to a null association, a new study would need to observe a protective RR of 0.93 (95% CI limit 1.02) with precision equivalent to that achieved by all past 24 cohort studies combined. Preterm birth is associated with elevated PM2.5, and it is highly unlikely that any new observational study will alter this conclusion. Consequently, establishing whether an observational association exists is now less relevant an objective for future studies than characterising risk (magnitude, impact, pathways, populations and potential bias) and interventions. Sufficiency and stability can be effectively applied in meta-analyses and have the potential to reduce research waste.
Collapse
|
30
|
Zhou G, Wu J, Yang M, Sun P, Gong Y, Chai J, Zhang J, Afrim FK, Dong W, Sun R, Wang Y, Li Q, Zhou D, Yu F, Yan X, Zhang Y, Jiang L, Ba Y. Prenatal exposure to air pollution and the risk of preterm birth in rural population of Henan Province. CHEMOSPHERE 2022; 286:131833. [PMID: 34426128 DOI: 10.1016/j.chemosphere.2021.131833] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Due to the poor living and healthcare conditions, preterm birth (PTB) in rural population is a pressing health issue. However, PTB studies in rural population are rare. To explore the effects of air pollutants on PTB in rural population, we collected 697,316 medical records during 2014-2016 based on the National Free Preconception Health Examination Project. Logistic regression models were used to estimate the association between air pollutants and PTB and the modifying effects of demographic characteristics. Relative contribution and principal component analysis-generalized linear model (PCA-GLM) analysis were used to explore the most significant air pollutant and gestational period. Our results demonstrated that PTB risk is positively associated with exposure to air pollutants including PM10, PM2.5, SO2, NO2, and CO, while negatively associated with O3 exposure (P < 0.05). In addition, we found that NO2 was the largest contributor to the risk of PTB caused by air pollutants (26.5%). The third trimester of pregnancy was the most sensitive exposure window. PCA-GLM analysis showed that the first component (a combination of PM, SO2, NO2, and CO) increased the risk of PTB. Moreover, we found that rural women who are younger, had higher educated, multi-parity, or smoke appeared to be more sensitive to the association between air pollutants exposure and PTB (P-interaction<0.05). Our findings suggested that increased air pollutants except O3 were associated with elevated PTB risk, especially among vulnerable mothers. Therefore, the effects of air pollutants exposure on PTB should be mitigated by restricting emission sources of NO2 and SO2 in rural population, especially during the third trimester.
Collapse
Affiliation(s)
- Guoyu Zhou
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jingjing Wu
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Meng Yang
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Panpan Sun
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Yongxiang Gong
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jian Chai
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Junxi Zhang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Francis-Kojo Afrim
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Wei Dong
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Renjie Sun
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yuhong Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Qinyang Li
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Dezhuan Zhou
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Fangfang Yu
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xi Yan
- Department of Neurology, Henan Provincial People's Hospital; Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou, Henan, 450001, PR China
| | - Yawei Zhang
- Department of Environment Health Science, Yale University School of Public Health, New Haven, CT, USA
| | - Lifang Jiang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Yue Ba
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
31
|
Liao J, Liu Y, Steenland K, Pillarisetti A, Thompson LM, Dey S, Balakrishnan K, Clasen T. Child Survival and Early Lifetime Exposures to Ambient Fine Particulate Matter in India: A Retrospective Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17009. [PMID: 35080433 PMCID: PMC8791069 DOI: 10.1289/ehp8910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Ambient fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] is a major health risk for children, particularly in South Asia, which currently experiences the highest PM2.5 levels globally. Nevertheless, there is comparatively little epidemiological evidence from this region to quantify the effects of PM2.5 on child survival. OBJECTIVES We estimated the association between PM2.5 exposure and child survival in India. METHODS We constructed a large, retrospective, and nationally representative cohort of children <5 years of age, born between 2009-2016, from the publicly available, cross-sectional 2015-2016 Demographic Health Surveys in India. In utero and post-delivery lifetime average ambient PM2.5 exposures were estimated with data from satellite remote sensing, meteorology, and land use information (model R2= 0.82). We used Cox proportional hazards regression to estimate the association between both average in utero and post-delivery lifetime PM2.5 and all-cause child mortality, controlling for individual- and household-level covariates, seasonality, location, and meteorology. RESULTS Over 7,447,724 child-months of follow-up, there were 11,559 deaths at <5 years of age reported by the children's mothers. The mean concentrations of 9-month in utero and post-delivery lifetime average ambient PM2.5 exposure were 71.1 μg/m3 (range: 20.9-153.5 μg/m3) and 73.7 μg/m3 (range: 14.0-247.3 μg/m3), respectively. Estimated child mortality adjusted hazard ratios were 1.023 [95% confidence interval (CI): 1.008, 1.038] and 1.013 (95% CI: 1.001, 1.026) per 10-μg/m3 increase of in utero and post-delivery lifetime PM2.5, with both exposures in the model. DISCUSSION This study adds to the growing body of evidence about the adverse health effects of PM2.5 by demonstrating the association between exposure, both in utero and post-delivery, on child survival at the national level in India. Strategies to reduce ambient air pollution levels, including steps to minimize in utero and early life exposures, are urgently needed in India and other countries where exposures are above recommended guideline values. https://doi.org/10.1289/EHP8910.
Collapse
Affiliation(s)
- Jiawen Liao
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ajay Pillarisetti
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
| | - Lisa M. Thompson
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi (IIT Delhi), New Delhi, India
- Centre of Excellence for Research on Clean Air, IIT Delhi, New Delhi, India
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, Tamil Nadu, India
| | - Thomas Clasen
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
32
|
Ju L, Li C, Yang M, Sun S, Zhang Q, Cao J, Ding R. Maternal air pollution exposure increases the risk of preterm birth: Evidence from the meta-analysis of cohort studies. ENVIRONMENTAL RESEARCH 2021; 202:111654. [PMID: 34252430 DOI: 10.1016/j.envres.2021.111654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/19/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Preterm birth (PTB), a major public health impact, has been shown to be associated with prenatal air pollution exposure, but the results are still inconsistent. This meta-analysis was performed to quantitatively evaluate the correlation between maternal air pollutant exposure and PTB, and provide evidence of higher grade to help improving the pregnancy outcomes. Databases including Web of Science and PubMed were searched to retrieve eligible studies published up to October 2020. The quality of the articles was assessed by the Newcastle-Ottawa Quality Score (NOS), after which the pooled estimate of the effect was calculated. The robustness of the joint estimates was confirmed by sensitivity analysis of excluded studies one by one, and the sources of heterogeneity were discussed by stratification analysis. Egger's and Begg's tests were performed to examine publication bias. Sixty studies that met the eligible criteria were finally included in this study. The findings showed combined relative risks of 1.032-1.070 for PTB, 0.859-1.081 for moderate PTB, 1.119-1.194 for very PTB and 1.128-1.259 for extremely PTB when mothers were exposed to PM2.5, PM10, NO2, O3, SO2, CO and NOx during pregnancy, while the sensitive windows varied for different air pollutants. Notably, PM2.5 exposure in only the 2nd trimester, NO2 exposure in only the 3rd trimester, and O3 exposure in all three trimesters were positively associated with PTB, while NO2 exposure in the 1st trimester was negatively associated with PTB. In addition, exposure of PM2.5 and PM10 in the 2nd trimester was positively associated with moderate PTB, and in the 1st and 2nd trimesters were positively associated with very PTB. These findings demonstrated that PM2.5, PM10, O3, NO2 were associated with PTB (including moderate PTB, very PTB, and/or extremely PTB), while NOx was not, and the relationship between CO and SO2 and PTB was not stable.
