1
|
Chastanet M, Debret M, Gardes T, Schäfer J, Abdou M, Lestel L, Morereau A, Mourier B, Grosbois C, Eyrolle F, Coynel A. Contrasting platinum trajectories in three major French rivers using dated sediment cores (1910-2021): From geochemical baseline to emerging source signals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172937. [PMID: 38701925 DOI: 10.1016/j.scitotenv.2024.172937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Platinum (Pt) is a Technology Critical Element (TCE) which, since the 1990s, has been mainly used in the industry in catalytic converters for automobile emission control. Previous studies have shown Pt contamination of road-side sediments and surface sediments in urban rivers and lakes but few of them have addressed temporal variations. The present work presents historical Pt concentration trends in 137Cs-dated sediment cores from floodplains or secondary channels at the outlets of three major French watersheds (Loire, Rhone, and Seine Rivers) covering the past ∼110 years, i.e., from the 1910s to 2021. Platinum baseline levels in the sediment were estimated for the Loire River (0.76 ± 0.22 μg kg-1 for the period ∼1910-∼1955) and the Rhone River (1.64 ± 0.41 μg kg-1), and historical Pt variations seem to reflect variations in hydrodynamics and grain size composition. Since the early 2000s, Pt concentrations in the Loire and the Rhone River sediments tend to increase (>2.5 μg kg-1) and were attributed to the use of car catalytic converters, an emerging technology since the 1990s using >50 % of European Pt demand. High and variable historical Pt concentrations (up to 14.6 μg kg-1) in the Seine River sediments may reflect legacy Pt sources due to former anthropogenic activities in this watershed, such as the use of Pt-based catalysts for petroleum refinery since the end of the 1940s, coal handling and precious metals refining, probably concealing the likely presence of an emerging traffic-related Pt signal. This first comparison of historical Pt concentration trends in sediments from contrasting watersheds allows to distinguish signals originating from different natural and anthropogenic sources (background level, historical sources, road traffic).
Collapse
Affiliation(s)
- Maxime Chastanet
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Maxime Debret
- Univ Rouen Normandie, Université Caen Normandie, CNRS, Normandie Univ, M2C UMR 6143, F-76000 Rouen, France
| | - Thomas Gardes
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Jörg Schäfer
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Mélina Abdou
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | | | | | - Brice Mourier
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Vaulx-en-Velin F-69518, France
| | - Cécile Grosbois
- Université de Tours, EA 6293 Géohydrosystèmes Continentaux (GéHCO), Parc de Grandmont, Cedex, Tours 37200, France
| | - Frédérique Eyrolle
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV, SRTE/LRTA, BP 3, 13115 Saint Paul Lez Durance, France
| | - Alexandra Coynel
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
2
|
Vidal A, Papillon L, Seignemartin G, Morereau A, Euzen C, Grenz C, Copard Y, Eyrolle F, Sempéré R. Temporal evolution of plastic additive contents over the last decades in two major European rivers (Rhone and Rhine) from sediment cores analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123655. [PMID: 38467366 DOI: 10.1016/j.envpol.2024.123655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Although global plastic distribution is at the heart of 21st century environmental concerns, little information is available concerning how organic plastic additives contaminate freshwater sediments, which are often subject to strong anthropogenic pressure. Here, sediment core samples were collected in the Rhone and the Rhine watersheds (France), dated using 137Cs and 210Pbxs methods and analysed for nine phthalates (PAEs) and seven organophosphate esters (OPEs). The distribution of these organic contaminants was used to establish a chronological archive of plastic additive pollution from 1860 (Rhine) and 1930 (Rhone) until today. Sediment grain size and parameters related to organic matter (OM) were also measured as potential factors that may affect the temporal distribution of OPEs and PAEs in sediments. Our results show that OPE and PAE levels increased continuously in Rhone and Rhine sediments since the first records. In both rivers, ∑PAEs levels (from 9.1 ± 1.7 to 487.3 ± 27.0 ng g-1 dry weight (dw) ± standard deviation and from 4.6 ± 1.3 to 65.2 ± 11.2 ng g-1 dw, for the Rhine and the Rhone rivers, respectively) were higher than ∑OPEs levels (from 0.1 ± 0.1 to 79.1 ± 13.7 ng g-1 dw and from 0.6 ± 0.1 to 17.8 ± 2.3 ng g-1 dw, for Rhine and Rhone rivers, respectively). In both rivers, di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAE, followed by diisobutyl phthalate (DiBP), while tris (2-chloroisopropyl) phosphate (TCPP) was the most abundant OPE. No relationship was found between granulometry and additives concentrations, while organic matter helps explain the vertical distribution of PAEs and OPEs in the sediment cores. This study thus establishes a temporal trajectory of PAEs and OPEs contents over the last decades, leading to a better understanding of historical pollution in these two Western European rivers.
