1
|
Cui J, Xiao S, Guo H, Wei Y, Shi X, Zhao F, Liu X, Zhou Z, Liu D, Wang P. Insights into organophosphorus insecticide malathion induced reproductive toxicity and intergenerational effect in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178188. [PMID: 39709839 DOI: 10.1016/j.scitotenv.2024.178188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
The reproductive and transgenerational effects of malathion, a widely utilized low-toxicity organophosphorus insecticide, were explored using zebrafish as model animal. Adult zebrafish (F0) were exposed to malathion at 0.1-1.0 mg/L for 60 days for exploring the reproductive toxicity in sex differences and the potential mechanisms, and development and transcription levels in F1 offspring were assessed. Malathion significantly suppressed the fertility of zebrafish as evidenced by reduced spawning and lower fertilization rates in F1 offspring. Abnormal gonadal development and steroid hormone disorders were observed in F0 zebrafish, which was associated with the alterations in the transcription of core genes (such as cyp11a, cyp19a, vtg1, era) along the hypothalamus-pituitary-gonad-liver (HPGL) axis. The expression level of vtg1 played a key role in the malathion-induced sex dependence on E2 and VTG levels. The reduction of E2 and VTG could disrupt ovarian capability in females. E2 excess would cause feminization in males. Molecular docking indicated that reproductive disorders induced by malathion in zebrafish mainly through estrogen-like effects and CYP11A antagonism. Parental exposure to malathion abnormalized embryonic development in F1 offspring, comprising heartbeats decrease, deformities and body length reduction. Transcriptomics suggested that malathion-induced reproductive toxicity could be transmitted across generations, which may adversely affect fish populations.
Collapse
Affiliation(s)
- Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Shouchun Xiao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Haoming Guo
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Yimu Wei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xinlei Shi
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Fanrong Zhao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
2
|
Wu D, Carter L, Kay P, Holden J, Yin Y, Guo H. Female zebrafish are more affected than males under polystyrene microplastics exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136616. [PMID: 39581033 DOI: 10.1016/j.jhazmat.2024.136616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Microplastics are ubiquitous in freshwater and can be absorbed into fish skin and gills, accumulate in the gut, and be transported to other tissues, thus posing a risk to fish health. Further studies are needed, however, to investigate effects such as endocrine disruption and multi-tissue toxicity. In this study, zebrafish were exposed to polystyrene (PS) microplastics and health-related indicators were measured, including skin mucus, gut damage, oxidative stress, stable isotope composition and reproduction as well as an assessment of changes to metabolites using a metabolomics approach. Results showed that concentrations of PS microplastics were higher in gills than those in the gut. Minimal impact to immunoglobulin M level and lysozyme activity in mucus indicated, however, that microplastic toxicity primarily stemmed from ingestion rather than disruption of skin mucus immunity. Female zebrafish were more affected by PS microplastics. Gut microbiota dysbiosis was induced, especially in females. Significant alterations in pathways associated with lipid and energy metabolism were observed in the liver of female fish. PS microplastics also induced sex steroid hormone disorder and reduced female egg production, possibly linked to the alteration of gut microbiota and hepatic metabolism. Combined, these results highlight the gender-specific toxicity of PS microplastics to zebrafish health, potentially harming their population.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Laura Carter
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Paul Kay
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Joseph Holden
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Robitaille J, Desrosiers M, Veilleux É, Métivier M, Guay I, Lefebvre-Raine M, Langlois VS. Is Seven Days Enough? Comparing A 7-Day Exposure to the Classical 21-Day OECD TG 229 Fish Short-Term Reproduction Assay in Fathead Minnow. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:222-233. [PMID: 39289235 DOI: 10.1007/s00244-024-01089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
The OECD (Organisation for Economic Co-operation and Development) test guidelines (TG) 229-fish short-term reproduction assay (FSTRA) is one of the gold standard methods used to identify endocrine disrupting chemicals (EDCs). While informative, the FSTRA's 5-6 week duration makes it difficult to use routinely. Prior studies have shown that EDCs' impact on fecundity, vitellogenin (VTG) and steroid levels can be detected after less than 1 week of exposure suggesting the FSTRA could be shortened. This study compares both 7- and 21-day FSTRAs using fathead minnows (Pimephales promelas) for three known EDCs: 17α-ethinylestradiol (EE2; 40 ng/L), 17β-trenbolone (TRB; 50 µg/L), and propiconazole (PRP; 500 µg/L). All three compounds led to arrested fertility after 24 h of exposure, except for the 7-day EE2 treatment which still decreased reproduction. Moreover, independently of time of exposure, EE2 induced VTG production in males, and decreased estrogen levels in females and testosterone levels in males. In contrast, TRB-induced VTG production in males, while the levels were not different from controls in females even though testosterone levels increased, and masculinization was observed. Finally, PRP led to a decrease in VTG levels which was only significant during the 21-day exposure, and surprisingly, no effect on steroid levels were observed despite its known effects on steroidogenesis. For two of the three EDCs tested, both times of exposure led to similar outcomes supporting the shortening of the FSTRA to seven days. This proposed 7-day FSTRA could be used to screen EDCs in routine monitoring of environmental samples.
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), 490 de La Couronne, Quebec City, QC, G1K 9A9, Canada
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Mélanie Desrosiers
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Éloïse Veilleux
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Marianne Métivier
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Isabelle Guay
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Molly Lefebvre-Raine
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), 490 de La Couronne, Quebec City, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), 490 de La Couronne, Quebec City, QC, G1K 9A9, Canada.
| |
Collapse
|
4
|
Yao X, Lv H, Wang Q, Ding J, Kong W, Mu B, Dong C, Hu X, Sun H, Li X, Wang J. Novel Insights into Stereoselective Reproductive Toxicity Induced by Mefentrifluconazole in Earthworms ( Eisenia fetida): First Report of Estrogenic Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19304-19311. [PMID: 39013151 DOI: 10.1021/acs.jafc.4c04168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Widespread use of the new chiral triazole fungicide mefentrifluconazole (MFZ) poses a threat to soil organisms. Although triazole fungicides have been reported to induce reproductive disorders in vertebrates, significant research gaps remain regarding their impact on the reproductive health of soil invertebrates. Here, reproduction-related toxicity end points were explored in earthworms (Eisenia fetida) after exposure for 28 d to soil containing 4 mg/kg racemic MFZ, R-(-)-MFZ, and S-(+)-MFZ. The S-(+)-MFZ treatment resulted in a more pronounced reduction in the number of cocoons and juveniles compared to R-(-)-MFZ treatment, and the expression of annetocin gene was significantly downregulated following exposure to both enantiomers. This reproductive toxicity has been attributed to the disruption of ovarian steroidogenesis at the transcriptional level. Further studies revealed that MFZ enantiomers were able to activate the estrogen receptor (ER). Indirect evidence for this estrogenic effect is provided by the introduction of 17β-estradiol, which also induces reproductive disorders through ER activation.
Collapse
Affiliation(s)
- Xiangfeng Yao
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Huijuan Lv
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Qian Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jia Ding
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Weizheng Kong
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Baoyan Mu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Chang Dong
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Xue Hu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Hongda Sun
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Xianxu Li
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
5
|
Zhai Z, Meng M, Zhang Z, Kim J, Zhu Y. Metabolism of a fungicide propiconazole by Cunninghamella elegans ATCC36112. Arch Microbiol 2024; 206:356. [PMID: 39026110 DOI: 10.1007/s00203-024-04062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
The metabolic breakdown of propiconazole by fungi was examined, and it was found that the microbial model (Cunninghamella elegans ATCC36112) efficiently degrades the triazole fungicide propiconazole through the action of cytochrome P450. This enzyme primarily facilitates the oxidation and hydrolysis processes involved in phase I metabolism. We observed major metabolites indicating hydroxylation/oxidation of propyl groups of propiconazole. Around 98% of propiconazole underwent degradation within a span of 3 days post-treatment, leading to the accumulation of five metabolites (M1-M5). The experiments started with a preliminary identification of propiconazole and its metabolites using GC-MS. The identified metabolites were then separated and identified by in-depth analysis using preparative UHPLC and MS/MS. The metabolites of propiconazole are M1 (CGA-118245), M2(CGA-118244), M3(CGA-136735), M4(GB-XLIII-42-1), and M5(SYN-542636). To further investigate the role of key enzymes in potential fungi, we treated the culture medium with piperonyl butoxide (PB) and methimazole (MZ), and then examined the kinetic responses of propiconazole and its metabolites. The results indicated a significant reduction in the metabolism rate of propiconazole in the medium treated with PB, while methimazole showed weaker inhibitory effects on the metabolism of propiconazole in the fungus C. elegans.
