1
|
Koschinski S, Owen K, Lehnert K, Kamińska K. Current species protection does not serve its porpoise-Knowledge gaps on the impact of pressures on the Critically Endangered Baltic Proper harbour porpoise population, and future recommendations for its protection. Ecol Evol 2024; 14:e70156. [PMID: 39267689 PMCID: PMC11392595 DOI: 10.1002/ece3.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Successful management requires information on pressures that threaten a species and areas where conservation actions are needed. The Baltic Proper harbour porpoise population was first listed as Critically Endangered by the International Union for the Conservation of Nature in 2008. Now, 16 years later, there is no change in conservation status despite ample conservation policy calling for its protection and an urgent need for management action to protect this population. Here, we provide an overview of the current status of the population, highlight knowledge gaps on the impact of pressures, and make recommendations for management of anthropogenic activities. Based on an exceeded limit for anthropogenic mortality, the high concentrations of contaminants in the Baltic Sea, combined with reductions in prey availability and increases in underwater noise, it is inferred that this population is likely still decreasing in size and conservation action becomes more urgent. As bycatch and unprotected underwater explosions result in direct mortality, they must be reduced to zero. Inputs of contaminants, waste, and existing and emerging noise sources should be minimised and regulated. Additionally, ecosystem-based sustainable management of fisheries is paramount in order to ensure prey availability, and maintain a healthy Baltic Sea. Stranding networks to routinely assess individuals for genetic population assignment and health need to be expanded, to identify rare samples from this population. Knowledge is still scarce on the population-level impact of each threat, along with the cumulative impact of multiple pressures on the population. However, the current knowledge and management instruments are sufficient to apply effective protection for the population now. While bycatch is the main pressure impacting this population, urgent conservation action is needed across all anthropogenic activities. Extinction of the Baltic Proper harbour porpoise population is a choice: decision-makers have the fate of this genetically and biologically distinct marine mammal population in their hands.
Collapse
Affiliation(s)
| | - Kylie Owen
- Department of Population Analysis and MonitoringSwedish Museum of Natural HistoryStockholmSweden
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife ResearchUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Katarzyna Kamińska
- Department of FisheriesMinistry of Agriculture and Rural DevelopmentWarsawPoland
| |
Collapse
|
2
|
Reiter EB, Escher BI, Rojo-Nieto E, Nolte H, Siebert U, Jahnke A. Characterizing the marine mammal exposome by iceberg modeling, linking chemical analysis and in vitro bioassays. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1802-1816. [PMID: 37132588 PMCID: PMC10647987 DOI: 10.1039/d3em00033h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023]
Abstract
The present study complements work on mixture effects measured with in vitro bioassays of passive equilibrium sampling extracts using the silicone polydimethylsiloxane (PDMS) in organs from marine mammals with chemical profiling. Blubber, liver, kidney and brain tissues of harbor porpoise (Phocoena phocoena), harbor seal (Phoca vitulina), ringed seal (Phoca hispida) and orca (Orcinus orca) from the North and Baltic Seas were investigated. We analyzed 117 chemicals including legacy and emerging contaminants using gas chromatography-high resolution mass spectrometry and quantified 70 of those chemicals in at least one sample. No systematic differences between the organs were found. Only for single compounds a clear distribution pattern was observed. For example, 4,4'-dichlorodiphenyltrichloroethane, enzacamene and etofenprox were mainly detected in blubber, whereas tonalide and the hexachlorocyclohexanes were more often found in liver. Furthermore, we compared the chemical profiling with the bioanalytical results using an iceberg mixture model, evaluating how much of the biological effect could be explained by the analyzed chemicals. The mixture effect predicted from the quantified chemical concentrations explained 0.014-83% of the aryl hydrocarbon receptor activating effect (AhR-CALUX), but less than 0.13% for the activation of the oxidative stress response (AREc32) and peroxisome-proliferator activated receptor (PPARγ). The quantified chemicals also explained between 0.044-45% of the cytotoxic effect measured with the AhR-CALUX. The largest fraction of the observed effect was explained for the orca, which was the individuum with the highest chemical burden. This study underlines that chemical analysis and bioassays are complementary to comprehensively characterize the mixture exposome of marine mammals.