Collapse
Affiliation(s)
- Alice Vidal
- Aix Marseille Univ., University of Toulon, CNRS, IRD, MIO UM 110, Marseille, France.
| | - Laure Papillon
- Aix Marseille Univ., University of Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Gabrielle Seignemartin
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | - Amandine Morereau
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV, STAAR/LRTA, BP 3, 13115, Saint-Paul-lez-Durance, France; Sorbonne-Université, UMR CNRS, 7619 METIS, 75252, Paris, France
| | - Cassandra Euzen
- Univ, Strasbourg, CNRS, ENGEES, UMR7362 LIVE, Strasbourg, France
| | - Christian Grenz
- Aix Marseille Univ., University of Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Yoann Copard
- Univ. Rouen Normandie, Université Caen Normandie, CNRS, Normandie Univ, M2C UMR 6143, F-76000, Rouen, France
| | - Frédérique Eyrolle
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV, STAAR/LRTA, BP 3, 13115, Saint-Paul-lez-Durance, France
| | - Richard Sempéré
- Aix Marseille Univ., University of Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| |
Collapse
|
3
|
Dhivert E, Pruvost J, Winiarski T, Gasperi J, Delor-Jestin F, Tassin B, Mourier B. Time-varying microplastic contributions of a large urban and industrial area to river sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123702. [PMID: 38432346 DOI: 10.1016/j.envpol.2024.123702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/05/2024]
Abstract
The quantification of microplastic (MP) pollution in rivers is often constrained by a lack of historical data on a multi-decadal scale, which hinders the evaluation of public policies. In this study, MP contents and trends were analyzed in dated sediment cores sampled upstream and downstream of a large metropolis, in environmental deposits that exhibited consistent sedimentation patterns from the 1980s to 2021. After a thorough sedimentological analysis, MPs were quantified in samples by micro Fourier Transform InfraRed spectroscopy (μFTIR imaging) and a density separation and organic matter digestion procedure. Microplastics recorded in the upstream core are relatively ubiquitous all along the dated sequence. The results also confirmed a sever increase of microplastics levels in the downstream core, by one order of magnitude, and an increase of polymer types. Polypropylene, polyethylene, and polystyrene represent ubiquitous contamination and were predominant at the two stations, whereas polyvinyl chloride and polytetrafluoroethylene were suspected to be abundant at the downstream station, but were not detected at the upstream station. Their presence could be linked to local contamination from specific industrial sources that manufactured and utilized these polymers. Surprisingly, in the downstream station sediment has recorded a relative improvement in polymers associated with industrial sources since the 2000s and, to a lesser extent, for ubiquitous ones since the 2010s. This trend of mitigation diverges from that of global assessments, that assume uncontrolled MP pollution, and suggest that European Union wastewater policy and regulation on industrial discharges have positively influenced water quality, and certainly also on MPs. However, the accumulation of microplastics remains high in recent deposits and raises the emerging concern of the long-term management of these reservoirs.
Collapse
Affiliation(s)
- E Dhivert
- University of Lyon, University Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France; University of Tours, EA 6293 GeHCO, F-37200, Tours, France
| | - J Pruvost
- University of Lyon, University Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | - T Winiarski
- University of Lyon, University Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | - J Gasperi
- University Gustave Eiffel, GERS-LEE IFSTTAR, F-44344, Bouguenais, France
| | - F Delor-Jestin
- University of Clermont-Ferrand, Clermont Auvergne INP-Sigma Clermont, CNRS, ICCF, UMR 6296, F-63177, Aubière, France
| | - B Tassin
- École des Ponts ParisTech, LEESU, F-77455, Marne-la-Vallée, France
| | - B Mourier
- University of Lyon, University Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France.
| |
Collapse
|
4
|
Silva CFD, Pereira EA, Carvalho MDAR, Botero WG, de Oliveira LC. Urban river recovery: a systematic review on the effectiveness of water clean-up programs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26355-26377. [PMID: 38530521 DOI: 10.1007/s11356-024-33055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Urban rivers are affected at different levels by the intensification of human activities, representing a serious threat to the maintenance of terrestrial life and sustainable urban development. Consequently, great efforts have been dedicated to the ecological restoration of urban rivers around the world, as a solution to recovering the environmental functionality of these environments. In this sense, the present work aimed to investigate the effectiveness of interventions carried out aimed at the recovery of urban rivers, through a systematic review of the literature between 2010 and 2022, using the search term "rivers recovery." The results showed that there have been notable advances in the implementation of river recovery programs in urban areas around the world between the years analyzed. The ecosystems studied were affected, for the most part, by the increase in the supply of nutrients from domestic and industrial effluents, in addition to having highly urbanized surroundings and with several changes in land use patterns. The preparation of this literature review made it possible to demonstrate that the effectiveness of river recovery is extremely complex, since river recovery projects are developed for different reasons, as well as being carried out in different ways according to the intended objective.