Collapse
Affiliation(s)
- Liangliang Ju
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Changlian Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Mei Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Qi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
33
|
Chu C, Zhu Y, Liu C, Chen R, Yan Y, Ren Y, Li X, Wang J, Ge W, Kan H, Gui Y. Ambient fine particulate matter air pollution and the risk of preterm birth: A multicenter birth cohort study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117629. [PMID: 34182393 DOI: 10.1016/j.envpol.2021.117629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 05/07/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Preterm birth (PTB), defined as live birth before the 37th week of gestation, is believed to have profound impacts on the infant's health in later life. Air pollution has been suggested to be a potential risk factor of PTB, but the evidence was inconsistent. In this multicenter birth cohort study, we aimed to examine the association between fine particulate matter (PM2.5) exposure during pregnancy and PTB in China. A total of 5976 live births were identified between Jan. 2009 and Feb. 2011 from 8 provinces in China. Residential exposures to PM2.5 were assigned based on satellite remote sensing estimates. Cox proportional hazards regressions were employed to explore the correlation for each trimester as well as the entire pregnancy. A total of 443 (7.4%) preterm births were observed. The average PM2.5 during pregnancy was 57.2 ± 8.8 μg/m3. We found exposure to PM2.5 during the whole pregnancy (hazard ratio, HR = 1.262; 95% CI: 1.087-1.465) and in the first trimester (HR = 1.114; 95% CI: 1.007-1.232) was associated with higher risk of PTB. The associations of PM2.5 were stronger for subjects with older maternal or paternal age, lower maternal pre-pregnancy BMI, and lower family income. This study adds supports to the cumulating evidence linking PM2.5 exposure and elevated PTB risk. Measures of air pollution reduction are needed during pregnancy, especially at early stage of pregnancy to prevent adverse birth outcomes.
Collapse
Affiliation(s)
- Chen Chu
- Heart Center, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yingliu Yan
- Ultrasound Department, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yunyun Ren
- Ultrasound Department, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaotian Li
- Department of Obstetrics, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jimei Wang
- Neonatology Department, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wenzhen Ge
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10605, United States
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yonghao Gui
- Heart Center, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
34
|
Jain D, Jain AK, Metz GAS, Ballanyi N, Sood A, Linder R, Olson DM. A Strategic Program for Risk Assessment and Intervention to Mitigate Environmental Stressor-Related Adverse Pregnancy Outcomes in the Indian Population. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:673118. [PMID: 36304060 PMCID: PMC9580833 DOI: 10.3389/frph.2021.673118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
The Problem: Global environmental stressors of human health include, but are not limited to, conflict, migration, war, natural disasters, climate change, pollution, trauma, and pandemics. In combination with other factors, these stressors influence physical and mental as well as reproductive health. Maternal stress is a known factor for adverse pregnancy outcomes such as preterm birth (PTB); however, environmental stressors are less well-understood in this context and the problem is relatively under-researched. According to the WHO, major Indian cities including New Delhi are among the world's 20 most polluted cities. It is known that maternal exposure to environmental pollution increases the risk of premature births and other adverse pregnancy outcomes which is evident in this population. Response to the Problem: Considering the seriousness of this problem, an international and interdisciplinary group of researchers, physicians, and organizations dedicated to the welfare of women at risk of adverse pregnancy outcomes launched an international program named Optimal Pregnancy Environment Risk Assessment (OPERA). The program aims to discover and disseminate inexpensive, accessible tools to diagnose women at risk for PTB and other adverse pregnancy outcomes due to risky environmental factors as early as possible and to promote effective interventions to mitigate these risks. OPERA has been supported by the Worldwide Universities Network, World Health Organization (WHO) and March of Dimes USA. Addressing the Problem: This review article addresses the influence of environmental stressors on maternal-fetal health focusing on India as a model population and describes the role of OPERA in helping local practitioners by sharing with them the latest risk prediction and mitigation tools. The consequences of these environmental stressors can be partially mitigated by experience-based interventions that build resilience and break the cycle of inter- and-transgenerational transmission. The shared knowledge and experience from this collaboration are intended to guide and facilitate efforts at the local level in India and other LMIC to develop strategies appropriate for the jurisdiction for improving pregnancy outcomes in vulnerable populations.
Collapse
Affiliation(s)
- Divyanu Jain
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada
- *Correspondence: Divyanu Jain
| | - Ajay K. Jain
- Department of Obstetrics & Gynecology and In-vitro Fertilization Center, Jaipur Golden Hospital, New Delhi, India
- IVF Center, Muzaffarnagar Medical College, Muzaffarnagar, India
| | - Gerlinde A. S. Metz
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Nina Ballanyi
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Abha Sood
- Department of Obstetrics & Gynecology and In-vitro Fertilization Center, Jaipur Golden Hospital, New Delhi, India
| | - Rupert Linder
- Specialist for Gynecology, Obstetrics, Psychosomatics and Psychotherapy, Birkenfeld, Germany
| | - David M. Olson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB, Canada
- Departments of Pediatrics and Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Conibear L, Reddington CL, Silver BJ, Chen Y, Knote C, Arnold SR, Spracklen DV. Statistical Emulation of Winter Ambient Fine Particulate Matter Concentrations From Emission Changes in China. GEOHEALTH 2021; 5:e2021GH000391. [PMID: 33977182 PMCID: PMC8095364 DOI: 10.1029/2021gh000391#gh2231-bib-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/13/2023]
Abstract
Air pollution exposure remains a leading public health problem in China. The use of chemical transport models to quantify the impacts of various emission changes on air quality is limited by their large computational demands. Machine learning models can emulate chemical transport models to provide computationally efficient predictions of outputs based on statistical associations with inputs. We developed novel emulators relating emission changes in five key anthropogenic sectors (residential, industry, land transport, agriculture, and power generation) to winter ambient fine particulate matter (PM2.5) concentrations across China. The emulators were optimized based on Gaussian process regressors with Matern kernels. The emulators predicted 99.9% of the variance in PM2.5 concentrations for a given input configuration of emission changes. PM2.5 concentrations are primarily sensitive to residential (51%-94% of first-order sensitivity index), industrial (7%-31%), and agricultural emissions (0%-24%). Sensitivities of PM2.5 concentrations to land transport and power generation emissions are all under 5%, except in South West China where land transport emissions contributed 13%. The largest reduction in winter PM2.5 exposure for changes in the five emission sectors is by 68%-81%, down to 15.3-25.9 μg m-3, remaining above the World Health Organization annual guideline of 10 μg m-3. The greatest reductions in PM2.5 exposure are driven by reducing residential and industrial emissions, emphasizing the importance of emission reductions in these key sectors. We show that the annual National Air Quality Target of 35 μg m-3 is unlikely to be achieved during winter without strong emission reductions from the residential and industrial sectors.