Collapse
Affiliation(s)
- Eva B Reiter
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Elisa Rojo-Nieto
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| | - Hannah Nolte
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
- Institute for Environmental Research, RWTH Aachen University, Aachen, 52074, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761, Büsum, Germany
| | - Annika Jahnke
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
- Institute for Environmental Research, RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
3
|
Elmegaard SL, Teilmann J, Rojano-Doñate L, Brennecke D, Mikkelsen L, Balle JD, Gosewinkel U, Kyhn LA, Tønnesen P, Wahlberg M, Ruser A, Siebert U, Madsen PT. Wild harbour porpoises startle and flee at low received levels from acoustic harassment device. Sci Rep 2023; 13:16691. [PMID: 37794093 PMCID: PMC10550999 DOI: 10.1038/s41598-023-43453-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/24/2023] [Indexed: 10/06/2023] Open
Abstract
Acoustic Harassment Devices (AHD) are widely used to deter marine mammals from aquaculture depredation, and from pile driving operations that may otherwise cause hearing damage. However, little is known about the behavioural and physiological effects of these devices. Here, we investigate the physiological and behavioural responses of harbour porpoises (Phocoena phocoena) to a commercial AHD in Danish waters. Six porpoises were tagged with suction-cup-attached DTAGs recording sound, 3D-movement, and GPS (n = 3) or electrocardiogram (n = 2). They were then exposed to AHDs for 15 min, with initial received levels (RL) ranging from 98 to 132 dB re 1 µPa (rms-fast, 125 ms) and initial exposure ranges of 0.9-7 km. All animals reacted by displaying a mixture of acoustic startle responses, fleeing, altered echolocation behaviour, and by demonstrating unusual tachycardia while diving. Moreover, during the 15-min exposures, half of the animals received cumulative sound doses close to published thresholds for temporary auditory threshold shifts. We conclude that AHD exposure at many km can evoke both startle, flight and cardiac responses which may impact blood-gas management, breath-hold capability, energy balance, stress level and risk of by-catch. We posit that current AHDs are too powerful for mitigation use to prevent hearing damage of porpoises from offshore construction.
Collapse
Affiliation(s)
- Siri L Elmegaard
- Zoophysiology, Dept. of Biology, Aarhus University, 8000, Aarhus, Denmark.
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark.
| | - Jonas Teilmann
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Laia Rojano-Doñate
- Zoophysiology, Dept. of Biology, Aarhus University, 8000, Aarhus, Denmark
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Dennis Brennecke
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | - Lonnie Mikkelsen
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
- Norwegian Polar Institute, 9296, Tromsø, Norway
| | - Jeppe D Balle
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Ulrich Gosewinkel
- Environmental Microbiology, Dept. of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Line A Kyhn
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Pernille Tønnesen
- Zoophysiology, Dept. of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Centre, Dept. of Biology, University of Southern Denmark, 5300, Kerteminde, Denmark
| | - Andreas Ruser
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | | |
Collapse
|
4
|
Screening for Influenza and Morbillivirus in Seals and Porpoises in the Baltic and North Sea. Pathogens 2023; 12:pathogens12030357. [PMID: 36986279 PMCID: PMC10054458 DOI: 10.3390/pathogens12030357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Historically, the seals and harbour porpoises of the Baltic Sea and North Sea have been subjected to hunting, chemical pollutants and repeated mass mortalities, leading to significant population fluctuations. Despite the conservation implications and the zoonotic potential associated with viral disease outbreaks in wildlife, limited information is available on the circulation of viral pathogens in Baltic Sea seals and harbour porpoises. Here, we investigated the presence of the influenza A virus (IAV), the phocine distemper virus (PDV) and the cetacean morbillivirus (CeMV) in tracheal swabs and lung tissue samples from 99 harbour seals, 126 grey seals, 73 ringed seals and 78 harbour porpoises collected in the Baltic Sea and North Sea between 2002–2019. Despite screening 376 marine mammals collected over nearly two decades, we only detected one case of PDV and two cases of IAV linked to the documented viral outbreaks in seals in 2002 and 2014, respectively. Although we find no evidence of PDV and IAV during intermediate years, reports of isolated cases of PDV in North Sea harbour seals and IAV (H5N8) in Baltic and North Sea grey seals suggest introductions of those pathogens within the sampling period. Thus, to aid future monitoring efforts we highlight the need for a standardized and continuous sample collection of swabs, tissue and blood samples across Baltic Sea countries.