Collapse
Affiliation(s)
- Caroline Ferreira da Silva
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, João Leme dos Santos Highway, km 110 - SP-264, Sorocaba, SP, 18052.780, Brazil
| | - Elisabete Alves Pereira
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, João Leme dos Santos Highway, km 110 - SP-264, Sorocaba, SP, 18052.780, Brazil
| | - Mayara de Almeida Ribeiro Carvalho
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, João Leme dos Santos Highway, km 110 - SP-264, Sorocaba, SP, 18052.780, Brazil
| | - Wander Gustavo Botero
- Federal University of Alagoas, Graduate Program in Chemistry and Biotechnology, Maceió, Alagoas, 57072-900, Brazil
| | - Luciana Camargo de Oliveira
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, João Leme dos Santos Highway, km 110 - SP-264, Sorocaba, SP, 18052.780, Brazil.
| |
Collapse
|
5
|
Stojanov N, Maletić S, Beljin J, Đukanović N, Kiprovski B, Zeremski T. Enhancing Phytoextraction Potential of Brassica napus for Contaminated Dredged Sediment Using Nitrogen Fertilizers and Organic Acids. PLANTS (BASEL, SWITZERLAND) 2024; 13:818. [PMID: 38592795 PMCID: PMC10976009 DOI: 10.3390/plants13060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Dredged sediment contaminated with heavy metals can be remediated through phytoremediation. The main challenge in phytoremediation is the limited availability of heavy metals for plant uptake, particularly in multi-contaminated soil or sediment. This study aimed to assess the effect of the nitrogen fertilizers (ammonium nitrate (AN), ammonium sulfate (AS), and urea (UR)), organic acids (oxalic (OA) and malic (MA) acids), and their combined addition to sediment on enhancing the bioavailability and phytoremediation efficiency of heavy metals. The sediment dredged from Begej Canal (Serbia) had high levels of Cr, Cd, Cu, and Pb and was used in pot experiments to cultivate energy crop rapeseed (Brassica napus), which is known for its tolerance to heavy metals. The highest accumulation and translocation of Cu, Cd, and Pb were observed in the treatment with AN at a dose of 150 mg N/kg (AN150), in which shoot biomass was also the highest. The application of OA and MA increased heavy metal uptake but resulted in the lowest biomass production. A combination of MA with N fertilizers showed high uptake and accumulation of Cr and Cu.
Collapse
Affiliation(s)
- Nadežda Stojanov
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (B.K.); (T.Z.)
| | - Snežana Maletić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (S.M.); (J.B.); (N.Đ.)
| | - Jelena Beljin
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (S.M.); (J.B.); (N.Đ.)
| | - Nina Đukanović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (S.M.); (J.B.); (N.Đ.)
| | - Biljana Kiprovski
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (B.K.); (T.Z.)
| | - Tijana Zeremski
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (B.K.); (T.Z.)
| |
Collapse
|
6
|
Bedell JP, Dendievel AM, Gosset A, Mourier B. Combined Chemical and Ecotoxicological Measurements for River Sediment Management in an On-Land Deposit Scenario. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:436-452. [PMID: 37097447 DOI: 10.1007/s00244-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Sediment management along engineered river systems includes dredging operations and sediment deposition in the sea (capping) or on land. Thus, determining the ecotoxicological risk gradient associated with river sediments is critical. In this study, we investigated sediment samples along the Rhône River (France) and conducted environmental risk assessment tests with the idea to evaluate them in the future for deposit on soil. Based on an on-land deposit scenario, the capacity of the sediment samples from four sites (LDB, BER, GEC, and TRS) to support vegetation was evaluated by characterising the physical and chemical parameters (pH, conductivity, total organic carbon, grain size, C/N, potassium, nitrogen, and selected pollutants), including polychlorinated biphenyls (PCBs) and metal trace elements. All tested sediments were contaminated by metallic elements and PCBs as follows: LDB > GEC > TRS > BER, but only LDB had levels higher than the French regulatory threshold S1. Sediment ecotoxicity was then assessed using acute (plant germination and earthworm avoidance) and chronic (ostracod test and earthworm reproduction) bioassays. Two of the tested plant species, Lolium perenne (ray grass) and Cucurbita pepo (zucchini), were highly sensitive to sediment phytotoxicity. Acute tests also showed significant inhibition of germination and root growth, with avoidance by Eisenia fetida at the least contaminated sites (TRS and BER). Chronic bioassays revealed that LDB and TRS sediment were significantly toxic to E. fetida and Heterocypris incongruens (Ostracoda), and GEC sediment was toxic for the latter organism. In this on-land and spatialised deposit scenario, river sediment from the LDB site (Lake Bourget marina) presented the highest potential toxicity and required the greatest attention. However, low contamination levels can also lead to potential toxicity (as demonstrated for GEC and TRS site), underlining the importance of a multiple test approach for this scenario.