Collapse
Grants
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
Collapse
Affiliation(s)
- Zhaochi Zhai
- Qingdao Agricultural University, Chengyang, Qingdao City, China
| | - Min Meng
- Qingdao Agricultural University, Chengyang, Qingdao City, China
| | - Zhenxing Zhang
- Qingdao Agricultural University, Chengyang, Qingdao City, China
| | | | - Yongzhe Zhu
- Qingdao Agricultural University, Chengyang, Qingdao City, China.
| |
Collapse
|
6
|
Li Z, Xian H, Ye R, Zhong Y, Liang B, Huang Y, Dai M, Guo J, Tang S, Ren X, Bai R, Feng Y, Deng Y, Yang X, Chen D, Yang Z, Huang Z. Gender-specific effects of polystyrene nanoplastic exposure on triclosan-induced reproductive toxicity in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172876. [PMID: 38692326 DOI: 10.1016/j.scitotenv.2024.172876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Nanoplastics (NPs) and triclosan (TCS) are ubiquitous emerging environmental contaminants detected in human samples. While the reproductive toxicity of TCS alone has been studied, its combined effects with NPs remain unclear. Herein, we employed Fourier transform infrared spectroscopy and dynamic light scattering to characterize the coexposure of polystyrene nanoplastics (PS-NPs, 50 nm) with TCS. Then, adult zebrafish were exposed to TCS at environmentally relevant concentrations (0.361-48.2 μg/L), with or without PS-NPs (1.0 mg/L) for 21 days. TCS biodistribution in zebrafish tissues was investigated using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Reproductive toxicity was assessed through gonadal histopathology, fertility tests, changes in steroid hormone synthesis and gene expression within the hypothalamus-pituitary-gonad-liver (HPGL) axis. Transcriptomics and proteomics were applied to explore the underlying mechanisms. The results showed that PS-NPs could adsorb TCS, thus altering the PS-NPs' physical characteristics. Our observations revealed that coexposure with PS-NPs reduced TCS levels in the ovaries, livers, and brains of female zebrafish. Conversely, in males, coexposure with PS-NPs increased TCS levels in the testes and livers, while decreasing them in the brain. We found that co-exposure mitigated TCS-induced ovary development inhibition while exacerbated TCS-induced spermatogenesis suppression, resulting in increased embryonic mortality and larval malformations. This co-exposure influenced the expression of genes linked to steroid hormone synthesis (cyp11a1, hsd17β, cyp19a1) and attenuated the TCS-decreased estradiol (E2) in females. Conversely, testosterone levels were suppressed, and E2 levels were elevated due to the upregulation of specific genes (cyp11a1, hsd3β, cyp19a1) in males. Finally, the integrated analysis of transcriptomics and proteomics suggested that the aqp12-dctn2 pathway was involved in PS-NPs' attenuation of TCS-induced reproductive toxicity in females, while the pck2-katnal1 pathway played a role in PS-NPs' exacerbation of TCS-induced reproductive toxicity in males. Collectively, PS-NPs altered TCS-induced reproductive toxicity by disrupting the HPGL axis, with gender-specific effects.
Collapse
Affiliation(s)
- Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou 310051, China
| | - Jie Guo
- Hunter Biotechnology, Inc., Hangzhou 310051, China
| | - Shuqin Tang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ruobing Bai
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Da Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Department of Biology, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
7
|
Abdelnour SA, Naiel MAE, Said MB, Alnajeebi AM, Nasr FA, Al-Doaiss AA, Mahasneh ZMH, Noreldin AE. Environmental epigenetics: Exploring phenotypic plasticity and transgenerational adaptation in fish. ENVIRONMENTAL RESEARCH 2024; 252:118799. [PMID: 38552831 DOI: 10.1016/j.envres.2024.118799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Epigenetics plays a vital role in the interaction between living organisms and their environment by regulating biological functions and phenotypic plasticity. Considering that most aquaculture activities take place in open or natural habitats that are vulnerable to environmental changes. Promising findings from recent research conducted on various aquaculture species have provided preliminary evidence suggesting a link between epigenetic mechanisms and economically valuable characteristics. Environmental stressors, including climate changes (thermal stress, hypoxia, and water salinity), anthropogenic impacts such as (pesticides, crude oil pollution, nutritional impacts, and heavy metal) and abiotic factors (infectious diseases), can directly trigger epigenetic modifications in fish. While experiments have confirmed that many epigenetic alterations caused by environmental factors have plastic responses, some can be permanently integrated into the genome through genetic integration and promoting rapid transgenerational adaptation in fish. These environmental factors might cause irregular DNA methylation patterns in genes related to many biological events leading to organs dysfunction by inducing alterations in genes related to oxidative stress or apoptosis. Moreover, these environmental issues alter DNA/histone methylation leading to decreased reproductive competence. This review emphasizes the importance of understanding the effects of environmentally relevant issues on the epigenetic regulation of phenotypic variations in fish. The goal is to expand our knowledge of how epigenetics can either facilitate or hinder species' adaptation to these adverse conditions. Furthermore, this review outlines the areas that warrant further investigation in understanding epigenetic reactions to various environmental issues.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia; Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
| | - Afnan M Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fahd A Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
8
|
Pamanji R, Ragothaman P, Koigoora S, Sivan G, Selvin J. Network analysis of toxic endpoints of fungicides in zebrafish. Toxicol Res (Camb) 2024; 13:tfae087. [PMID: 38845614 PMCID: PMC11150978 DOI: 10.1093/toxres/tfae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Zebrafish being the best animal model to study, every attempt has been made to decipher the toxic mechanism of every fungicide of usage and interest. It is important to understand the multiple targets of a toxicant to estimate the toxic potential in its totality. A total of 22 fungicides of different classes like amisulbrom, azoxystrobin, carbendazim, carboxin, chlorothalonil, difenoconazole, etridiazole, flusilazole, fluxapyroxad, hexaconazole, kresoxim methyl, mancozeb, myclobutanil, prochloraz, propiconazole, propineb, pyraclostrobin, tebuconazole, thiophanate-methyl, thiram, trifloxystrobin and ziram were reviewed and analyzed for their multiple explored targets in zebrafish. Toxic end points in zebrafish are highly informative when it comes to network analysis. They provide a window into the molecular and cellular pathways that are affected by a certain toxin. This can then be used to gain insights into the underlying mechanisms of toxicity and to draw conclusions on the potential of a particular compound to induce toxicity. This knowledge can then be used to inform decisions about drug development, environmental regulation, and other areas of research. In addition, the use of zebrafish toxic end points can also be used to better understand the effects of environmental pollutants on ecosystems. By understanding the pathways affected by a given toxin, researchers can determine how pollutants may interact with the environment and how this could lead to health or environmental impacts.