Collapse
|
5
|
Stepien EN, Olsen MT, Nabe–Nielsen J, Hansen KA, Kristensen JH, Blanchet M, Brando S, Desportes G, Lockyer C, Marcenaro L, Bunskoek P, Kemper J, Siebert U, Wahlberg M. Determination of growth, mass, and body mass index of harbour porpoises (Phocoena phocoena): Implications for conservational status assessment of populations. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
6
|
Philipp C, Unger B, Siebert U. Occurrence of Microplastics in Harbour Seals ( Phoca vitulina) and Grey Seals ( Halichoerus grypus) from German Waters. Animals (Basel) 2022; 12:ani12050551. [PMID: 35268122 PMCID: PMC8908825 DOI: 10.3390/ani12050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
The level of knowledge on microplastic exposure in marine mammals is limited by the access to dead and alive individuals. Focusing on the Northeast Atlantic area, some studies already confirmed the microplastic presence in free-ranging marine mammals, such as harbour porpoises or harbour seals inhabiting the North Sea (NS). In contrast, knowledge on the exposure to grey seals and particularly on specimen inhabiting the Baltic Sea (BS) are scarce. This study examined 63 gastrointestinal tracts (GIT) of harbour seals and grey seals originating from German waters (NS and BS) found between 2014 and 2019. Besides the documentation of microplastic findings, this study is dealing with life history and health parameters, attempting to identify correlations with microplastic presence. This study confirmed beside the presence, the egestion of microplastics (>100 µm; MPs) in the examined seals, without correlations in parasite infestations or inflammation responses. 540 suspected MPs were identified in 62 intestinal samples (42% fibres, 58% fragments), and 228 MPs in seven stomachs (28% fibres, 72% fragments). In accordance, first evidence of the retainment of fragments in the GIT were given. However, no significant difference in MP occurrence was indicated for different sex or age groups.
Collapse
|
7
|
Siebert U, Stürznickel J, Schaffeld T, Oheim R, Rolvien T, Prenger-Berninghoff E, Wohlsein P, Lakemeyer J, Rohner S, Aroha Schick L, Gross S, Nachtsheim D, Ewers C, Becher P, Amling M, Morell M. Blast injury on harbour porpoises (Phocoena phocoena) from the Baltic Sea after explosions of deposits of World War II ammunition. ENVIRONMENT INTERNATIONAL 2022; 159:107014. [PMID: 34883460 DOI: 10.1016/j.envint.2021.107014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/21/2023]
Abstract
Harbour porpoises are under pressure from increasing human activities. This includes the detonation of ammunition that was dumped in large amounts into the sea during and after World War II. In this context, forty-two British ground mines from World War II were cleared by means of blasting in the period from 28 to 31 August 2019 by a NATO unit in the German Exclusive Economic Zone within the marine protected area of Fehmarn Belt in the Baltic Sea, Germany. Between September and November 2019, 24 harbour porpoises were found dead in the period after those clearing events along the coastline of the federal state of Schleswig-Holstein and were investigated for direct and indirect effects of blast injury. Health evaluations were conducted including examinations of the brain, the air-filled (lungs and gastrointestinal tract) and acoustic organs (melon, acoustic fat in the lower jaw, ears and their surrounding tissues). The bone structure of the tympano-periotic complexes was examined using high-resolution peripheral quantitative computed tomography (HR-pQCT). In 8/24 harbour porpoises, microfractures of the malleus, dislocation of middle ear bones, bleeding, and haemorrhages in the melon, lower jaw and peribullar acoustic fat were detected, suggesting blast injury. In addition, one bycaught animal and another porpoise with signs of blunt force trauma also showed evidence of blast injury. The cause of death of the other 14 animals varied and remained unclear in two individuals. Due to the vulnerability and the conservation status of harbour porpoise populations in the Baltic Sea, noise mitigation measures must be improved to prevent any risk of injury. The data presented here highlight the importance of systematic investigations into the acute and chronic effects of blast and acoustic trauma in harbour porpoises, improving the understanding of underwater noise effects and herewith develop effective measures to protect the population level.