Collapse
Affiliation(s)
- Jean-Philippe Bedell
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69518, Vaulx-en-Velin, France.
| | - André-Marie Dendievel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69518, Vaulx-en-Velin, France
| | - Antoine Gosset
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69518, Vaulx-en-Velin, France
| | - Brice Mourier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69518, Vaulx-en-Velin, France
| |
Collapse
|
7
|
Wang Z, Hua P, Zhang J, Krebs P. Bayesian-Based Approaches to Exploring the Long-Term Alteration in Trace Metals of Surface Water and Its Driving Forces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1658-1669. [PMID: 36594866 DOI: 10.1021/acs.est.2c07210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Trace metal pollution poses a serious threat to the aquatic ecosystem. Therefore, characterizing the long-term environmental behavior of trace metals and their driving forces is essential for guiding water quality management. Based on a long-term data set from 1990 to 2019, this study systematically conducted the spatiotemporal trend assessment, influential factor analysis, and source apportionment of trace elements in the rivers of the German Elbe River basin. Results show that the mean concentrations of the given elements in the last 30 years were found in the order of Fe (1179.5 ± 1221 μg·L-1) ≫ Mn (209.6 ± 181.7 μg·L-1) ≫ Zn (52.5 ± 166.2 μg·L-1) ≫ Cu (5.3 ± 5.5 μg·L-1) > Ni (4.4 ± 8.3 μg·L-1) > Pb (3.3 ± 4.4 μg·L-1) > As (2.9 ± 2.3 μg·L-1) > Cr (1.8 ± 2.4 μg·L-1) ≫ Cd (0.3 ± 1.1 μg·L-1) > Hg (0.05 ± 0.12 μg·L-1). Wavelet analyses show that river flow regimes and flooding dominated the periodic variations in metal pollution. Bayesian network suggests that the hydrochemical factors (i.e., TOC, TP, TN, pH, and EC) chemically influenced the metal mobility between water and sediments. Furthermore, the source apportionment computed by the Bayesian multivariate receptor model shows that the given element contamination was typically attributed to the geogenic sources (17.5, 95% confidence interval: 13.1-17.6%), urban and industrial sources (22.1, 18.0-27.2%), arable soil erosion (24.2, 16.4-31.5%), and historical anthropogenic activities (35.2, 32.8-43.3%). The results provided herein reveal that both the hydrochemical influence on metal mobility and the chronic disturbance from anthropogenic activities caused the long-term variation in trace metal pollution.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062Dresden, Germany
| | - Pei Hua
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, 510006Guangzhou, China
- School of Environment, South China Normal University, University Town, 510006Guangzhou, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, 210098Nanjing, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011Urumqi, China
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062Dresden, Germany
| |
Collapse
|
8
|
He B, Liu A, Duodu GO, Wijesiri B, Ayoko GA, Goonetilleke A. Distribution and variation of metals in urban river sediments in response to microplastics presence, catchment characteristics and sediment properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159139. [PMID: 36191715 DOI: 10.1016/j.scitotenv.2022.159139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Despite well documented studies on metal pollutants in aquatic ecosystems, knowledge on the combined effects of catchment characteristics, sediment properties, and emerging pollutants, such as microplastics (MPs) on the presence of metals in urban river sediments is still limited. In this study, the synergistic influence of MPs type and hazard indices, catchment characteristics and sediment properties on the variability of metals present in sediments was investigated based on a typical urban river, Brisbane River, Australia. It was noted that the mean concentrations of metals in Brisbane River decreases in the order of Al (94,142 ± 12,194 μg/g) > Fe (62,970 ± 8104 μg/g) > Mn (746 ± 258 μg/g) > Zn (196 ± 29 μg/g) > Cu (50 ± 19 μg/g) > Pb (47 ± 25 μg/g) > Ni (25 ± 3 μg/g) while the variability of metals decreases in the order of Pb > Cu > Mn > Al > Ni > Zn > Fe along the river. According to enrichment factor (Ef) contamination categories, Mn, Cu and Zn exert a moderate level of contamination (Ef > 2), while Fe, Ni, and Zn show slight sediment pollution (1 <Ef < 2). In the case of Pb, extremely high enrichment (Ef > 3) was found at sampling locations having a high urbanisation level and traffic related activities. Crustal metal elements (namely, Al, Fe, Mn) were found to be statistically significantly correlated with sediment properties (P < 0.05). Anthropogenic source metals (namely, Cu, Ni, Pb, Zn) were observed to be highly correlated with catchment characteristics. Additionally, the presence of metals in sediments were positively correlated with MPs concentration, and negatively correlated with MPs hazard indices. The outcomes of this study provide new insights for understanding the relationships among metals and various influential factors in the context of urban river sediment pollution, which will benefit the formulation of risk assessment and regulatory measures for protecting urban waterways.