Collapse
Affiliation(s)
- Luke Conibear
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Carly L. Reddington
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Ben J. Silver
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Ying Chen
- College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | | | - Stephen R. Arnold
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Dominick V. Spracklen
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| |
Collapse
|
36
|
Mekonnen ZK, Oehlert JW, Eskenazi B, Shaw GM, Balmes JR, Padula AM. The relationship between air pollutants and maternal socioeconomic factors on preterm birth in California urban counties. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:503-513. [PMID: 33859340 PMCID: PMC8134052 DOI: 10.1038/s41370-021-00323-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Preterm birth is the leading cause of perinatal morbidity and mortality in the U.S. and disparities among racial and ethnic groups persist. While etiologies of preterm birth have not been fully elucidated, it is probable that environmental and social factors play a role. OBJECTIVE We hypothesized that there is an interactive association between exposure to fine particulate matter (PM2.5) or ozone (O3) and neighborhood socioeconomic factors that increase the risk of preterm birth. METHODS We conducted a retrospective study using geocoded birth certificate data between 2007 and 2011, daily ambient air quality data on PM2.5 and O3, and American Community Survey (2007-2011 5-year estimates) data to assess census tract-level socioeconomic factors in California urban counties. RESULTS Our study found a small positive association between maternal exposures to PM2.5 and O3 and preterm birth that varied by gestational exposure period. In mixed-effects models, we found an increase in the risk of preterm birth for a one-unit change in PM2.5 averaged across the entire pregnancy (AOR = 1.02, 95% CI: 1.01, 1.02) and O3 during 3-months pre-pregnancy (AOR = 1.03, 95% CI: 1.02, 1.04). Interaction between census tract-level factors and air pollutants showed an increase in the risk of preterm birth among mothers living in higher socioeconomic areas, though, a fixed cohort bias sensitivity analysis showed these associations were not significant. SIGNIFICANCE These findings substantiate previous studies that showed associations between air pollution and preterm birth, even as pollution levels have decreased. This study has important implications for policy decisions and may help inform research on potential mechanisms of preterm birth.
Collapse
Affiliation(s)
- Zesemayat K Mekonnen
- University of California Berkeley-University of California San Francisco Joint Medical Program, Berkeley, CA, USA
| | - John W Oehlert
- Department of Pediatrics, Division of Neonatology, Stanford University, Stanford, CA, USA
| | - Brenda Eskenazi
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Gary M Shaw
- Department of Pediatrics, Division of Neonatology, Stanford University, Stanford, CA, USA
| | - John R Balmes
- University of California Berkeley-University of California San Francisco Joint Medical Program, Berkeley, CA, USA
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Amy M Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
37
|
Conibear L, Reddington CL, Silver BJ, Chen Y, Knote C, Arnold SR, Spracklen DV. Statistical Emulation of Winter Ambient Fine Particulate Matter Concentrations From Emission Changes in China. GEOHEALTH 2021; 5:e2021GH000391. [PMID: 33977182 PMCID: PMC8095364 DOI: 10.1029/2021gh000391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 05/25/2023]
Abstract
Air pollution exposure remains a leading public health problem in China. The use of chemical transport models to quantify the impacts of various emission changes on air quality is limited by their large computational demands. Machine learning models can emulate chemical transport models to provide computationally efficient predictions of outputs based on statistical associations with inputs. We developed novel emulators relating emission changes in five key anthropogenic sectors (residential, industry, land transport, agriculture, and power generation) to winter ambient fine particulate matter (PM2.5) concentrations across China. The emulators were optimized based on Gaussian process regressors with Matern kernels. The emulators predicted 99.9% of the variance in PM2.5 concentrations for a given input configuration of emission changes. PM2.5 concentrations are primarily sensitive to residential (51%-94% of first-order sensitivity index), industrial (7%-31%), and agricultural emissions (0%-24%). Sensitivities of PM2.5 concentrations to land transport and power generation emissions are all under 5%, except in South West China where land transport emissions contributed 13%. The largest reduction in winter PM2.5 exposure for changes in the five emission sectors is by 68%-81%, down to 15.3-25.9 μg m-3, remaining above the World Health Organization annual guideline of 10 μg m-3. The greatest reductions in PM2.5 exposure are driven by reducing residential and industrial emissions, emphasizing the importance of emission reductions in these key sectors. We show that the annual National Air Quality Target of 35 μg m-3 is unlikely to be achieved during winter without strong emission reductions from the residential and industrial sectors.
Collapse
Affiliation(s)
- Luke Conibear
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Carly L. Reddington
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Ben J. Silver
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Ying Chen
- College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | | | - Stephen R. Arnold
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Dominick V. Spracklen
- Institute for Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| |
Collapse
|
38
|
Wainstock T, Sergienko R, Sheiner E. Can We Predict Preterm Delivery Based on the Previous Pregnancy? J Clin Med 2021; 10:jcm10071517. [PMID: 33916488 PMCID: PMC8038558 DOI: 10.3390/jcm10071517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Preterm deliveries (PTD, <37 gestational weeks) which occur in 5–18% of deliveries across the world, are associated with immediate and long-term offspring morbidity, as well as high costs to health systems. Our aim was to identify risk factors during the first pregnancy ending at term for PTD in the subsequent pregnancy. (2) Methods: A retrospective population- based nested case−control study was conducted, including all women with two first singleton consecutive deliveries. Women with PTD in the first pregnancy were excluded. Characteristics and complications of the first pregnancy were compared among cases, defined as women with PTD in their second pregnancy, and the controls, defined as women delivering at term in their second pregnancy. A multivariable logistic regression model was used to study the association between pregnancy complications (in the first pregnancy) and PTD (in the subsequent pregnancy), while adjusting for maternal age and the interpregnancy interval. (3) Results: A total of 39,780 women were included in the study, 5.2% (n = 2088) had PTD in their second pregnancy. Women with PTD, as compared to controls (i.e., delivered at term in second pregnancy), were more likely to have the following complications in their first pregnancy: perinatal mortality (0.4% vs. 1.0%), small for gestational age (12.4% vs. 8.1%), and preeclampsia (7.6% vs. 5.7%). In the multivariable model, after adjusting for maternal age, interpregnancy interval and co-morbidities, having any one of these first pregnancy complications was independently associated with an increased risk for PTD (adjusted OR = 1.44; 95%CI 1.28–1.62), and the risk was greater if two or more complications were diagnosed (adjusted OR = 2.09; 95%CI 1.47–3.00). These complications were also risk factors for early PTD (<34 gestational weeks), PTD with a systematic infectious disease in the background, and possibly with spontaneous PTD. (4) Conclusions: First pregnancy complications are associated with an increased risk for PTD in the subsequent pregnancy. First pregnancy, although ending at term, may serve as a window of opportunity to identify women at risk for future PTD.