Collapse
Affiliation(s)
- Rajesh Pamanji
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Prathiviraj Ragothaman
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Srikanth Koigoora
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur -Tenali Rd, Vadlamudi 522213, AP, India
| | - Gisha Sivan
- Division of Medical Research, SRM SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Potheri, SRM Nagar, Kattankulathur, Chennai 603203, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| |
Collapse
|
9
|
Fernández-Vizcaíno E, Mateo R, Fernández de Mera IG, Mougeot F, Camarero PR, Ortiz-Santaliestra ME. Transgenerational effects of triazole fungicides on gene expression and egg compounds in non-exposed offspring: A case study using Red-Legged Partridges (Alectoris rufa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171546. [PMID: 38479527 DOI: 10.1016/j.scitotenv.2024.171546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Triazole fungicides are widely used to treat cereal seeds before sowing. Granivorous birds like the Red-legged Partridge (Alectoris rufa) have high exposure risk because they ingest treated seeds that remain on the field surface. As triazole fungicides can act as endocrine disruptors, affecting sterol synthesis and reproduction in birds several months after exposure, we hypothesized that these effects could also impact subsequent generations of exposed birds. To test this hypothesis, we exposed adult partridges (F0) to seeds treated at commercial doses with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two), simulating field exposure during late autumn sowing. During the subsequent reproductive season, two to four months after exposure, we examined compound allocation of steroid hormones, cholesterol, vitamins, and carotenoids in eggs laid by exposed birds (F1), as well as the expression of genes encoding enzymes involved in sterol biosynthesis in one-day-old chicks of this F1. One year later, F1 animals were paired again to investigate the expression of the same genes in the F2 chicks. We found changes in the expression of some genes for all treatments and both generations. Additionally, we observed an increase in estrone levels in eggs from partridges treated with flutriafol compared to controls, a decrease in tocopherol levels in partridges exposed to the mixture of tebuconazole and prothioconazole, and an increase in retinol levels in partridges exposed to prothioconazole. Despite sample size limitations, this study provides novel insights into the mechanisms of action of the previously observed effects of triazole fungicide-treated seeds on avian reproduction with evidence that the effects can persist beyond the exposure windows, affecting unexposed offspring of partridges fed with treated seeds. The results highlight the importance of considering long-term chronic effects when assessing pesticide risks to wild birds.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|
10
|
Zhang Y, Guo J, Tang C, Xu K, Li Z, Wang C. Early life stage exposure to fenbuconazole causes multigenerational cardiac developmental defects in zebrafish and potential reasons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123938. [PMID: 38588970 DOI: 10.1016/j.envpol.2024.123938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
With the increasing use of triazole fungicides in agriculture, triazole pesticides have aroused great concern about their toxicity and ecological risk. The current study investigated the impairments of embryonic exposure to fenbuconazole (FBZ) on cardiac transgenerational toxicity and related mechanisms. The fertilized eggs were exposed to 5, 50 and 500 ng/L FBZ for 72 h, and the larvae were then raised to adulthood in clean water. The adult fish were mated with unexposed fish to produce maternal and paternal F1 and F2 embryos, respectively. The results showed that increased arrhythmia were observed in F0, F1 and F2 larvae. Transcriptome sequencing indicated that the pathway of adrenergic signaling in cardiomyocytes was enriched in F0 and F2 larvae. In both F0 and F1 adult zebrafish hearts, ADRB2 protein expression decreased, and transcription of genes related to cardiac development and Ca2+ homeostasis was downregulated. These alterations might cause cardiac developmental defects. Significantly decreased protein levels of H3K9Ac and H3K14Ac might be linked with the downregulation in transcription of cardiac development genes. Protein‒protein interaction analysis exhibited that the pathway affecting the heart was well inherited in the paternal line. These results provide new ideas for the analysis and prevention of congenital heart disease.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zihui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
11
|
Svanholm S, Brouard V, Roza M, Marini D, Karlsson O, Berg C. Impaired spermatogenesis and associated endocrine effects of azole fungicides in peripubertal Xenopus tropicalis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115876. [PMID: 38154155 DOI: 10.1016/j.ecoenv.2023.115876] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Early life exposure to endocrine disrupting chemicals (EDCs) has been suggested to adversely affect reproductive health in humans and wildlife. Here, we characterize endocrine and adverse effects on the reproductive system after juvenile exposure to propiconazole (PROP) or imazalil (IMZ), two common azole fungicides with complex endocrine modes of action. Using the frog Xenopus tropicalis, two short-term (2-weeks) studies were conducted. I: Juveniles (2 weeks post metamorphosis (PM)) were exposed to 0, 17 or 178 µg PROP/L. II: Juveniles (6 weeks PM) were exposed to 0, 1, 12 or 154 µg IMZ/L. Histological analysis of the gonads revealed an increase in the number of dark spermatogonial stem cells (SSCs)/testis area, and in the ratio secondary spermatogonia: dark SSCs were increased in all IMZ groups compared to control. Key genes in gametogenesis, retinoic acid and sex steroid pathways were also analysed in the gonads. Testicular levels of 3β-hsd, ddx4 were increased and cyp19 and id4 levels were decreased in the IMZ groups. In PROP exposed males, increased testicular aldh1a2 levels were detected, but no histological effects observed. Although no effects on ovarian histology were detected, ovarian levels of esr1, rsbn1 were increased in PROP groups, and esr1 levels were decreased in IMZ groups. In conclusion, juvenile azole exposure disrupted testicular expression of key genes in retinoic acid (PROP) and sex steroid pathways and in gametogenesis (IMZ). Our results further show that exposure to environmental concentrations of IMZ disrupted spermatogenesis in the juvenile testis, which is a cause for concern as it may lead to impaired fertility. Testicular levels of id4, ddx4 and the id4:ddx4 ratio were associated with the number of dark SSCs and secondary spermatogonia suggesting that they may serve as a molecular markers for disrupted spermatogenesis.
Collapse
Affiliation(s)
- Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, SE-754 36 Uppsala, Sweden.
| | - Vanessa Brouard
- Department of Environmental Toxicology, Uppsala University, SE-754 36 Uppsala, Sweden
| | - Mauricio Roza
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Daniele Marini
- Department of Environmental Toxicology, Uppsala University, SE-754 36 Uppsala, Sweden; Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, SE-754 36 Uppsala, Sweden
| |
Collapse
|
12
|
Pellegrini E, Fernezelian D, Malleret C, Gueguen MM, Patche-Firmin J, Rastegar S, Meilhac O, Diotel N. Estrogenic regulation of claudin 5 and tight junction protein 1 gene expression in zebrafish: A role on blood-brain barrier? J Comp Neurol 2023; 531:1828-1845. [PMID: 37814509 DOI: 10.1002/cne.25543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/04/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023]
Abstract
The blood-brain barrier (BBB) is a physical interface between the blood and the brain parenchyma, playing key roles in brain homeostasis. In mammals, the BBB is established thanks to tight junctions between cerebral endothelial cells, involving claudin, occludin, and zonula occludens proteins. Estrogens have been documented to modulate BBB permeability. Interestingly, in the brain of zebrafish, the estrogen-synthesizing activity is strong due to the high expression of Aromatase B protein, encoded by the cyp19a1b gene, in radial glial cells (neural stem cells). Given the roles of estrogens in BBB function, we investigated their impact on the expression of genes involved in BBB tight junctions. We treated zebrafish embryos and adult males with 17β-estradiol and observed an increased cerebral expression of tight junction and claudin 5 genes in adult males only. In females, treatment with the nuclear estrogen receptor antagonist (ICI182,780 ) had no impact. Interestingly, telencephalic injuries performed in males decreased tight junction gene expression that was partially reversed with 17β-estradiol. This was further confirmed by extravasation experiments of Evans blue showing that estrogenic treatment limits BBB leakage. We also highlighted the intimate links between endothelial cells and neural stem cells, suggesting that cholesterol and peripheral steroids could be taken up by endothelial cells and used as precursors for estrogen synthesis by neural stem cells. Together, our results show that zebrafish provides an alternative model to further investigate the role of steroids on the expression of genes involved in BBB integrity, both in constitutive and regenerative physiological conditions. The link we described between capillaries endothelial cells and steroidogenic neural cells encourages the use of this model in understanding the mechanisms by which peripheral steroids get into neural tissue and modulate neurogenic activity.