Collapse
Affiliation(s)
- Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany.
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany; Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Tobias Schaffeld
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany; Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Ellen Prenger-Berninghoff
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Frankfurter Str. 85-87, 35392 Giessen, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | - Jan Lakemeyer
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Simon Rohner
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Luca Aroha Schick
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Stephanie Gross
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Dominik Nachtsheim
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Christa Ewers
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Frankfurter Str. 85-87, 35392 Giessen, Germany
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Maria Morell
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| |
Collapse
|
8
|
Pathological findings in bycaught harbour porpoises (Phocoena phocoena) from the coast of Northern Norway. Polar Biol 2021. [DOI: 10.1007/s00300-021-02970-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractDue to little prior knowledge, the present study aims to investigate the health status of bycaught harbour porpoises from the northernmost Arctic Norwegian coastline. Gross, histopathological and parasitological investigations were conducted on 61 harbour porpoises (Phocoena phocoena phocoena) accidentally captured in fishing gear from February to April 2017 along the coast of Northern Norway. Most animals displayed a good nutritional status, none were emaciated. Pulmonary nematodiasis (Pseudalius inflexus, Halocercus invaginatus and Torynurus convolutus) was found in 77% and associated with severe bronchopneumonia in 33% of the animals. The majority (92%) had parasites in the stomach and intestine (Anisakis simplex sensu stricto (s. s.), Pholeter gastrophilus, Diphyllobothrium stemmacephalum, Hysterothylacium aduncum and Pseudoterranova decipiens s. s.). The prevalence of gastric nematodiasis was 69%. In the 1st stomach compartment A. simplex s. s. was found in 30% of the animals, causing severe chronic ulcerative gastritis in 23%. Campula oblonga infected the liver and pancreas of 90% and 10% of the animals, respectively, causing severe cholangitis/pericholangitis/hepatitis in 67% and moderate pancreatitis in 10% of the animals. Mesenteric and pulmonary lymphadenitis was detected in 82% and 7% of the animals, respectively. In conclusion, the major pathological findings in the investigated Arctic porpoises were parasitoses in multiple organs with associated severe lesions, particularly in the lung, liver and stomach. The animals were generally well nourished and most showed freshly ingested prey in their stomachs. The present study indicates that the harbour porpoises were able to tolerate the detected parasitic burden and associated lesions without significant health problems.
Collapse
|
9
|
Brennecke D, Wahlberg M, Gilles A, Siebert U. Age and lunar cycle predict harbor porpoise bycatch in the south-western Baltic Sea. PeerJ 2021; 9:e12284. [PMID: 34760359 PMCID: PMC8556710 DOI: 10.7717/peerj.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/20/2021] [Indexed: 11/27/2022] Open
Abstract
The harbor porpoise, Phocoena phocoena, is the only cetacean regularly occurring in the Baltic Sea. During the last decades, several anthropogenic activities have affected porpoises in the Baltic region. Most notably is bycatch in static fishing gear, such as gill nets, which is the main human-induced cause of death in odontocetes. There is still considerable uncertainty about which factors influence the amount of bycatch. In the present study, we reviewed bycatch data collected from 1987 to 2016 from the south-western Baltic Sea. There was a significant difference in bycatch due to seasonality and region, and there was a higher bycatch rate in juveniles than in adults. The only abiotic factor associated with bycatch was the lunar cycle, with more animals bycaught during a full moon. These results improve our understanding of which biotic and abiotic factors are associated with bycatch of Baltic harbor porpoises, which can be used to strengthen conservation endeavors such as managing fishing efforts.