Collapse
Affiliation(s)
- Tamar Wainstock
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8489325, Israel;
- Correspondence: ; Tel.: +972-523114880
| | - Ruslan Sergienko
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8489325, Israel;
| | - Eyal Sheiner
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 8489325, Israel;
| |
Collapse
|
39
|
Li Q, Wang YY, Guo Y, Zhou H, Wang QM, Shen HP, Zhang YP, Yan DH, Li S, Chen G, Lin L, He Y, Yang Y, Peng ZQ, Wang HJ, Ma X. Association between airborne particulate matter and renal function: An analysis of 2.5 million young adults. ENVIRONMENT INTERNATIONAL 2021; 147:106348. [PMID: 33387883 DOI: 10.1016/j.envint.2020.106348] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Limited studies have examined the impact of airborne particulate matter of 2.5 μm or less (PM2.5) on renal function. No study has examined the effect of PM1, which is small enough to reach the blood circulation. We examined whether exposure to PM1 or PM2.5 affected renal function of young Han Chinese. METHOD We included 2,546,047 young adults who were aged 18 to 45 years, being Han ethnicity and had no chronic disease from a Chinese national birth cohort. Serum creatinine (Scr) of each participant was measured during the baseline examination. Estimated glomerular filtration rate (eGFR) were calculated for each participant using the latest Chronic Kidney Disease Epidemiology Collaboration equation. One-year average exposure to PM1 and PM2.5 prior to the health examination for each participant were estimated using machine learning models with satellite remote sensing information. Generalized additive mixed models were used to estimate associations between PM1 or PM2.5 and renal function after adjusting for detailed individual variables. RESULTS A 10 μg/m3 increment in PM1 exposure was associated with -0.95% (95%CI: -1.04%, -0.87%) difference of eGFR in females and -0.37% (95%CI: -0.44%, -0.31%) in males. For PM2.5, the corresponding difference of eGFR was -0.99% (95%CI: -1.05%, -0.93%) in females and -0.48% (95%CI: -0.53%, -0.43%) in males, respectively. Associations between eGFR and PM were higher in females compared to males (p < 0.05 for interaction test). Association with PM1 were weaker than that with other fractions included in PM2.5. Participants who worked as farmers, were of normal weight, were not exposed to tobacco smoking, did not drink alcohol, had higher associations between eGFR and PM than their counterparts (p < 0.05 for interaction test). CONCLUSION Exposure to PM1 and PM2.5 was associated with reduced renal function among Han Chinese at reproductive age.
Collapse
Affiliation(s)
- Qin Li
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing, China; Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China; Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Yuan-Yuan Wang
- Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China; National Research Institute for Family Planning, Beijing, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Hong Zhou
- Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China; Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Qiao-Mei Wang
- Department of Maternal and Child Health, National Health Commission of the PRC, Beijing, China
| | - Hai-Ping Shen
- Department of Maternal and Child Health, National Health Commission of the PRC, Beijing, China
| | - Yi-Ping Zhang
- Department of Maternal and Child Health, National Health Commission of the PRC, Beijing, China
| | - Dong-Hai Yan
- Department of Maternal and Child Health, National Health Commission of the PRC, Beijing, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gongbo Chen
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Lizi Lin
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Yuan He
- National Research Institute for Family Planning, Beijing, China
| | - Ying Yang
- National Research Institute for Family Planning, Beijing, China
| | - Zuo-Qi Peng
- National Research Institute for Family Planning, Beijing, China
| | - Hai-Jun Wang
- Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China; Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China.
| | - Xu Ma
- Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China; National Research Institute for Family Planning, Beijing, China.
| |
Collapse
|
40
|
Gaining a deeper understanding of social determinants of preterm birth by integrating multi-omics data. Pediatr Res 2021; 89:336-343. [PMID: 33188285 PMCID: PMC7898277 DOI: 10.1038/s41390-020-01266-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
In the US, high rates of preterm birth (PTB) and profound Black-White disparities in PTB have persisted for decades. This review focuses on the role of social determinants of health (SDH), with an emphasis on maternal stress, in PTB disparity and biological embedding. It covers: (1) PTB disparity in US Black women and possible contributors; (2) the role of SDH, highlighting maternal stress, in the persistent racial disparity of PTB; (3) epigenetics at the interface between genes and environment; (4) the role of the genome in modifying maternal stress-PTB associations; (5) recent advances in multi-omics studies of PTB; and (6) future perspectives on integrating multi-omics with SDH to elucidate the Black-White disparity in PTB. Available studies have indicated that neither environmental exposures nor genetics alone can adequately explain the Black-White PTB disparity. Preliminary yet promising findings of epigenetic and gene-environment interaction studies underscore the value of integrating SDH with multi-omics in prospective birth cohort studies, especially among high-risk Black women. In an era of rapid advancements in biomedical sciences and technologies and a growing number of prospective birth cohort studies, we have unprecedented opportunities to advance this field and finally address the long history of health disparities in PTB. IMPACT: This review provides an overview of social determinants of health (SDH) with a focus on maternal stress and its role on Black-White disparity in preterm birth (PTB). It summarizes the available literature on the interplay of maternal stress with key biological layers (e.g., individual genome and epigenome in response to environmental stressors) and significant knowledge gaps. It offers perspectives that such knowledge may provide deeper insight into how SDH affects PTB and why some women are more vulnerable than others and underscores the critical need for integrating SDH with multi-omics in prospective birth cohort studies, especially among high-risk Black women.
Collapse
|
41
|
Jing S, Chen C, Gan Y, Vogel J, Zhang J. Incidence and trend of preterm birth in China, 1990-2016: a systematic review and meta-analysis. BMJ Open 2020; 10:e039303. [PMID: 33310797 PMCID: PMC7735132 DOI: 10.1136/bmjopen-2020-039303] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES To update the WHO estimate of preterm birth rate in China in 1990-2016 and to further explore variations by geographic regions and years of occurrence. DESIGN Systematic review and meta-analysis. DATA SOURCES Pubmed, Embase, Cochrane Library and Sinomed databases were searched from 1990 to 2018. ELIGIBILITY CRITERIA Studies were included if they provided preterm birth data with at least 500 total births. Reviews, case-control studies, intervention studies and studies with insufficient information or published before 1990 were excluded. We estimated pooled incidence of preterm birth by a random effects model, and preterm birth rate in different year, region and by livebirths or all births in subgroup analyses. RESULTS Our search identified 3945 records. After the removal of duplicates and screening of titles and abstracts, we reviewed 254 studies in full text and excluded 182, leaving 72 new studies. They were combined with the 82 studies included in the WHO report (154 studies, 187 data sets in total for the meta-analysis), including 24 039 084 births from 1990 to 2016. The pooled incidence of preterm birth in China was 6.09% (95% CI 5.86% to 6.31%) but has been steadily increasing from 5.36% (95% CI 4.89% to 5.84%) in 1990-1994 to 7.04% (95% CI 6.09% to 7.99%) in 2015-2016. The annual rate of increase was about 1.05% (95% CI 0.85% to 1.21%). Northwest China appeared to have the highest preterm birth rate (7.3%, 95% CI 4.92% to 9.68% from 1990 to 2016). CONCLUSIONS The incidence of preterm birth in China has been rising gradually in the past three decades. It was 7% in 2016. Preterm birth rate varied by region with the West having the highest occurrence.