Collapse
Affiliation(s)
- Beibei He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Godfred O Duodu
- Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, P.O. Box LG80, Legon, Accra, Ghana
| | - Buddhi Wijesiri
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology (QUT), P.O. Box 2434, Brisbane, Qld 4001, Australia
| | - Godwin A Ayoko
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), P.O. Box 2434, Brisbane, Qld 4001, Australia
| | - Ashantha Goonetilleke
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology (QUT), P.O. Box 2434, Brisbane, Qld 4001, Australia
| |
Collapse
|
9
|
Dominech S, Albanese S, Guarino A, Yang S. Assessment on the source of geochemical anomalies in the sediments of the Changjiang river (China), using a modified enrichment factor based on multivariate statistical analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120126. [PMID: 36087898 DOI: 10.1016/j.envpol.2022.120126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/20/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Rivers can be sinks for potential toxic elements (PTEs) inputted in their systems by both natural and anthropic processes. Many indices have been proposed to assess the contamination degree of sediments and the environmental conditions of surficial water bodies. Above all, enrichment factor (EF) is the most used tool, but also it is the most debated for its limitations. The need for a reference element and for a background/baseline composition makes the EF method dependent on the researcher's expertise, implying that its repeatability may not be granted. Starting from the awareness that geochemical processes, bringing to compositional changes in the environmental matrices, involve multiple elements rather than individual variables, we developed a modified EF (mEF) based on the use of elemental associations. Different multivariate statistical methods (i.e. Robust Principal Component Analysis and Fuzzy Clustering), in a compositional data analysis (CoDA) perspective, were used to set all the terms of the mEF. The mEF was applied to 101 sediment samples collected from a 2 m-long core, covering a sedimentation period of about 150 years (1850-2007), located in the lower Changjiang River (China). The method resulted effective in recognizing most of the signals proceeding from the main natural and anthropogenic events which affected the lower river basin in the considered timespan. The largest geochemical variations recorded fit well the flooding events occurred; besides, the effects produced on the system by the recent socio-economic development (following the end of the civil war in 1949 and the beginning of economic reforms in 1978) and the start-up of the Three Gorges Dam (the world's largest power station since 2012) were also intercepted. The proposed method represents a step forward to enhance the effectiveness of the EF in discriminating geochemical anomalies that may be significant to assess the human historical impact on the environment.
Collapse
Affiliation(s)
- Salvatore Dominech
- School of Ocean and Earth Science, State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China; Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, Napoli, 80126, Italy
| | - Stefano Albanese
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, Napoli, 80126, Italy.
| | - Annalise Guarino
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, Napoli, 80126, Italy
| | - Shouye Yang
- School of Ocean and Earth Science, State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
10
|
Jiang M, Wang Q, Tian X, Zhu X, Dong X, Wu Z, Yuan Y. Spatiotemporal variation and ecological risk assessment of sediment heavy metals in two hydrologically connected lakes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1005194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Excessive accumulation of heavy metals in global lake sediments poses a serious threat to lake water quality and ecosystem security. However, there is still a knowledge gap in comparison of heavy metal variation and pollution in hydrologically connected lakes. In this study, concentrations of As, Cd, Cr, Cu, Hg, Pb, and Zn in sediments of two hydrologically connected lakes, Xingkai Lake and Xiaoxingkai Lake, were determined during the hydrologically connected periods (May and September) and disconnected period (January and July) in 2021. We found the range of As was 2.58∼14.35 mg/kg, Cd was 0.050∼0.21 mg/kg, Cr was 28.58∼262.3 mg/kg, Cu was 3.12∼28.05 mg/kg, Hg was 0.0030∼0.14 mg/kg, Pb was 10.87∼58.86 mg/kg, and Zn was 18.21∼90.73 mg/kg. Heavy metal concentrations were lower than grade I level in Chinese soil quality standards with significant spatial and temporal differences in the basin. Overall, most of the sampling sites in Xingkai Lake and Xiaoxingkai Lake were at the uncontaminated level and moderate ecological risk during the sampling period. Two lakes showed different heavy metal compositions, accompanied by higher contamination level and higher potential ecological risk in the small lake than those in the large lake based on analysis of the geo-accumulation index and potential ecological risk index. Besides, the contamination level and potential ecological risk in May and September were higher than those in January and July, mainly due to human activities and hydrological connectivity. The ecological risks were moderate for Cd and Hg, and low for As, Cr, Cu, Pb, and Zn. Correlation and PCA analyses showed that Cd mainly originated from anthropogenic sources, while other metals mainly came from natural sources. These findings elucidate the effects of agriculture and hydrological connectivity on heavy metals in sediments, and provide scientific basis for the reasonable management of lake ecosystem.