Collapse
Affiliation(s)
- Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Danielle Fernezelian
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, France
| | - Cassandra Malleret
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Marie-Madeleine Gueguen
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Jessica Patche-Firmin
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, France
- CHU de La Réunion, Saint-Denis, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, France
| |
Collapse
|
13
|
Yang Q, Deng P, Xing D, Liu H, Shi F, Hu L, Zou X, Nie H, Zuo J, Zhuang Z, Pan M, Chen J, Li G. Developmental Neurotoxicity of Difenoconazole in Zebrafish Embryos. TOXICS 2023; 11:353. [PMID: 37112580 PMCID: PMC10142703 DOI: 10.3390/toxics11040353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole is a type of triazole fungicide that is widely used in the treatment of plant diseases. Triazole fungicides have been shown in several studies to impair the development of the nervous system in zebrafish embryos. There is still little known about difenoconazole-induced neurotoxicity in fish. In this study, zebrafish embryos were exposed to 0.25, 0.5, and 1 mg/L of difenoconazole solution until 120 h post-fertilization (hpf). The difenoconazole-exposed groups showed concentration-dependent inhibitory tendencies in heart rate and body length. Malformation rate and spontaneous movement of zebrafish embryos increased, and the locomotor activity decreased in the highest exposure group. The content of dopamine and acetylcholine was reduced significantly in difenoconazole treatment groups. The activity of acetylcholinesterase (AChE) was also increased after treatment with difenoconazole. Furthermore, the expression of genes involved in neurodevelopment was remarkably altered, which corresponded with the alterations of neurotransmitter content and AChE activity. These results indicated that difenoconazole might affect the development of the nervous system through influencing neurotransmitter levels, enzyme activity, and the expression of neural-related genes, ultimately leading to abnormal locomotor activity in the early stages of zebrafish.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Dan Xing
- Dadu River Hydropower Development Co., Ltd., Chengdu 610016, China
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Shi
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Lian Hu
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Xi Zou
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zimeng Zhuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Changsha Xinjia Bio-Engineering Co., Ltd., Changsha 410000, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Zhang S, Wang F, Wang R, Cai M. Spatial assessment of triazole organic compounds in surface water from the coastal estuaries to the East China sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121024. [PMID: 36646404 DOI: 10.1016/j.envpol.2023.121024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Triazole is widely used in the synthesis of pharmaceuticals, pesticides, and fungicides. However, triazole organic compounds are often a source of toxicity in the water environment due to the presence of chlorobenzene. This study reported on the occurrence and distribution of 15 TrOCs in the surface waters of estuaries and the East China sea, and identified the influences of TrOCs originating from the estuarine environment on the ocean. The results showed that the total concentrations of ∑TrOCs in the surface water of estuaries along the coasts of Jiangsu (JS), Zhejiang (ZJ), and Shanghai (SH), China ranged from 0.020 to 104 ng L-1 (7.49 ± 18.2 ng L-1), whereas they ranged from 0.235 to 1.25 ng L-1 (mean 0.711 ± 0.235 ng L-1) in the East China sea. Difenoconazole and tebuconazole were the dominant TrOCs in the estuaries, whereas fenbuconazole and hexaconazole dominated in the ocean. TrOCs in surface water of estuaries showed a continuous spatial distribution and presented regional characteristics mainly related to agricultural activities. In contrast, TrOCs in the East China Sea showed a low spatial variation and dispersion, which may be related to complex disturbance by currents and dilution. The low levels of estuarine TrOCs measured in SH estuaries (<0.5 ng L-1) indicates that the Yangtze River may only pose a low-level TrOC contamination risk to the East China Sea. Moreover, estuary transport in the estuaries of ZJ may have influenced the occurrence of TrOCs in the offshore East China Sea area, although they may have also undergone a filter process in the estuary turbid zone; whereas it had little influence on the open sea. This study can act as a critical reference for the presence of TrOCs in surface water both estuaries and the ocean.
Collapse
Affiliation(s)
- Shengwei Zhang
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Feng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Wang
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Minghong Cai
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai, 201209, China.
| |
Collapse
|
15
|
Tian S, Sun W, Sun X, Yue Y, Jia M, Huang S, Zhou Z, Li L, Diao J, Yan S, Zhu W. Intergenerational reproductive toxicity of parental exposure to prothioconazole and its metabolite on offspring and epigenetic regulation associated with DNA methylation in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 173:107830. [PMID: 36805811 DOI: 10.1016/j.envint.2023.107830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/22/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Prothioconazole (PTC) is a widely used agricultural fungicide, and its parent and metabolite prothioconazole-desthio (dPTC) have been detected in diverse environmental media. This study was aimed at investigating the gender-dependent effects on adult zebrafish reproduction and intergenerational effects on offspring development following parental exposure to PTC and dPTC. The results showed that after the adult zebrafish (F0) was exposed to 0.5 and 10 μg/L PTC and dPTC for 21 days, the fertility and gametogenesis of female zebrafish were decreased more significantly than that of male zebrafish. After that, three fecundity tests were conducted in the exposure period to explore the development endpoints of F1 embryos/larvae without further treatment with PTC and dPTC exposure. However, PTC and dPTC exposure did lead to abnormal development of F1 embryos, including delayed hatching, shortened body length, abnormal development and significant changes in locomotor behavior. These changes were related to the abnormal expression of sex hormones and the regulation of DNA methylation in F0 fish. In a word, the results of this study showed that parental PTC and dPTC interference have sex-dependent reproductive toxicity on F0 zebrafish, which may be passed on to the next generation through epigenetic modification involving DNA methylation, resulting in alternations in growth phenotype of offspring.
Collapse
Affiliation(s)
- Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yifan Yue
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Xue P, Liu X, Shi X, Yuan H, Wang J, Zhang J, He Z. Stereoselective accumulation and biotransformation of chiral fungicide epoxiconazole and oxidative stress, detoxification, and endogenous metabolic disturbance in earthworm (Eisenia foetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159932. [PMID: 36343825 DOI: 10.1016/j.scitotenv.2022.159932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
>80 % of applied pesticides in agriculture will enter the soil and be exposed to soil animals. Little is known about the stereoselective metabolic effects of epoxiconazole (EPO) on soil animals. In this study, EPO-mediated stereoselective enrichment, biotransformation, oxidative stress, detoxification, and global metabolic profiles in earthworms were investigated by exposure to EPO and its enantiomers at 1 mg/kg and 10 mg/kg doses. Preferential enrichment of (-)-EPO was observed, and the five transformation products (TPs) exhibited the chemically specific stereoselective accumulation with inconsistent configurations. Biochemical markers related to reactive oxygen species (ROS) and detoxification (·OH- content, SOD, CAT, GST, and CYP450 enzymes) showed a significant stereoselective activation overall at the low-level exposure (p-value <0.05). Based on untargeted metabolomic analysis, the steroid biosynthesis and ROS-related biotransformation, glutathione metabolism, TCA cycle, amino acid metabolism, purine and pyrimidine metabolism of earthworms were significantly interfered with by EPO and its enantiomer exposure. More pronounced stereoselectivity was observed at the level of the global metabolic profile, while comparable levels of metabolic perturbations were identified at the individual metabolite level. This study provides novel insights into the stereoselective effects of the chiral fungicide EPO, and valuable evidence for soil environmental risk assessments.