Collapse
Affiliation(s)
- Shiwen Jing
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexin Gan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Joshua Vogel
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Victoria, Australia
| | - Jun Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Li Q, Wang YY, Guo Y, Zhou H, Wang X, Wang QM, Shen HP, Zhang YP, Yan DH, Li S, Chen G, Lin L, He Y, Yang Y, Peng ZQ, Wang HJ, Ma X. Folic Acid Supplementation and the Association between Maternal Airborne Particulate Matter Exposure and Preterm Delivery: A National Birth Cohort Study in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:127010. [PMID: 33337244 PMCID: PMC7747880 DOI: 10.1289/ehp6386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Potential modification of the association between maternal particulate matter (PM) exposure and preterm delivery (PTD) by folic acid (FA) supplementation has not been studied. OBJECTIVE We examined whether FA supplementation could reduce the risk of PTD associated with maternal exposure to PM in ambient air during pregnancy. METHOD In a cohort study covering 30 of the 31 provinces of mainland China in 2014, 1,229,556 primiparas of Han ethnicity were followed until labor. We collected information on their FA supplementation and pregnancy outcomes and estimated each participant's exposure to PM with diameters of ≤ 10 μ m (PM 10 ), 2.5 μ m (PM 2.5 ), and 1 μ m (PM 1 ) using satellite remote-sensing based models. Cox proportional hazard regression models were used to examine interactions between FA supplementation and PM exposures, after controlling for individual characteristics. RESULTS Participants who initiated FA ≥ 3 months prior to pregnancy (38.1%) had a 23% [hazard ratio ( HR ) = 0.77 (95% CI: 0.76, 0.78)] lower risk of PTD than women who did not use preconception FA. Participants with PM concentrations in the highest quartile had a higher risk of PTD [HR = 1.29 (95% CI: 1.26, 1.32) for PM 1 , 1.52 (95% CI: 1.46, 1.58) for PM 2.5 , and 1.22 (95% CI: 1.17, 1.27) for PM 10 ] than those with exposures in the lowest PM quartiles. Estimated associations with a 10 - μ g / m 3 increase in PM 1 and PM 2.5 were significantly lower among women who initiated FA ≥ 3 months prior to pregnancy [HR = 1.09 (95% CI: 1.08, 1.10) for both exposures] than among women who did not use preconception FA [HR = 1.12 (95% CI: 1.11, 1.13) for both exposures; p interaction < 0.001 ]. The corresponding association was also significantly lower for a 10 - μ g / m 3 increase in PM 10 [HR = 1.03 (95% CI: 1.02, 1.03) for FA ≥ 3 months before pregnancy vs. 1.04 (95% CI: 1.03, 1.04) for no preconception FA; p interaction < 0.001 ]. CONCLUSION Our findings require confirmation in other populations, but they suggest that initiating FA supplementation ≥ 3 months prior to pregnancy may lessen the risk of PTD associated with PM exposure during pregnancy among primiparas of Han ethnicity. https://doi.org/10.1289/EHP6386.
Collapse
Affiliation(s)
- Qin Li
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
- Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China
- Reproductive Medical Centre, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yuan-Yuan Wang
- Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China
- National Research Institute for Family Planning, Beijing, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Hong Zhou
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
- Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qiao-Mei Wang
- Department of Maternal and Child Health, National Health Commission of the People’s Republic of China, Beijing, China
| | - Hai-Ping Shen
- Department of Maternal and Child Health, National Health Commission of the People’s Republic of China, Beijing, China
| | - Yi-Ping Zhang
- Department of Maternal and Child Health, National Health Commission of the People’s Republic of China, Beijing, China
| | - Dong-Hai Yan
- Department of Maternal and Child Health, National Health Commission of the People’s Republic of China, Beijing, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Gongbo Chen
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Lizi Lin
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Yuan He
- National Research Institute for Family Planning, Beijing, China
| | - Ying Yang
- National Research Institute for Family Planning, Beijing, China
| | - Zuo-Qi Peng
- National Research Institute for Family Planning, Beijing, China
| | - Hai-Jun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
- Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China
| | - Xu Ma
- Environmental and Spatial Epidemiology Research Center, National Human Genetic Resources Center, Beijing, China
- National Research Institute for Family Planning, Beijing, China
| |
Collapse
|
43
|
Fang J, Kang CM, Osorio-Yáñez C, Barrow TM, Zhang R, Zhang Y, Li C, Liu H, Li PH, Guo L, Byun HM. Prenatal PM 2.5 exposure and the risk of adverse births outcomes: Results from Project ELEFANT. ENVIRONMENTAL RESEARCH 2020; 191:110232. [PMID: 32961173 DOI: 10.1016/j.envres.2020.110232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Studies investigating the impact of fine particulate matter (PM2.5) exposure during pregnancy upon adverse birth outcomes have primarily been performed in Western nations with low ambient PM2.5 levels. We examined associations between high levels of PM2.5 exposure during pregnancy and risk of adverse birth outcomes by timing and level of exposure in a Chinese population. METHODS We analysed data from 10,738 live births within the Project ELEFANT study based in Tianjin, China. Personal mean daily PM2.5 exposures were estimated using data from 25 local monitoring sites across the city, used to compute the days exceeding 50, 100, 150, 200 and 250 μg/m3. Relative risk of pre-term birth (<37 weeks) and low birthweight (<2500 g) were estimated by generalized additive distributed lag models, adjusted for maternal age, sex, region, paternal smoking, parity, maternal occupation, season, temperature and dew point. RESULTS A dose-response was exhibited for PM2.5 exposure and relative risk (RR) of adverse birth outcomes, with exposure in the second and third trimesters of pregnancy associated with greatest risk of adverse birth outcomes. The RRs of pre-term birth with exposures of >50, >150 and > 250 μg/m3 PM2.5 in the third trimester were 1.09 (95%CI: 1.03-1.16), 1.30 (1.09-1.54) and 2.73 (2.03-3.66) respectively. For low birthweight, exposures of >50, >150 and > 250 μg/m3 PM2.5 in the third trimester were associated with RRs of 0.99 (0.88-1.11), 1.37 (1.04-1.81) and 3.03 (1.75-5.23) respectively. CONCLUSIONS Exposure to high levels of PM2.5 from the second trimester onwards was most strongly associated with increased risk of pre-term birth and low birthweight, with a dose-response relationship. Our data demonstrates the need to account for both level and timing of exposure in analysis of PM2.5-associated birth outcomes.