Collapse
Affiliation(s)
- Dennis Brennecke
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Schleswig-Holstein, Germany.,University of Southern Denmark, Department of Biology, Marine Biological Research Centre, Kerteminde, Denmark.,Leibniz Institute for Science and Mathematics Education, Kiel, Schleswig-Holstein, Germany
| | - Magnus Wahlberg
- University of Southern Denmark, Department of Biology, Marine Biological Research Centre, Kerteminde, Denmark
| | - Anita Gilles
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Schleswig-Holstein, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Schleswig-Holstein, Germany
| |
Collapse
|
10
|
McDonald BI, Elmegaard SL, Johnson M, Wisniewska DM, Rojano-Doñate L, Galatius A, Siebert U, Teilmann J, Madsen PT. High heart rates in hunting harbour porpoises. Proc Biol Sci 2021; 288:20211596. [PMID: 34753357 PMCID: PMC8580435 DOI: 10.1098/rspb.2021.1596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The impressive breath-hold capabilities of marine mammals are facilitated by both enhanced O2 stores and reductions in the rate of O2 consumption via peripheral vasoconstriction and bradycardia, called the dive response. Many studies have focused on the extreme role of the dive response in maximizing dive duration in marine mammals, but few have addressed how these adjustments may compromise the capability to hunt, digest and thermoregulate during routine dives. Here, we use DTAGs, which record heart rate together with foraging and movement behaviour, to investigate how O2 management is balanced between the need to dive and forage in five wild harbour porpoises that hunt thousands of small prey daily during continuous shallow diving. Dive heart rates were moderate (median minimum 47-69 bpm) and relatively stable across dive types, dive duration (0.5-3.3 min) and activity. A moderate dive response, allowing for some perfusion of peripheral tissues, may be essential for fuelling the high field metabolic rates required to maintain body temperature and support digestion during diving in these small, continuously feeding cetaceans. Thus, despite having the capacity to prolong dives via a strong dive response, for these shallow-diving cetaceans, it appears to be more efficient to maintain circulation while diving: extreme heart rate gymnastics are for deep dives and emergencies, not everyday use.
Collapse
Affiliation(s)
- Birgitte I. McDonald
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA 93933, USA
| | - Siri L. Elmegaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark,Marine Mammal Research, Bioscience to Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Mark Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark
| | - Danuta M. Wisniewska
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-Université La Rochelle, 79360 Villiers en Bois, France
| | - Laia Rojano-Doñate
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Anders Galatius
- Marine Mammal Research, Bioscience to Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Büsum, Germany
| | - Jonas Teilmann
- Marine Mammal Research, Bioscience to Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Peter T. Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
11
|
Nutritional status and prey energy density govern reproductive success in a small cetacean. Sci Rep 2021; 11:19201. [PMID: 34725464 PMCID: PMC8560860 DOI: 10.1038/s41598-021-98629-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
A variety of mammals suppress reproduction when they experience poor physical condition or environmental harshness. In many marine mammal species, reproductive impairment has been correlated to polychlorinated biphenyls (PCBs), the most frequently measured chemical pollutants, while the relative importance of other factors remains understudied. We investigate whether reproductively active females abandon investment in their foetus when conditions are poor, exemplified using an extensively studied cetacean species; the harbour porpoise (Phocoena phocoena). Data on disease, fat and muscle mass and diet obtained from necropsies in The Netherlands were used as proxies of health and nutritional status and related to pregnancy and foetal growth. This was combined with published life history parameters for 16 other areas to correlate to parameters reflecting environmental condition: mean energy density of prey constituting diets (MEDD), cumulative human impact and PCB contamination. Maternal nutritional status had significant effects on foetal size and females in poor health had lower probabilities of being pregnant and generally did not sustain pregnancy throughout gestation. Pregnancy rates across the Northern Hemisphere were best explained by MEDD. We demonstrate the importance of having undisturbed access to prey with high energy densities in determining reproductive success and ultimately population size for small cetaceans.