Collapse
|
11
|
Ecological-Health Risks of Potentially Toxic Metals in Mangrove Sediments near Estuaries after Years of Piggery Farming Bans in Peninsular Malaysia. SUSTAINABILITY 2022. [DOI: 10.3390/su14031525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Sepang Besar River (SBR) was reported to be highly contaminated with Cu and Zn due to piggery farming wastes before 1998. Following the piggery farming ban (PFB) in 1998 in Bukit Pelanduk, the present study aimed to assess the ecological-health risks of potentially toxic metals (PTMs) (Cu, Pb, and Zn) in the mangrove surface sediments from SBR. Two adjacent rivers, namely the Sepang Kecil River and Lukut River, were also included for comparison purposes. The PTMs of present sediment samples collected in 2007 and 2010 were compared with those reported before and after PFB. The PTMs levels were lower than those of established sediment quality guidelines. Results of bioavailable fractions, individual contamination factor, risk assessment code, potentially ecological risk index (PERI), and non-carcinogenic risk (with HI < 1.0 based on the pathways of Cu, Pb, and Zn and the order: ingestion > dermal contact > inhalation), the present findings indicated that the three rivers had caused no ecological-health risks of Cu, Pb, and Zn. In particular, SBR estuary had drastic lower levels of Zn (7.48–9.40 times lower between 1998 and 2010) and Cu (8.30–36.9 times lower between 1998 and 2010), after 12 years of PFB. Based on the exponential decay model, the PERI values showed that the estuary of SBR has been improved from a “considerable ecological risk” to a “minimal ecological risk” after 12 years of PFB. This is the first paper on the ecological-health risks of Cu, Pb, and Zn in the estuary of SBR. Future monitoring is still necessary for effective risk management of the mangrove ecosystem at SBR.
Collapse
|
12
|
Dendievel AM, Grosbois C, Ayrault S, Evrard O, Coynel A, Debret M, Gardes T, Euzen C, Schmitt L, Chabaux F, Winiarski T, Van Der Perk M, Mourier B. Key factors influencing metal concentrations in sediments along Western European Rivers: A long-term monitoring study (1945-2020). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:149778. [PMID: 34818795 DOI: 10.1016/j.scitotenv.2021.149778] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Since 1945, a large amount of heterogeneous data has been acquired to survey river sediment quality, especially concerning regulatory metals such as Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Large-scale syntheses are critical to assess the effectiveness of public regulations and the resiliency of the river systems. Accordingly, this data synthesis proposes a first attempt to decipher spatio-temporal trends of metal contamination along seven major continental rivers in Western Europe (France, Belgium, Germany, and the Netherlands). A large dataset (>12,000 samples) from various sediment matrices (bed and flood deposits - BFD, suspended particulate matter - SPM, dated sediment cores - DSC) was set up based on monitoring and scientific research from the 1950s to the 2010s. This work investigates the impact of analytical protocols (matrix sampling, fractionation, extraction), location and time factors (related to geology and anthropogenic activities) on metal concentration trends. Statistical analyses highlight crossed-interactions in space and time, as well as between sediment matrices (metal concentrations in SPM ≃ DSC > BFD) and extraction procedures (also related to river lithology). Major spatio-temporal trends are found along several rivers such as (i) an increase of metal concentrations downstream of the main urban industrial areas (e.g. Paris-Rouen corridor on the Seine River, Bonn-Duisburg corridor on the Rhine River), (ii) a long-term influence of former mining areas located in crystalline zones, releasing heavily contaminated sediments for decades (Upper Loire River, Middle Meuse section), (iii) a decrease of metal concentrations since the 1970s (except for Cr and Ni, rather low and stable over time). The improvement of sediment quality in the most recent years in Europe reflects a decisive role of environment policies, such as more efficient wastewater treatments, local applications of the Water Framework Directive and urban industrial changes in the river valleys.
Collapse
Affiliation(s)
- André-Marie Dendievel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France.
| | - Cécile Grosbois
- Université de Tours, EA 6293 GéoHydrosystèmes Continentaux, F-37200 Tours, France
| | - Sophie Ayrault
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Olivier Evrard
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Alexandra Coynel
- Université de Bordeaux, UMR CNRS 5805 EPOC, F-33615 Bordeaux, France
| | - Maxime Debret
- Normandie Univ., UNIROUEN, UNICAEN, CNRS, UMR 6143 M2C, F-76000 Rouen, France
| | - Thomas Gardes
- Normandie Univ., UNIROUEN, UNICAEN, CNRS, UMR 6143 M2C, F-76000 Rouen, France
| | - Cassandra Euzen
- Université de Strasbourg, UMR CNRS 7362 LIVE, F-67000 Strasbourg, France
| | - Laurent Schmitt
- Université de Strasbourg, UMR CNRS 7362 LIVE, F-67000 Strasbourg, France
| | - François Chabaux
- Université de Strasbourg, CNRS, ENGEES, UMR 7063 ITE, F-67000 Strasbourg, France
| | - Thierry Winiarski
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Marcel Van Der Perk
- Utrecht University, Department of Physical Geography, P.O. Box 80115, 3508 TC Utrecht, the Netherlands
| | - Brice Mourier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France.