Collapse
Affiliation(s)
- Pengfei Xue
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaomeng Shi
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Haiyue Yuan
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiafu Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd., Beijing 100015, China
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
17
|
Wang H, Jing C, Peng H, Liu S, Zhao H, Zhang W, Chen X, Hu F. Parental whole life-cycle exposure to tris (2-chloroethyl) phosphate (TCEP) disrupts embryonic development and thyroid system in zebrafish offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114313. [PMID: 36410141 DOI: 10.1016/j.ecoenv.2022.114313] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), an emerging environmental pollutant, has been frequently detected in natural waters. The objective of this study was to investigate possible parental transfer of TCEP and transgenerational effects on the early development and thyroid hormone homeostasis in F1 larvae following parental whole life-cycle exposure to TCEP. To this end, zebrafish (Danio rerio) embryos were exposed to environmentally relevant concentrations (0.8, 4, 20 and 100 μg/L) of TCEP for 120 days until sexual maturation. Parental exposure to TCEP resulted in significant levels of TCEP, developmental toxicity including decreased survival and final hatching rates, accelerated heart rate and elevated malformation rate, as well as induction of oxidative stress and cell apoptosis in F1 offspring. In F1 eggs, declined thyroxin (T4) levels were observed, consistent with those in plasma of F0 adult females, indicating the maternal transfer of thyroid endocrine disruption to the offspring. In addition, mRNA levels of several genes along the hypothalamic-pituitary-thyroid (HPT) axis were significantly modified in F1 larvae, which could be linked to transgenerational developmental toxicity and thyroid hormone disruption. For the first time, we revealed that the parental exposure to environmentally relevant levels of TCEP could cause developmental toxicity and thyroid endocrine disruption in subsequent unexposed generation.
Collapse
Affiliation(s)
- Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Jing
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangke Peng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shangshu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haocheng Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
18
|
Zhang S, Fu Z, Xu Y, Zhao X, Sun M, Feng X. The masculinization steroid milieu caused by fluorene-9-bisphenol disrupts sex-typical courtship behavior in female zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114174. [PMID: 36228360 DOI: 10.1016/j.ecoenv.2022.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
In vertebrates, the behavior of congenital sex differences between males and females is highly dependent on steroid signals and hormonal milieu. The presence of endocrine disrupting chemicals (EDCs) in the environment generally plays a similar role to sex hormones, so its interference with aquatic organism population stability can not be ignored and is worth studying. Fluorene-9-bisphenol (BHPF) has been clarified as an endocrine disruptor on organisms by several studies but its mechanism in perturbation of courtship behavior of female zebrafish is not clear. Here, we proposed an automated multi-zebrafish tracking method quantifying the courtship process and reported that zebrafish females exposed to BHPF, are not receptive to males but rather court females, and lose normal ovarian function with an altered sex steroid milieu. Our results showed that BHPF damaged 17β-estradiol synthesis by down-regulation of sox3 and cyp19a1a, linking apoptosis with ovary development and female fecundity. The down-regulated expression of estrogen signaling through an estrogen receptor, esr2b, caused the induction of masculinization of female courtship behavior and sexual preference in zebrafish females after BHPF treatment. This process might be mediated by inhibiting the transcription of a neuropeptide B (npb) in the brain. Our study reveals that the estrogen signaling pathway may play an important role in classical courtship behavior and sexual preference of zebrafish. This study provided evidence that anti-estrogenic chemical exposure caused adverse effects on the regulation of the brain-gonad-estrogen axis of aquatic organisms, which should be of concern and highlighted the importance of controlling environmental contamination.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China
| | - Yixin Xu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin 300071, China.
| |
Collapse
|
19
|
Chen X, Zheng J, Zhang J, Duan M, Xu H, Zhao W, Yang Y, Wang C, Xu Y. Exposure to difenoconazole induces reproductive toxicity in zebrafish by interfering with gamete maturation and reproductive behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155610. [PMID: 35504380 DOI: 10.1016/j.scitotenv.2022.155610] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Difenoconazole (DCZ) is a triazole fungicide that negatively affects aquatic organisms and humans. However, data regarding the reproductive toxicity of DCZ are insufficient. In this study, we used zebrafish (from 2 h post-fertilization [hpf] to adulthood) as a model to evaluate whether DCZ at environmentally relevant concentrations (0.1, 1.0, and 10.0 μg/L) induces reproductive toxicity. After exposure to DCZ, egg production and fertilization rates were reduced by 1.0 and 10.0 μg/L. A significant decrease in gamete frequency (late vitellogenic oocytes and spermatozoa) was observed at 10.0 μg/L. The concentrations of 17β-estradiol (E2), testosterone (T), and vitellogenin (VTG) were disrupted in females and males by 1.0 and 10.0 μg/L. Exposure to 10.0 μg/L DCZ significantly inhibited the contact time between female and male fish, which was mainly achieved by affecting male fish. The transcription of genes involved in the hypothalamus-pituitary-gonad (HPG) axis was significantly changed after treatment with DCZ. Overall, these data show that the endocrine-disrupting effect of DCZ on the zebrafish HPG axis inhibited gamete maturation and disrupted reproductive behavior, reducing fertility.
Collapse
Affiliation(s)
- Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Hao Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Teng M, Zhao W, Chen X, Wang C, Zhou L, Wang C, Xu Y. Parental exposure to propiconazole at environmentally relevant concentrations induces thyroid and metabolism disruption in zebrafish (Danio rerio) offspring: An in vivo, in silico and in vitro study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113865. [PMID: 35870346 DOI: 10.1016/j.ecoenv.2022.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Propiconazole is used against fungal growth in agriculture and is released into the environment, but is a potential health threat to aquatic organisms. Propiconazole induces a generational effect on zebrafish, although the toxic mechanisms involved have not been described. The aim of this study was to investigate the potential mechanisms of abnormal offspring development after propiconazole exposure in zebrafish parents. Zebrafish were exposed to propiconazole at environmentally realistic concentrations (0.1, 5, and 250 μg/L) for 100 days and their offspring were grown in control solution for further study. Heart rate, hatching rate, and body length of hatched offspring were reduced. An increase in triiodothyronine (T3) content and the T3/T4 (tetraiodothyronine) ratio was observed, indicating disruption of thyroid hormones. Increased protein level of transthyretin (TTR) in vivo was consistent with the in silico molecular docking results and T4 competitive binding in vitro assay, suggests higher binding affinity between propiconazole and TTR, more than with T4. Increased expression of genes related to the hypothalamus-pituitary-thyroid (HPT) axis and altered metabolite levels may have affected offspring development. These findings emphasizes that propiconazole, even on indirect exposure, represents health and environmental risk that should not be ignored.
Collapse
Affiliation(s)
- Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Duan M, Guo X, Chen X, Guo M, Xu H, Hao L, Wang C, Yang Y. Life Cycle Exposure to Cyhalofop-Butyl Induced Reproductive Toxicity in Zebrafish. TOXICS 2022; 10:495. [PMID: 36136460 PMCID: PMC9503539 DOI: 10.3390/toxics10090495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Cyhalofop-butyl (CyB) is a herbicide widely used in paddy fields that may transfer to aquatic ecosystems and cause harm to aquatic organisms. In this study, zebrafish (Danio rerio) were exposed to CyB at environmental concentrations (0.1, 1 and 10 µg/L) throughout their adult life cycle, from embryo to sexual maturity. The effects of CyB on zebrafish growth and reproduction were studied. It was found that female spawning was inhibited, and adult male fertility decreased. In addition, we examined the expression of sex steroid hormones and genes related to the hypothalamus-pituitary-gonad-liver (HPGL) axis. After 150 days of exposure, the hormone balance in zebrafish was disturbed, and the concentrations of 17β-estradiol (E2) and vitellogenin (VTG) were decreased. Changes in sex hormone were regulated by the expression of genes related to the HPGL axis. These results confirmed that long-term exposure to CyB at environmental concentrations can damage the reproductive capacity of zebrafish by disrupting the transcription of genes related to the HPGL axis. Overall, these data may provide a new understanding of the reproductive toxicity of long-term exposure to CyB in zebrafish parents and offspring.