Collapse
Affiliation(s)
- Junkai Fang
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, China
| | - Choong-Min Kang
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Citlalli Osorio-Yáñez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México DF, Mexico
| | - Timothy M Barrow
- Faculty of Health Sciences & Wellbeing, University of Sunderland, Sunderland, United Kingdom
| | - Ruiping Zhang
- Department of Obstetrics and Gynecology, PLA 96605 Army Hospital, Jilin, China
| | - Ying Zhang
- Medical Genetic Laboratory, Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Li
- Department of Occupational & Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, China
| | - Hongbin Liu
- Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, China
| | - Peng-Hui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Liqiong Guo
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.
| | - Hyang-Min Byun
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
44
|
Cai J, Zhao Y, Kan J, Chen R, Martin R, van Donkelaar A, Ao J, Zhang J, Kan H, Hua J. Prenatal Exposure to Specific PM 2.5 Chemical Constituents and Preterm Birth in China: A Nationwide Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14494-14501. [PMID: 33146526 DOI: 10.1021/acs.est.0c02373] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Exposure to fine particulate matter (PM2.5) during pregnancy has been associated with preterm birth (PTB). However, the existing evidence is inconsistent, and the roles of specific PM2.5 chemical constituents remain unclear. Based on the China Labor and Delivery Survey, we included birth data from 89 hospitals in 25 provinces in mainland China, and conducted a national multicenter cohort study to examine the associations of PM2.5 and its chemical constituents with PTB risk in China. We applied satellite-based models to predict prenatal PM2.5 mass and six main component exposure. Multilevel logistic regression analysis was used to examine the associations, controlling for sociodemographic characteristics, seasonality, and spatial variation. We observe an increased PTB risk with an increase in PM2.5 mass and the most significant association is found during the third trimester when the adjusted odds ratio (OR) per interquartile range increases in PM2.5 total mass is 1.12 (95% confidence Interval, CI: 1.05-1.20). Infants conceived by assisted reproductive technology (ART) show greater PTB risk associated with PM2.5 exposure (OR = 1.33, 95% CI: 1.05-1.69) than those conceived naturally (OR = 1.11, 95% CI: 1.03-1.19). We also find black carbon, sulfate, ammonium and nitrate, often linked to fossil combustion, have comparable or larger estimates of the effect (OR = 1.07-1.14) than PM2.5. Our findings provide evidence that components mainly from fossil fuel combustion may have a perceptible influence on increased PTB risk associated with PM2.5 exposure in China. Additionally, compared to natural conception, conception through ART may be more susceptible to PM2.5 exposure.
Collapse
Affiliation(s)
- Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Typhoon Institute/CMA, Shanghai 200030, China
| | - Yan Zhao
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Julia Kan
- University of Bristol Medical School, Bristol BS8 1TH, U.K
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Randall Martin
- Department of Physics and Atmospheric Science, Dalhousie University, 6300 Coburg Road, Halifax, Nova Scotia B3H 3J5, Canada
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, 6300 Coburg Road, Halifax, Nova Scotia B3H 3J5, Canada
| | - Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200096, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200096, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
- National Center for Children's Health, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Jing Hua
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
45
|
Earth Observation Data Supporting Non-Communicable Disease Research: A Review. REMOTE SENSING 2020. [DOI: 10.3390/rs12162541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A disease is non-communicable when it is not transferred from one person to another. Typical examples include all types of cancer, diabetes, stroke, or allergies, as well as mental diseases. Non-communicable diseases have at least two things in common—environmental impact and chronicity. These diseases are often associated with reduced quality of life, a higher rate of premature deaths, and negative impacts on a countries’ economy due to healthcare costs and missing work force. Additionally, they affect the individual’s immune system, which increases susceptibility toward communicable diseases, such as the flu or other viral and bacterial infections. Thus, mitigating the effects of non-communicable diseases is one of the most pressing issues of modern medicine, healthcare, and governments in general. Apart from the predisposition toward such diseases (the genome), their occurrence is associated with environmental parameters that people are exposed to (the exposome). Exposure to stressors such as bad air or water quality, noise, extreme heat, or an overall unnatural surrounding all impact the susceptibility to non-communicable diseases. In the identification of such environmental parameters, geoinformation products derived from Earth Observation data acquired by satellites play an increasingly important role. In this paper, we present a review on the joint use of Earth Observation data and public health data for research on non-communicable diseases. We analyzed 146 articles from peer-reviewed journals (Impact Factor ≥ 2) from all over the world that included Earth Observation data and public health data for their assessments. Our results show that this field of synergistic geohealth analyses is still relatively young, with most studies published within the last five years and within national boundaries. While the contribution of Earth Observation, and especially remote sensing-derived geoinformation products on land surface dynamics is on the rise, there is still a huge potential for transdisciplinary integration into studies. We see the necessity for future research and advocate for the increased incorporation of thematically profound remote sensing products with high spatial and temporal resolution into the mapping of exposomes and thus the vulnerability and resilience assessment of a population regarding non-communicable diseases.
Collapse
|
46
|
Zhang X, Fan C, Ren Z, Feng H, Zuo S, Hao J, Liao J, Zou Y, Ma L. Maternal PM 2.5 exposure triggers preterm birth: a cross-sectional study in Wuhan, China. Glob Health Res Policy 2020; 5:17. [PMID: 32377568 PMCID: PMC7193342 DOI: 10.1186/s41256-020-00144-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Most of the studies regarding air pollution and preterm birth (PTB) in highly polluted areas have estimated the exposure level based on fixed-site monitoring. However, exposure assessment methods relying on monitors have the potential to cause exposure misclassification due to a lack of spatial variation. In this study, we utilized a land use regression (LUR) model to assess individual exposure, and explored the association between PM2.5 exposure during each time window and the risk of preterm birth in Wuhan city, China. Methods Information on 2101 singleton births, which were ≥ 20 weeks of gestation and born between November 1, 2013 and May 31, 2014; between January 1, 2015 and August 31, 2015, was obtained from the Obstetrics Department in one 3A hospital in Wuhan. Air quality index (AQI) data were accessed from the Wuhan Environmental Protection Bureau website. Individual exposure during pregnancy was assessed by LUR models and Kriging interpolation. Logistic regression analyses were conducted to determine the association between women exposure to PM2.5 and the risk of different subtypes of PTB. Results During the study period, the average individual exposure concentration of PM2.5 during the entire pregnancy was 84.54 μg/m3. A 10 μg/m3 increase of PM2.5 exposure in the first trimester (OR: 1.169; 95% CI: 1.077, 1.262), the second trimester (OR: 1.056; 95% CI: 1.015, 1.097), the third trimester (OR: 1.052; 95% CI: 1.002, 1.101), and the entire pregnancy (OR: 1.263; 95% CI: 1.158, 1.368) was significantly associated with an increased risk of PTB. For the PTB subgroup, the hazard of PM2.5 exposure during pregnancy was stronger for very preterm births (VPTB) than moderate preterm births (MPTB). The first trimester was the most susceptible exposure window. Moreover, women who had less than 9 years of education or who conceived during the cold season tended to be more susceptible to the PM2.5 exposure during pregnancy. Conclusions Maternal exposure to PM2.5 increased the risk of PTB, and this risk was stronger for VPTB than for MPTB, especially during the first trimester.