Collapse
|
12
|
Morell M, IJsseldijk LL, Berends AJ, Gröne A, Siebert U, Raverty SA, Shadwick RE, Kik MJL. Evidence of Hearing Loss and Unrelated Toxoplasmosis in a Free-Ranging Harbour Porpoise ( Phocoena phocoena). Animals (Basel) 2021; 11:ani11113058. [PMID: 34827790 PMCID: PMC8614470 DOI: 10.3390/ani11113058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Evidence of hearing impairment was identified in a female harbour porpoise (Phocoena phocoena) on the basis of inner ear analysis. The animal live stranded on the Dutch coast at Domburg in 2016 and died a few hours later. Ultrastructural examination of the inner ear revealed evidence of sensory cell loss, which is compatible with noise exposure. In addition, histopathology also revealed multifocal necrotising protozoal encephalitis. A diagnosis of toxoplasmosis was confirmed by positive staining of tissue with anti-Toxoplasma gondii antibodies; however, T. gondii tachyzoites were not observed histologically in any of the examined tissues. This is the first case of presumptive noise-induced hearing loss and demonstration of T. gondii cysts in the brain of a free-ranging harbour porpoise from the North Sea. Abstract Evidence of hearing impairment was identified in a harbour porpoise (Phocoena phocoena) on the basis of scanning electron microscopy. In addition, based on histopathology and immunohistochemistry, there were signs of unrelated cerebral toxoplasmosis. The six-year old individual live stranded on the Dutch coast at Domburg in 2016 and died a few hours later. The most significant gross lesion was multifocal necrosis and haemorrhage of the cerebrum. Histopathology of the brain revealed extensive necrosis and haemorrhage in the cerebrum with multifocal accumulations of degenerated neutrophils, lymphocytes and macrophages, and perivascular lymphocytic cuffing. The diagnosis of cerebral toxoplasmosis was confirmed by positive staining of protozoa with anti-Toxoplasma gondii antibodies. Tachyzoites were not observed histologically in any of the examined tissues. Ultrastructural evaluation of the inner ear revealed evidence of scattered loss of outer hair cells in a 290 µm long segment of the apical turn of the cochlea, and in a focal region of ~ 1.5 mm from the apex of the cochlea, which was compatible with noise-induced hearing loss. This is the first case of concurrent presumptive noise-induced hearing loss and toxoplasmosis in a free-ranging harbour porpoise from the North Sea.
Collapse
Affiliation(s)
- Maria Morell
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761 Büsum, Germany;
- Zoology Department, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (S.A.R.); (R.E.S.)
- Correspondence: (M.M.); (L.L.I.)
| | - Lonneke L. IJsseldijk
- Department of Biomolecular Health Sciences, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.J.B.); (A.G.); (M.J.L.K.)
- Correspondence: (M.M.); (L.L.I.)
| | - Alinda J. Berends
- Department of Biomolecular Health Sciences, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.J.B.); (A.G.); (M.J.L.K.)
| | - Andrea Gröne
- Department of Biomolecular Health Sciences, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.J.B.); (A.G.); (M.J.L.K.)
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761 Büsum, Germany;
| | - Stephen A. Raverty
- Zoology Department, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (S.A.R.); (R.E.S.)
- Animal Health Center, Ministry of Agriculture, Abbotsford, BC V3G 2M3, Canada
| | - Robert E. Shadwick
- Zoology Department, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (S.A.R.); (R.E.S.)
| | - Marja J. L. Kik
- Department of Biomolecular Health Sciences, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.J.B.); (A.G.); (M.J.L.K.)
| |
Collapse
|
13
|
Dzido J, Rolbiecki L, Izdebska JN, Rokicki J, Kuczkowski T, Pawliczka I. A global checklist of the parasites of the harbor porpoise Phocoena phocoena, a critically-endangered species, including new findings from the Baltic Sea. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 15:290-302. [PMID: 34336594 PMCID: PMC8313437 DOI: 10.1016/j.ijppaw.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 10/25/2022]
Abstract
The common harbor porpoise is a widely-distributed marine mammal with three known subspecies, including P. phocoena phocoena, with a clearly distinct and critically endangered (CR) subpopulation from the Baltic Sea (Baltic Proper). As part of an assessment of the condition and health threats of these mammals, it is important to conduct parasitological monitoring. The aim of the study was therefore to compare the data on porpoise parasitofauna from this subpopulation with those on porpoises from other areas. The study included 37 individuals from 1995 to 2019; eight species of parasites were found (prevalence 83.8%, mean intensity 724.2, range 2-3940), with a predominance of lung nematodes - Stenurus minor (94.7%), Torynurus convolutus (69.4%), Pseudalius inflexus (63.8%), Halocercus invaginatus (22.2%); the highest intensity was recorded for S. minor (989, 53-2928). Two species of Anisakidae (Anisakis simplex - 33.3%, Contracaecum sp. - 20.0%) were found in the digestive tracts, which were a new record for this population. The fluke Campula oblonga was found in the livers of 31.3% of porpoises. The tapeworm Diphylobothrium stemmacephalum was also recorded in the intestine of one individual; this is typical for these hosts, but previously undetected in the Baltic subpopulation. Parasites coexisted in numerous hosts, constituting a heavy burden for them. The obtained data were compared with those from the P. phocoena parasitofauna from other regions, based on a compiled checklist (1809-2021) including all species of porpoise parasites (55 taxa). Compared to the worldwide porpoise parasitofauna checklist, the number of parasites found in the nominative subspecies (Baltic Proper subpopulation) is small: including only 10 taxa (eight in the current study). These species are typical of porpoises and usually the most common; however, the level of infection of Baltic porpoises (intensity and total parasite load) is very high, which can undoubtedly have a negative impact on their condition and overall health.