Collapse
Affiliation(s)
- Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xuanjun Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Mengyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Hao Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lubo Hao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
22
|
Huang T, Zhao Y, He J, Cheng H, Martyniuk CJ. Endocrine disruption by azole fungicides in fish: A review of the evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153412. [PMID: 35090921 DOI: 10.1016/j.scitotenv.2022.153412] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Azole fungicides are widely used chemicals in agriculture and medicine. Their antifungal activity involves inhibition of steroid biosynthesis via inhibition of several cytochrome p450 enzymes. Evidence is accumulating in fish species to suggest azole fungicides perturb multiple hormone signaling pathways. The objective of this review was to comprehensively review data for azole-mediated impacts on the teleost endocrine system. We emphasize aspects of azole-induced endocrine disruption in several fish species, with special focus on the hypothalamic-pituitary-gonadal (HPG), hypothalamus-pituitary-thyroid (HPT) and hypothalamic-pituitary-adrenal (HPA) axis. Histopathological, physiological, and molecular data suggest azole fungicides at environmentally relevant concentrations and above are endocrine disruptors in fish. Endocrine disruption has been well documented for some azoles (e.g., difenconazole, fadrozole, ketoconazole, tebuconazole, triadimefon), but there are little data for others (e.g., cyproconazole, expoxiconazole, imidazole, metoconazole, nocodazole) in fish, revealing a knowledge gap in our understanding of azole toxicity. Based upon literature, computational analyses of transcriptome responses revealed progesterone-mediated oocyte maturation, insulin signaling pathway, adrenergic signaling, and metabolism of angiotensinogen may be processes disrupted by azoles. However, hormonal regulation of the sympathetic nervous system and the cardiovascular system in response to azole exposure has yet to be investigated in fish. Recommendations for studies moving forward include focus on non-steroid endocrine pathways, mechanisms of neuroendocrine disruption, and transgenerational effects of azoles on fish. This critical review identifies knowledge gaps and future directions for environmental studies focused on the effects of azoles in aquatic species.
Collapse
Affiliation(s)
- Tao Huang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Hongguang Cheng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
23
|
Li J, Ding Y, Chen H, Sun W, Huang Y, Liu F, Wang M, Hua X. Development of an indirect competitive enzyme-linked immunosorbent assay for propiconazole based on monoclonal antibody. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Dornelas ASP, de Jesus Ferreira JS, Silva LCR, de Souza Saraiva A, Cavallini GS, Gravato CAS, da Maia Soares AMV, Almeida Sarmento R. The sexual reproduction of the nontarget planarian Girardia tigrina is affected by ecologically relevant concentrations of difenoconazole: new sensitive tools in ecotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27095-27103. [PMID: 34981389 DOI: 10.1007/s11356-021-18423-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The fungicide difenoconazole, widely used to reduce the negative impacts of fungi diseases on areas with intensive farming, can reach freshwater systems causing deleterious effects on nontarget organisms. The acute and chronic toxicity of a commercial formulation containing 250 g L-1 of difenoconazole (Prisma®) as the active ingredient was assessed in the freshwater planarian Girardia tigrina. The endpoints evaluated were feeding rate, locomotion, regeneration, and sexual reproduction of planarians. The estimated 48 h LC50 of the commercial formulation on planarians expressed as the concentration of the active ingredient difenoconazole was 47.5 mg a.i.L-1. A significant decrease of locomotion (LOEC = 18.56 mg a.i.L-1), delayed regeneration (LOEC = 9.28 mg a.i.L-1), and sexual reproduction impairment, i.e., decreased fecundity and fertility rates (LOEC ≤ 1.16 mg a.i.L-1) were observed on planarians exposed to sublethal concentrations of the formulation. This study demonstrated the importance of using reproductive, physiological, and behavioral parameters as more sensitive and complementary tools to assess the deleterious effects induced by a commercial formulation of difenoconazole on a nontarget freshwater organism. The added value and importance of our research work, namely, the impairment of sexual reproduction of planarians, contributes to the development of useful tools for ecotoxicology and highlights the fact that those tools should be developed as guidelines for testing of chemicals. Our results showed that the use of reproductive parameters of Girardia tigrina would help to complement and achieve a better assessment of the risk posed by triazole fungicides to freshwater ecosystems.
Collapse
Affiliation(s)
- Aline Silvestre Pereira Dornelas
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Joel Santiago de Jesus Ferreira
- Curso de Engenharia de Bioprocessos E Biotecnologia, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Laila Cristina Rezende Silva
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Althiéris de Souza Saraiva
- Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Campos Belos (Laboratório de Conservação de Agroecossistemas E Ecotoxicologia), Campos Belos, Goiás, 73840-000, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | | | | | - Renato Almeida Sarmento
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| |
Collapse
|
25
|
Huang T, Jiang H, Zhao Y, He J, Cheng H, Martyniuk CJ. A comprehensive review of 1,2,4-triazole fungicide toxicity in zebrafish (Danio rerio): A mitochondrial and metabolic perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151177. [PMID: 34699814 DOI: 10.1016/j.scitotenv.2021.151177] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this critical review, we synthesize data from peer-reviewed literature reporting on triazole fungicide exposures in the zebrafish model. Based on their mode of action in plants (potent inhibitors of ergosterol synthesis), we focused attention on mechanisms related to cellular, lipid, and steroid metabolism. Evidence from several studies reveals that zebrafish exposed to triazoles present with impaired mitochondrial oxidative phosphorylation and oxidative stress, as well as dysregulation of lipid metabolism. Such metabolic disruptions are expected to underscore developmental delays, deformity, and aberrant locomotor activity and behaviors often observed following exposure. We begin by summarizing physiological and behavioral effects observed with triazole fungicide exposure in zebrafish. We then discuss mechanisms that may underlie adverse apical effects, focusing on mitochondrial bioenergetics and metabolism. Using computational approaches, we also identify novel biomarkers of triazole fungicide exposure. Extracting and analyzing data contained in the Comparative Toxicogenomics Database (CTD) revealed that transcriptional signatures responsive to different triazoles are related to metabolism of lipids and lipoproteins, biological oxidations, and fatty acid, triacylglycerol, and ketone body metabolism among other processes. Pathway and sub-network analysis identified several transcripts that are responsive in organisms exposed to triazole fungicides, several of which include lipid-related genes. Knowledge gaps and recommendations for future investigations include; (1) targeted metabolomics for metabolites in glycolysis, Krebs cycle, and the electron transport chain; (2) additional studies conducted at environmentally relevant concentrations to characterize the potential for endocrine disruption, given that studies point to altered cholesterol (precursor for steroid hormones), as well as altered estrogen receptor alpha and thyroid hormone expression; (3) studies into the potential role for lipid peroxidation and oxidation of lipid biomolecules as a mechanism of triazole-induced toxicity, given the strong evidence for oxidative damage in zebrafish following exposure to triazole fungicides.
Collapse
Affiliation(s)
- Tao Huang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Haibo Jiang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Hongguang Cheng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
26
|
Mu X, Qi S, Liu J, Wang H, Yuan L, Qian L, Li T, Huang Y, Wang C, Guo Y, Li Y. Environmental level of bisphenol F induced reproductive toxicity toward zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:149992. [PMID: 34844315 DOI: 10.1016/j.scitotenv.2021.149992] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol F (BPF), as an important bisphenol A substitute, is being increasingly used for industrial production. Here we performed large scale fecundity test for zebrafish that are continuous exposed to environmental levels of BPF (0.5, 5 and 50 μg/L) from embryonic stage, and identified suppressed spawning capacity of females and reduced fertility rate of males in adulthood. Although pathological change is only observed in female gonads, the transcriptional change in the hypothalamic-pituitary-gonad axis genes occurred in the gonads of both female and male fish at 150 days post-exposure. F1 generation embryos showed abnormal developmental outcomes including decreased heart rate, reduced body length, and inhibition of spontaneous movement after parental exposure to BPF. RNA-sequencing showed that the genes involved in skeletal/cardiac muscle development were significantly altered in F1 embryos spawned by BPF-treated zebrafish. The advanced pathway analysis showed that cancer and tumour formation were the most enriched pathways in the offspring of 0.5 and 5.0 μg/L groups; organismal development and cardiovascular system development were mainly affected after parental exposure to 50 μg/L of BPF; these changes were mediated by several involved regulators such as GATA4, MYF6, and MEF2C. These findings confirmed that long-term exposure to BPF at environment relevant concentration would result in reproductive toxicity among zebrafish indicating the urgent demand for the control of BPA substitutes.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, China.