Collapse
Affiliation(s)
- Xiaotong Zhang
- 1Department of Epidemiology and Health Statistics, School of Health Sciences, Wuhan University, Wuhan, 430071 China
| | - Cuifang Fan
- 2Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Zhan Ren
- 1Department of Epidemiology and Health Statistics, School of Health Sciences, Wuhan University, Wuhan, 430071 China
| | - Huan Feng
- 1Department of Epidemiology and Health Statistics, School of Health Sciences, Wuhan University, Wuhan, 430071 China
| | - Shanshan Zuo
- 1Department of Epidemiology and Health Statistics, School of Health Sciences, Wuhan University, Wuhan, 430071 China
| | - Jiayuan Hao
- 1Department of Epidemiology and Health Statistics, School of Health Sciences, Wuhan University, Wuhan, 430071 China
| | - Jingling Liao
- 3Department of Public Health, Wuhan University of Science and Technology School of Medicine, Wuhan, 430081 China
| | - Yuliang Zou
- 1Department of Epidemiology and Health Statistics, School of Health Sciences, Wuhan University, Wuhan, 430071 China.,4Global Health Institute, Wuhan University, Wuhan, 430071 China
| | - Lu Ma
- 1Department of Epidemiology and Health Statistics, School of Health Sciences, Wuhan University, Wuhan, 430071 China.,4Global Health Institute, Wuhan University, Wuhan, 430071 China
| |
Collapse
|
47
|
Wang B, Xu S, Lu X, Ma L, Gao L, Zhang SY, Li R, Fu L, Wang H, Sun GP, Xu DX. Reactive oxygen species-mediated cellular genotoxic stress is involved in 1-nitropyrene-induced trophoblast cycle arrest and fetal growth restriction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113984. [PMID: 32041019 DOI: 10.1016/j.envpol.2020.113984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
1-nitropyrene (1-NP) is a key component of diesel exhaust-sourced fine particulate matter (PM2.5). Our recent study demonstrated that gestational 1-NP exposure caused placental proliferation inhibition and fetal intrauterine growth restriction (IUGR). This study aimed to investigate the role of genotoxic stress on 1-NP-induced placental proliferation inhibition and fetal IUGR. Human trophoblasts were exposed to 1-NP (10 μM). Growth index was reduced and PCNA was downregulated in 1-NP-exposed placental trophoblasts. More than 90% of 1-NP-exposed trophoblasts were arrested in either G0/G1 or G2/M phases. CDK1 and cyclin B, two G2/M cycle-related proteins, and CDK2, a G0/G1 cycle-related protein, were reduced in 1-NP-exposed trophoblasts. Phosphorylated Rb, a downstream molecule of CDK2, was inhibited in 1-NP-exposed trophoblasts. Moreover, DNA double-strand break was observed and γ-H2AX, another indicator of DNA double-strand break, was upregulated in 1-NP-exposed trophoblasts. Phosphorylated ATM, a key molecule of genotoxic stress, and its downstream molecule Chk2 were elevated. By contrast, Cdc25A, a downstream target of Chk2, was reduced in 1-NP-exposed trophoblasts. Phenyl-N-t-butylnitrone (PBN), a free radical scavenger, inhibited 1-NP-induced genotoxic stress and trophoblast cycle arrest. Animal experiment showed that N-acetylcysteine (NAC), an antioxidant, rescued 1-NP-induced placental proliferation inhibition and fetal IUGR in mice. These results provide evidence that reactive oxygen species (ROS)-mediated cellular genotoxic stress partially contributes to 1-NP-induced placental proliferation inhibition and fetal IUGR.
Collapse
Affiliation(s)
- Bo Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Shen Xu
- First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Xue Lu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Li Ma
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Shan-Yu Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Ran Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Lin Fu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Guo-Ping Sun
- First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
48
|
Wang YY, Li Q, Guo Y, Zhou H, Wang QM, Shen HP, Zhang YP, Yan DH, Li S, Chen G, Zhou S, He Y, Yang Y, Peng ZQ, Wang HJ, Ma X. Long-term exposure to airborne particulate matter of 1 μm or less and blood pressure in healthy young adults: A national study with 1.2 million pregnancy planners. ENVIRONMENTAL RESEARCH 2020; 184:109113. [PMID: 32199315 DOI: 10.1016/j.envres.2020.109113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
No evidence exists concerning the effect of airborne particulate matter of 1 μm or less (PM1) on blood pressure of young adults planning for pregnancy. We collected health examination information of about 1.2 million couples (aged 18-45 years) from a national birth cohort in China from Jan 1, 2013 to Oct 1, 2014 and matched their home address to daily PM1 and PM2.5 concentrations, which were predicted by remote sensing information. Generalized additive mixed models were used to analyze associations between long-term exposure to PM and blood pressure, after controlling for individual factors. A 10 μg/m3 increase in PM1 was associated with increased systolic blood pressure (SBP) for 0.26 (95%CI: 0.24, 0.29) mmHg in females and 0.29 (95%CI: 0.26, 0.31) mmHg in males, respectively. PM1 was also associated with increased DBP for 0.22 (95%CI: 0.20, 0.23) mmHg in females and 0.17 (95%CI: 0.15, 0.19) mmHg in males, respectively. Similar effects on blood pressure were found for PM2.5, meanwhile, the effect of PM2.5 on SBP increased with the scale of PM1 included in PM2.5 (p for interaction term <0.01). In summary, long-term exposure to PM1 as well as PM2.5 was associated with increased SBP and DBP of Chinese young adults planning for pregnancy.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- National Research Institute for Family Planning, Beijing, China; National Center for Human Genetic Resources, Beijing, China
| | - Qin Li
- National Center for Human Genetic Resources, Beijing, China; Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Hong Zhou
- National Center for Human Genetic Resources, Beijing, China; Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Qiao-Mei Wang
- Department of Maternal and Child Health, National Health Commission of the PR China, Beijing, China
| | - Hai-Ping Shen
- Department of Maternal and Child Health, National Health Commission of the PR China, Beijing, China
| | - Yi-Ping Zhang
- Department of Maternal and Child Health, National Health Commission of the PR China, Beijing, China
| | - Dong-Hai Yan
- Department of Maternal and Child Health, National Health Commission of the PR China, Beijing, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gongbo Chen
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shuang Zhou
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Yuan He
- National Research Institute for Family Planning, Beijing, China
| | - Ying Yang
- National Research Institute for Family Planning, Beijing, China
| | - Zuo-Qi Peng
- National Research Institute for Family Planning, Beijing, China
| | - Hai-Jun Wang
- National Center for Human Genetic Resources, Beijing, China; Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China.