| |
Collapse
|
13
|
Controls on the Spatial Distribution of Trace Metal Concentrations along the Bedrock-Dominated South Fork New River, North Carolina. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11120519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In marked contrast to alluvial rivers, few studies have examined the physical and geochemical controls on the spatial distribution of toxic trace metals along bedrock channels. This study examined the factors controlling the geographical pattern of selected trace metal (Cu, Cr, and Zn) concentrations along the bedrock-dominated channel of the South Fork New River (SFNR). The SFNR is located in the Blue Ridge Physiographic Province of North Carolina, and is representative of many rivers in mountainous terrains that are often subjected to the influx of toxic trace metals from historic and contemporary mining operations. The topography of the SFNR’s channel bed is highly variable and can be subdivided into pool and shallow bedrock reaches. The latter contained localized cascades characterized by topographically higher bedrock ribs that are separated by topographic lows, both of which are oriented oblique to flow. Accumulations of bed sediments are predominantly associated with the traverse bedrock ribs that generate high hydraulic roughness. Except for a few localized zones of enrichment, sediment-associated trace metal concentrations tended to vary within a narrow range of background values over the 36 km study reach. Elevated trace metal concentrations were closely linked to zones of high Fe and Mn concentrations, and were associated with pools located within or immediately downstream of bedrock cascades. The elevated concentrations of the metals appear to be derived from the erosion of lithologic units within the cascades that contain sulfidic layers or zones of mafic mineral enrichment, and which are known to occur in the underlying bedrock. Once eroded, these minerals and/or rock fragments were deposited within low-velocity zones created by the transverse ribs or within downstream pools. The enrichment of trace metals downstream of the cascades may also be due to the formation of Fe and Mn oxyhydroxides as turbulent flows aerate river waters as they traverse the cascades. Chemically reactive fine-grained (<63 µm) sediments had a relatively limited influence on the downstream variations in metal concentrations, presumably because the channel bed sediments are composed primarily of sand-sized and larger particles. Although a principal component analysis (PCA) suggested that reach-scale variations in channel and valley morphology may have partly influenced downstream variations in trace metal concentrations, the geographical patterns were primarily controlled by local geological and geomorphic factors associated with the bedrock cascades. The design of future sampling programs along such coarse-grained, bedrock rivers should consider the significance of these local controls on trace metal storage to effectively characterize and interpret downstream patterns in metal concentrations.
Collapse
|
14
|
Bégorre C, Dabrin A, Morereau A, Lepage H, Mourier B, Masson M, Eyrolle F, Coquery M. Relevance of using the non-reactive geochemical signature in sediment core to estimate historical tributary contributions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112775. [PMID: 34023788 DOI: 10.1016/j.jenvman.2021.112775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Fluvial suspended particulate matter (SPM) fluxes transport large amounts of contaminants that can affect water quality and river ecosystems. To better manage these inputs in river systems, it is essential to identify SPM and sediment sources. Many studies have applied a fingerprinting method based on using metals integrated into a numerical mixing model to estimate source contributions in a watershed. Most fingerprinting studies use contemporary SPM to trace historical inputs, whereas their metal concentrations were modified over time due to anthropogenic inputs. Moreover, total concentrations of these properties are subject to change due to diagenetic processes occurring in stored sediments. The aim of this study was to assess the relevance of using the non-reactive fraction of metals (i.e. metals and metalloids) in fingerprinting studies to estimate the historical contributions of SPM tributary inputs in a sediment core. To assess metal concentrations in the 'conservative' (i.e. non-reactive) fraction, SPM (samples of sources) and sediment core layers (targeted sediments) were subjected to total mineralization and soft extraction, and the non-reactive fraction was obtained by calculating the difference between the two extractions. This approach was applied on a sediment core from the Upper Rhône River (France), using geochemical signature in contemporary SPM of three major tributaries. We showed that the non-reactive fraction retains a higher number of metals in the range test for the deepest layers, which are characterized by significant anthropogenic inputs. Through apportionment modelling using Monte Carlo simulation, we demonstrated that the tributary contributions computed using the non-reactive fraction are more consistent with historical flood and water flow data and have lower uncertainties than with the total fraction. Working with the non-reactive fraction made it possible to decipher historical inputs of SPM using contemporary SPM samples. This approach enables robust identification of sub-catchment areas liable to provide large quantities of SPM. The non-reactive fraction can be used in a variety of environmental conditions and at various spatial and temporal scales to provide a robust quantification of sediment sources.
Collapse
Affiliation(s)
- Céline Bégorre
- INRAE, UR RiverLy, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France.