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, China
| | - Hui Wang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, China
| | - Le Qian
- College of Sciences, China Agricultural University, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, China
| | - Yuanming Guo
- Zhejiang Marine Fisheries Research Institute, China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, China
| |
Collapse
|
27
|
Schmitz M, Deutschmann B, Markert N, Backhaus T, Brack W, Brauns M, Brinkmann M, Seiler TB, Fink P, Tang S, Beitel S, Doering JA, Hecker M, Shao Y, Schulze T, Weitere M, Wild R, Velki M, Hollert H. Demonstration of an aggregated biomarker response approach to assess the impact of point and diffuse contaminant sources in feral fish in a small river case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150020. [PMID: 34508932 DOI: 10.1016/j.scitotenv.2021.150020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The assessment of the exposure of aquatic wildlife to complex environmental mixtures of chemicals originating from both point and diffuse sources and evaluating the potential impact thereof constitutes a significant step towards mitigating toxic pressure and the improvement of ecological status. In the current proof-of-concept study, we demonstrate the potential of a novel Aggregated Biomarker Response (ABR) approach involving a comprehensive set of biomarkers to identify complex exposure and impacts on wild brown trout (Salmo trutta fario). Our scenario used a small lowland river in Germany (Holtemme river in the Elbe river catchment) impacted by two wastewater treatment plants (WWTP) and diffuse agricultural runoff as a case study. The trout were collected along a pollution gradient (characterised in a parallel study) in the river. Compared to fish from the reference site upstream of the first WWTP, the trout collected downstream of the WWTPs showed a significant increase in micronucleus formation, phase I and II enzyme activities, and oxidative stress parameters in agreement with increasing exposure to various chemicals. By integrating single biomarker responses into an aggregated biomarker response, the two WWTPs' contribution to the observed toxicity could be clearly differentiated. The ABR results were supported by chemical analyses and whole transcriptome data, which revealed alterations of steroid biosynthesis and associated pathways, including an anti-androgenic effect, as some of the key drivers of the observed toxicity. Overall, this combined approach of in situ biomarker responses complemented with molecular pathway analysis allowed for a comprehensive ecotoxicological assessment of fish along the river. This study provides evidence for specific hazard potentials caused by mixtures of agricultural and WWTP derived chemicals at sublethal concentrations. Using aggregated biomarker responses combined with chemical analyses enabled an evidence-based ranking of sites with different degrees of pollution according to toxic stress and observed effects.
Collapse
Affiliation(s)
- Markus Schmitz
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany
| | - Björn Deutschmann
- Institute for Environmental Research, RWTH Aachen University, Worringer Weg 1, 52070 Aachen, Germany
| | - Nele Markert
- Institute for Environmental Research, RWTH Aachen University, Worringer Weg 1, 52070 Aachen, Germany
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden
| | - Werner Brack
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany; Helmholtz Centre for Environmental Research UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Mario Brauns
- Helmholtz Centre for Environmental Research UFZ, Department River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada; School of Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thomas-Benjamin Seiler
- Institute for Environmental Research, RWTH Aachen University, Worringer Weg 1, 52070 Aachen, Germany; Ruhr District Institute of Hygiene, Rotthauser Str. 21, 45879 Gelsenkirchen, Germany
| | - Patrick Fink
- Helmholtz Centre for Environmental Research UFZ, Department River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany; Helmholtz-Centre for Environmental Research (UFZ), Department Aquatic Ecosystem Analysis and Management, Brückstraße 3a, 39114 D Magdeburg, Germany
| | - Song Tang
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada
| | - Shawn Beitel
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada
| | - Jon A Doering
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada; Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada; School of Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ying Shao
- Institute for Environmental Research, RWTH Aachen University, Worringer Weg 1, 52070 Aachen, Germany; Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, 174 Shazheng Road Shapingba, 400045 Chongqing, PR China
| | - Tobias Schulze
- Helmholtz Centre for Environmental Research UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Markus Weitere
- Helmholtz Centre for Environmental Research UFZ, Department River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany
| | - Romy Wild
- Helmholtz Centre for Environmental Research UFZ, Department River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany
| | - Mirna Velki
- Institute for Environmental Research, RWTH Aachen University, Worringer Weg 1, 52070 Aachen, Germany; Department of Biology, Josip Juraj Strossmayer University of Osijek, Ul. Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Henner Hollert
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Sun Y, Zhu B, Ling S, Yan B, Wang X, Jia S, Martyniuk CJ, Zhang W, Yang L, Zhou B. Decabromodiphenyl Ethane Mainly Affected the Muscle Contraction and Reproductive Endocrine System in Female Adult Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:470-479. [PMID: 34919388 DOI: 10.1021/acs.est.1c06679] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a widespread environmental pollutant. However, the target tissue and toxicity of DBDPE are still not clear. In the current study, female zebrafish were exposed to 1 and 100 nM DBDPE for 28 days. Chemical analysis revealed that DBDPE tended to accumulate in the brain other than the liver and gonad. Subsequently, tandem mass tag-based quantitative proteomics and parallel reaction monitoring verification were performed to screen the differentially expressed proteins in the brain. Bioinformatics analysis revealed that DBDPE mainly affected the biological process related to muscle contraction and estrogenic response. Therefore, the neurotoxicity and reproductive disruptions were validated via multilevel toxicological endpoints. Specifically, locomotor behavioral changes proved the potency of neurotoxicity, which may be caused by disturbance of muscular proteins and calcium homeostasis; decreases of sex hormone levels and transcriptional changes of genes related to the hypothalamic-pituitary-gonad-liver axis confirmed reproductive disruptions upon DBDPE exposure. In summary, our results suggested that DBDPE primarily accumulated in the brain and evoked neurotoxicity and reproductive disruptions in female zebrafish. These findings can provide important clues for a further mechanism study and risk assessment of DBDPE.
Collapse
Affiliation(s)
- Yumiao Sun
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biran Zhu
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Siyuan Ling
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Biao Yan
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulin Wang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhao Jia
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611 United States
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Yang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
29
|
Environmental pollutants exposure and male reproductive toxicity: The role of epigenetic modifications. Toxicology 2021; 456:152780. [PMID: 33862174 DOI: 10.1016/j.tox.2021.152780] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Male fertility rates have shown a progressive decrease in recent decades. There is a growing concern about the male reproductive dysfunction caused by environmental pollutants exposure, however the underlying molecular mechanisms are still not well understood. Epigenetic modifications play a key role in the biological responses to external stressors. Therefore, this review discusses the roles of epigenetic modifications in male reproductive toxicity induced by environmental pollutants, with a particular emphasis on DNA methylation, histone modifications and miRNAs. The available literature proposed that environmental pollutants can directly or cause oxidative stress and DNA damage to induce a variety of epigenetic changes, which lead to gene dysregulation, mitochondrial dysfunction and consequent male reproductive toxicity. However, future studies focusing on more kinds of epigenetic modifications and their crosstalk as well as epidemiological data are still required to fill in the current research gaps. In addition, the intrinsic links between pollutants-mediated epigenetic regulations and male reproduction-related physiological responses deserve to be further explored.