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China; National Center for Human Genetic Resources, Beijing, China.
| |
Collapse
|
49
|
Siddika N, Rantala AK, Antikainen H, Balogun H, Amegah AK, Ryti NRI, Kukkonen J, Sofiev M, Jaakkola MS, Jaakkola JJK. Short-term prenatal exposure to ambient air pollution and risk of preterm birth - A population-based cohort study in Finland. ENVIRONMENTAL RESEARCH 2020; 184:109290. [PMID: 32126375 DOI: 10.1016/j.envres.2020.109290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Previous studies have provided evidence that prenatal exposure to low-level air pollution increases the risk of preterm birth (PTB), but the findings of the effects of short-term exposure have been inconclusive. Moreover, there is little knowledge on potential synergistic effects of different combinations of air pollutants. OBJECTIVES To assess independent and joint effects of prenatal exposure to air pollutants during the week prior to the delivery on the risk of PTB. METHODS The study population included 2568 members of the Espoo Cohort Study, living in the City of Espoo, Finland, born between 1984 and 1990. We assessed individual-level prenatal exposure to ambient air pollutants of interest based on maternal residential addresses, while taking into account their residential mobility. We used both regional-to-city-scale dispersion modelling and land-use regression-based method to estimates the pollutant concentrations. We contrasted the risk of PTB in the highest quartile (Q4) of exposure to the lower exposure quartiles (Q1-Q3) during the specific periods of pregnancy. We applied Poisson regression analysis to estimate the adjusted risk ratios (RRs) with their 95% confidence intervals (CI), adjusting for season of birth, maternal age, sex of the baby, family's socioeconomic status, maternal smoking, and exposure to environmental tobacco smoke during pregnancy, single parenthood, and exposure to other air pollutants (this in multi-pollutant models). RESULTS The risk of PTB was related to exposures to PM2.5, PM10 and NO2 during the week prior to the delivery with adjusted RRs of 1.67 (95%CI: 1.14, 2.46), 1.60 (95% CI: 1.09, 2.34) and 1.65 (95% CI: 1.14, 2.37), from three-pollutant models respectively. There were no significant joint effects for these different air pollutants (during the week prior to the delivery). CONCLUSION Our results provide evidence that exposure to fairly low-level air pollution may trigger PTB, but synergistic effects of different pollutants are not likely.
Collapse
Affiliation(s)
- Nazeeba Siddika
- Center for Environmental and Respiratory Health Research, Faculty of Medicine, P.O. Box 5000, 90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, P.O. Box 8000, 90014, University of Oulu, Oulu, Finland
| | - Aino K Rantala
- Center for Environmental and Respiratory Health Research, Faculty of Medicine, P.O. Box 5000, 90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, P.O. Box 8000, 90014, University of Oulu, Oulu, Finland
| | - Harri Antikainen
- Geography Research Unit, P.O. Box 3000, 90014, University of Oulu, Oulu, Finland
| | - Hamudat Balogun
- Center for Environmental and Respiratory Health Research, Faculty of Medicine, P.O. Box 5000, 90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, P.O. Box 8000, 90014, University of Oulu, Oulu, Finland
| | - A Kofi Amegah
- Public Health Research Group, Department of Biomedical Sciences, University Post Office, University of Cape Coast, Cape Coast, Ghana
| | - Niilo R I Ryti
- Center for Environmental and Respiratory Health Research, Faculty of Medicine, P.O. Box 5000, 90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, P.O. Box 8000, 90014, University of Oulu, Oulu, Finland
| | - Jaakko Kukkonen
- Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
| | - Mikhail Sofiev
- Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
| | - Maritta S Jaakkola
- Center for Environmental and Respiratory Health Research, Faculty of Medicine, P.O. Box 5000, 90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, P.O. Box 8000, 90014, University of Oulu, Oulu, Finland
| | - Jouni J K Jaakkola
- Center for Environmental and Respiratory Health Research, Faculty of Medicine, P.O. Box 5000, 90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, P.O. Box 8000, 90014, University of Oulu, Oulu, Finland.
| |
Collapse
|
50
|
Yeung EH, Guan W, Zeng X, Salas LA, Mumford SL, de Prado Bert P, van Meel ER, Malmberg A, Sunyer J, Duijts L, Felix JF, Czamara D, Hämäläinen E, Binder EB, Räikkönen K, Lahti J, London SJ, Silver RM, Schisterman EF. Cord blood DNA methylation reflects cord blood C-reactive protein levels but not maternal levels: a longitudinal study and meta-analysis. Clin Epigenetics 2020; 12:60. [PMID: 32354366 PMCID: PMC7193358 DOI: 10.1186/s13148-020-00852-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/15/2020] [Indexed: 02/22/2023] Open
Abstract
Background Prenatal inflammation has been proposed as an important mediating factor in several adverse pregnancy outcomes. C-reactive protein (CRP) is an inflammatory cytokine easily measured in blood. It has clinical value due to its reliability as a biomarker for systemic inflammation and can indicate cellular injury and disease severity. Elevated levels of CRP in adulthood are associated with alterations in DNA methylation. However, no studies have prospectively investigated the relationship between maternal CRP levels and newborn DNA methylation measured by microarray in cord blood with reasonable epigenome-wide coverage. Importantly, the timing of inflammation exposure during pregnancy may also result in different effects. Thus, our objective was to evaluate this prospective association of CRP levels measured during multiple periods of pregnancy and in cord blood at delivery which was available in one cohort (i.e., Effects of Aspirin in Gestation and Reproduction trial), and also to conduct a meta-analysis with available data at one point in pregnancy from three other cohorts from the Pregnancy And Childhood Epigenetics consortium (PACE). Secondarily, the impact of maternal randomization to low dose aspirin prior to pregnancy on methylation was assessed. Results Maternal CRP levels were not associated with newborn DNA methylation regardless of gestational age of measurement (i.e., CRP at approximately 8, 20, and 36 weeks among 358 newborns in EAGeR). There also was no association in the meta-analyses (all p > 0.5) with a larger sample size (n = 1603) from all participating PACE cohorts with available CRP data from first trimester (< 18 weeks gestation). Randomization to aspirin was not associated with DNA methylation. On the other hand, newborn CRP levels were significantly associated with DNA methylation in the EAGeR trial, with 33 CpGs identified (FDR corrected p < 0.05) when both CRP and methylation were measured at the same time point in cord blood. The top 7 CpGs most strongly associated with CRP resided in inflammation and vascular-related genes. Conclusions Maternal CRP levels measured during each trimester were not associated with cord blood DNA methylation. Rather, DNA methylation was associated with CRP levels measured in cord blood, particularly in gene regions predominately associated with angiogenic and inflammatory pathways. Trial registration Clinicaltrials.gov, NCT00467363, Registered April 30, 2007, http://www.clinicaltrials.gov/ct2/show/NCT00467363
Collapse
Affiliation(s)
- Edwina H Yeung
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA.
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, A460 Mayo Building, MMC 303, 420 Delaware St. SE, Minneapolis, MN, 55455, USA
| | | | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, 03766, USA
| | - Sunni L Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA
| | - Paula de Prado Bert
- ISGlobal, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Evelien R van Meel
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anni Malmberg
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jordi Sunyer
- ISGlobal, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), 08003, Barcelona, Spain
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, 27709, USA
| | - Robert M Silver
- University of Utah, Salt Lake City, 50 N Medical Dr, Salt Lake City, UT, 84132, USA
| | - Enrique F Schisterman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA
| |
Collapse
|