| | - Aymeric Dabrin
- INRAE, UR RiverLy, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France
| | - Amandine Morereau
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV, SRTE/LRTA, BP 3, 13115, Saint-Paul-lez-Durance, France
| | - Hugo Lepage
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV, SRTE/LRTA, BP 3, 13115, Saint-Paul-lez-Durance, France
| | - Brice Mourier
- Université de Lyon, UMR5023 LEHNA, Université Lyon 1, ENTPE, CNRS, 3 rue Maurice Audin, 69518, Vaulx-en-Velin, France
| | - Matthieu Masson
- INRAE, UR RiverLy, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France
| | - Frédérique Eyrolle
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV, SRTE/LRTA, BP 3, 13115, Saint-Paul-lez-Durance, France
| | - Marina Coquery
- INRAE, UR RiverLy, 5 rue de la Doua, CS 20244, 69625, Villeurbanne Cedex, France
| |
Collapse
|
15
|
Li Y, Zhou H, Gao B, Xu D. Improved enrichment factor model for correcting and predicting the evaluation of heavy metals in sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142437. [PMID: 33011598 DOI: 10.1016/j.scitotenv.2020.142437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
As the most widely used method for evaluating heavy metals (HMs) in soil or sediment, the enrichment factor (EF) is prone to bias and even yields misleading assessment results for HM pollution due to data uncertainties, lack of local background values and a failure to assess the comprehensive pollution of multiple HMs. Here, we developed an improved EF model integrating stochastic mathematical methods and geochemical baselines (GBs). First, GBs were obtained using the relative cumulative frequency distribution method. The probability that each HM belongs to each enrichment degree was then quantified based on the probability density function deduced from the maximum entropy method. Furthermore, we defined a synthetic index to reveal the probability that multiple HMs belongs to comprehensive enrichment degree considering the weight of each HM. Finally, the enrichment category for each HM and multiple HMs were determined following the first-order moment principle. The improved EF model was successfully applied to evaluate and predict the HM pollution in sediments collected from Poyang Lake, the largest freshwater lake in China. Slight enrichment (1.88) of multiple HMs was found in sediments from Poyang Lake, characterized by a pronounced probability (0.35) to deteriorate to the "moderate enrichment" category. Among the different HMs, Cd requires more attention considering its dominant contribution (0.51) to the comprehensive pollution and high probability (0.65) for deterioration. Otherwise, assessment results employing the improved EF model agree with the spatial patterns of HM concentrations based on spatial autocorrelation analysis and source apportionment using Pb isotopic signatures and principal component analysis. Compared with the conventional EF method, the assessment results of the improved EF model were more accurate, comprehensive and reliable. In conclusion, the improved EF model has a better capability of evaluating and predicting HM enrichment in sediments and can be helpful for optimizing control measures for HM pollution.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Huaidong Zhou
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Dongyu Xu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
16
|
Dendievel AM, Mourier B, Dabrin A, Barra A, Bégorre C, Delile H, Hammada M, Lardaux G, Berger JF. Dataset of natural metal background levels inferred from pre-industrial palaeochannel sediment cores along the Rhône River (France). Data Brief 2020; 32:106256. [PMID: 33015254 PMCID: PMC7522338 DOI: 10.1016/j.dib.2020.106256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/05/2022] Open
Abstract
Natural metal background levels in sediments are critical to assess spatial and temporal trends of contamination in hydrosystems and to manage polluted sediments. This is even more sensitive that multi-factors such as geogenic basement, depositional context, and past or long-term pollution can affect the level of metals in sediments. This article provides natural metal background levels and ancillary data (location, chronology, grain-size, total organic carbon – TOC) in pre-industrial sediments along the Rhône River (France). Two distinct areas were selected to take into account the geological variability of the watershed: the Dauphiné Lowlands (Upper Rhône River) and the Tricastin Floodplain (Middle Rhône River). On each area, the sediment cores were retrieved from palaeochannel sequences and the sampled sections were dated by radiocarbon from the Roman to the Modern Times (AD 3–1878). Regulatory metals (Al, Fe, Cd, Cr, Cu, Ni, Pb, and Zn) and other trace elements (Ba, Co, Li, Mg, Mn, Na, P, Sr, Ti, V) were analysed following both Aqua Regia (AR) and Total Extraction (TE) procedures. Classically, TE provides metal concentrations greater than AR because TE includes crystalline lattice, while AR is close to the potentially bio-accessible part of metals (used for ecotoxicological purposes). Due to the small number of samples and to the non-normal distribution of the results, a median-based approach was chosen to establish the geochemical background values and ranges (MGB) for each sample and area. These MGBs are valuable to identify pollution sources, to characterise a contamination (spread and timing), and to estimate the state of rivers regarding pollution legacy. Along the Rhône River, these two continental MGBs were used to reconstruct the metal geo-accumulation trajectories in river sediments from 1965 to 2018 [1].
Collapse
Affiliation(s)
- André-Marie Dendievel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Brice Mourier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Aymeric Dabrin
- INRAE, Centre de Lyon-Villeurbanne, UR RiverLy, F-69625 Villeurbanne Cedex, France
| | - Adrien Barra
- CNRS, Univ Lyon, Université Lyon 2, UMR 5600 EVS, F-69676 Bron Cedex, France
| | - Céline Bégorre
- INRAE, Centre de Lyon-Villeurbanne, UR RiverLy, F-69625 Villeurbanne Cedex, France
| | - Hugo Delile
- INRAE, Centre de Lyon-Villeurbanne, UR RiverLy, F-69625 Villeurbanne Cedex, France
| | - Myriam Hammada
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Gary Lardaux
- Univ Lyon, Ecole Normale Supérieure, CNRS, UMR 5600 EVS, F-69342 Lyon Cedex 07, France
| | | |
Collapse
|