Collapse
Affiliation(s)
- Joanna Dzido
- Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Leszek Rolbiecki
- Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Joanna N Izdebska
- Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jerzy Rokicki
- Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Tytus Kuczkowski
- Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Iwona Pawliczka
- Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdańsk, Morska 2, 84-150, Hel, Poland
| |
Collapse
|
14
|
Reckendorf A, Everaarts E, Bunskoek P, Haulena M, Springer A, Lehnert K, Lakemeyer J, Siebert U, Strube C. Lungworm infections in harbour porpoises ( Phocoena phocoena) in the German Wadden Sea between 2006 and 2018, and serodiagnostic tests. Int J Parasitol Parasites Wildl 2021; 14:53-61. [PMID: 33489750 PMCID: PMC7809178 DOI: 10.1016/j.ijppaw.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 01/17/2023]
Abstract
Pseudaliid lungworm (Metastrongyloidea) infections and associated secondary bacterial infections may severely affect the health status of harbour porpoises (Phocoena phocoena) in German waters. The presented retrospective analysis including data from 259 harbour porpoises stranded between 2006 and 2018 on the German federal state of Schleswig-Holstein's North Sea coast showed that 118 (46%) of these stranded individuals harboured a lungworm infection. During this 13-year period, a significant difference in annual lungworm prevalence was only observed between the years 2006 and 2016. Lungworm coinfections of bronchi and pulmonary blood vessels were observed in 85.6% of positive cases. Mild infection levels were detected in 22.9% of infected animals and were most common in the age class of immature individuals (74.1%). Moderate and severe infections were present in 38.1% and 39.0% of the lungworm positive animals, respectively. Their distribution in immatures (51.1% and 54.3%) and adults (48.9% and 43.4%) did not show significant differences. In stranded animals, lungworm diagnosis can be easily obtained via necropsy, while reliable lungworm diagnosis in living porpoises requires invasive bronchoscopy or faecal examination, which is difficult to obtain in cetaceans. To overcome this issue, an enzyme-linked immunosorbent assay (ELISA) and immunoblot based on recombinant major sperm protein (MSP) of the cattle lungworm were evaluated as potential diagnostic tools in harbour porpoises. However, in contrast to hitherto other investigated host species, no reliable antibody response pattern was detectable in harbour porpoise serum/plasma or whole blood samples. Thus, MSP-based serological tests are considered unsuitable for lungworm diagnosis in harbour porpoises.
Collapse
Affiliation(s)
- Anja Reckendorf
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, D-30559, Hannover, Germany
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, D-25761, Buesum, Germany
| | - Eligius Everaarts
- SOS Dolfijn Foundation, Van Ewijckskade 1, 1761 JA, Anna Paulowna, the Netherlands
| | - Paulien Bunskoek
- Dolfinarium, Zuiderzeeboulevard 22, 3841 WB, Harderwijk, the Netherlands
| | - Martin Haulena
- Vancouver Aquarium, 845 Avison Way, Vancouver, BC, V6G 3E2, Canada
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, D-30559, Hannover, Germany
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, D-25761, Buesum, Germany
| | - Jan Lakemeyer
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, D-25761, Buesum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, D-25761, Buesum, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, D-30559, Hannover, Germany
| |
Collapse
|