Collapse
|
30
|
Liu Y, Wang Y, Ling X, Yan Z, Wu D, Liu J, Lu G. Effects of Nanoplastics and Butyl Methoxydibenzoylmethane on Early Zebrafish Embryos Identified by Single-Cell RNA Sequencing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1885-1896. [PMID: 33445878 DOI: 10.1021/acs.est.0c06479] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoplastics with small particle sizes and high surface area/volume ratios easily absorb environmental pollutants and affect their bioavailability. In this study, polystyrene nanoplastic beads (PS-NPBs) with a particle size of 100 nm and butyl methoxydibenzoylmethane (BMDBM) sunscreen in personal-care products were chosen as target pollutants to study their developmental toxicity and interactive effects on zebrafish embryos. The exposure period was set from 2 to 12 h postfertilization (hpf). BMDBM and PS-NPBs significantly upregulated genes related to antioxidant enzymes and downregulated the gene expression of aromatase and DNA methyltransferases, but the influenced genes were not exactly the same. The combined exposure reduced the adverse effects on the expression of all genes. With the help of the single-cell RNA sequencing technology, neural mid cells were identified as the target cells of both pollutants, and brain development, head development, and the notch signaling pathway were the functions they commonly altered. The key genes and functions that are specifically affected by BMDBM and/or PS-NPBs were identified. BMDBM mainly affects the differentiation and fate of neurons in the central nervous system through the regulation of her5, her6, her11, lfng, pax2a, and fgfr4. The PS-NPBs regulate the expression of olig2, foxg1a, fzd8b, six3a, rx1, lhx2b, nkx2.1a, and sfrp5 to alter nervous system development, retinal development, and stem cell differentiation. The phenotypic responses of zebrafish larvae at 120 hpf were tested, and significant inhibition of locomotor activity was found, indicating that early effects on the central nervous system would have a sustained impact on the behavior of zebrafish.
Collapse
Affiliation(s)
- Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xin Ling
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Donghai Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
31
|
Svanholm S, Säfholm M, Brande-Lavridsen N, Larsson E, Berg C. Developmental reproductive toxicity and endocrine activity of propiconazole in the Xenopus tropicalis model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141940. [PMID: 32890874 DOI: 10.1016/j.scitotenv.2020.141940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollutants and especially endocrine disrupting chemicals (EDCs) are implicated as one of the drivers of the amphibian declines. To advance the understanding of the risks of EDCs to amphibians, methods to determine endocrine-linked adverse effects are needed. The aims were to 1) develop a partial life-cycle assay with the model frog Xenopus tropicalis to determine endocrine perturbation and adverse developmental effects, and 2) determine effects of propiconazole in this assay. Propiconazole is a pesticide with multiple endocrine modes of action in vitro. Its potential endocrine activity and adverse effects in amphibians remain to be elucidated. Tadpoles were exposed to 0, 33 and 384 μg propiconazole/L during critical developmental windows until completed metamorphosis. At metamorphosis, a sub-sample of animals was analysed for endpoints for disruption of estrogen/androgen (sex ratio, brain aromatase activity) and thyroid pathways (time to metamorphosis). The remaining individuals were kept unexposed for 2 months post-metamorphosis to analyze effects on sexual development including gonadal and Müllerian duct maturity and gametogenesis. At metamorphosis, brain aromatase activity was significantly increased in the high-dose group compared to control. In both propiconazole groups, an increased proportion of individuals reached metamorphosis faster than the mean time for controls, suggesting a stimulatory effect on the thyroid system. At 2 months post-metamorphosis, testis size, sperm and Müllerian duct maturity were reduced in the low-dose males, and the liver somatic index in males was increased in both propiconazole groups, compared with controls. In conclusion, our results show that propiconazole exposure caused endocrine perturbations and subsequent hepatic and reproductive effects evident at puberty, indicating persistent disruption of metabolism and male reproductive function. Our findings advance the development of methodology to determine endocrine and adverse effects of EDCs. Moreover, they increase the understanding of endocrine perturbations and consequent risk of adverse effects of azoles in amphibians.
Collapse
Affiliation(s)
- Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Sweden.
| | - Moa Säfholm
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Sweden
| | - Nanna Brande-Lavridsen
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Sweden
| | - Erika Larsson
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Sweden
| |
Collapse
|
32
|
Mungala Lengo A, Guiraut C, Mohamed I, Lavoie JC. Relationship between redox potential of glutathione and DNA methylation level in liver of newborn guinea pigs. Epigenetics 2020; 15:1348-1360. [PMID: 32594836 PMCID: PMC7678935 DOI: 10.1080/15592294.2020.1781024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The metabolism of DNA methylation is reported to be sensitive to oxidant molecules or oxidative stress. Hypothesis: early-life oxidative stress characterized by the redox potential of glutathione influences the DNA methylation level. The in vivo study aimed at the impact of modulating redox potential of glutathione on DNA methylation. Newborn guinea pigs received different nutritive modalities for 4 days: oral nutrition, parenteral nutrition including lipid emulsion Intralipid (PN-IL) or SMOFLipid (PN-SF), protected or not from ambient light. Livers were collected for biochemical determinations. Redox potential (p < 0.001) and DNA methylation (p < 0.01) were higher in PN-infused animals and even higher in PN-SF. Their positive correlation was significant (r2 = 0.51; p < 0.001). Methylation activity was higher in PN groups (p < 0.01). Protein levels of DNA methyltransferase (DNMT)-1 were lower in PN groups (p < 0.01) while those of both DNMT3a isoforms were increased (p < 0.01) and significantly correlated with redox potential (r2 > 0.42; p < 0.001). The ratio of SAM (substrate) to SAH (inhibitor) was positively correlated with the redox potential (r2 = 0.36; p < 0.001). In conclusion, early in life, the redox potential value strongly influences the DNA methylation metabolism, resulting in an increase of DNA methylation as a function of increased oxidative stress. These results support the notion that early-life oxidative stress can reprogram the metabolism epigenetically. This study emphasizes once again the importance of improving the quality of parenteral nutrition solutions administered early in life, especially to newborn infants. Abbreviation of Title: Parenteral nutrition and DNA methylation
Collapse
Affiliation(s)
- Angela Mungala Lengo
- Department of Nutrition, Université De Montréal, CHU Sainte-Justine , Montréal, QC, Canada
| | - Clémence Guiraut
- Department of Paediatrics, CHU Sainte-Justine, Université De Montréal , Montréal, QC, Canada
| | - Ibrahim Mohamed
- Department of Nutrition, Université De Montréal, CHU Sainte-Justine , Montréal, QC, Canada.,Department of Paediatrics, CHU Sainte-Justine, Université De Montréal , Montréal, QC, Canada
| | - Jean-Claude Lavoie
- Department of Nutrition, Université De Montréal, CHU Sainte-Justine , Montréal, QC, Canada.,Department of Paediatrics, CHU Sainte-Justine, Université De Montréal , Montréal, QC, Canada
| |
Collapse
|
33
|
Teng M, Wang C, Song M, Chen X, Zhang J, Wang C. Chronic exposure of zebrafish (Danio rerio) to flutolanil leads to endocrine disruption and reproductive disorders. ENVIRONMENTAL RESEARCH 2020; 184:109310. [PMID: 32163770 DOI: 10.1016/j.envres.2020.109310] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The pesticide flutolanil has been detected in fish and aquatic environments, but its potential impact on the endocrine function is unknown. In this study, two-month zebrafish were exposed to the environmentally relevant concentrations of flutolanil for 60 days to examine the reproductive endpoints on the gonad endocrine system. Increased 17 beta-estradiol (17β-E2) content and 17β-E2/T ratio and decreased testosterone (T) in male suggested that flutolanil produces the estrogenic effect. In support of this view, vitellogene (vtg1, vtg2) and cytochrome P450 aromatase 19a (cyp19a) expression were up-regulated in the male liver. The levels of global DNA methylation were increased in ovary. Parental zebrafish exposure to different concentrations of flutolanil affected the offspring development as shown by short body length, and increased mortality. Thus, these results demonstrate that flutolanil exposure results in gonad endocrine disruption, decreased reproduction, and developmental toxicity in F1, highlighting the importance of assessing the potential environmental risks of flutolanil application.
Collapse
Affiliation(s)
- Miaomiao Teng
- College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Min Song
- Tai'an Academy of Agricultural Sciences, Taian, 271000, Shandong Province, China
| | - Xiangguang Chen
- College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Zhang
- College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|