1
|
Meng Q, Zhang Y, He D, Xia Y, Fu J, Dang C. Metagenomic perspectives on antibiotic resistance genes in tap water: The environmental characteristic, potential mobility and health threat. J Environ Sci (China) 2025; 147:582-596. [PMID: 39003073 DOI: 10.1016/j.jes.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 07/15/2024]
Abstract
As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.
Collapse
Affiliation(s)
- Qiyue Meng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Da He
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430074, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Mao Y, Shisler JL, Nguyen TH. Enhanced detection for antibiotic resistance genes in wastewater samples using a CRISPR-enriched metagenomic method. WATER RESEARCH 2024; 274:123056. [PMID: 39756219 DOI: 10.1016/j.watres.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
The spread of antibiotic resistance genes (ARGs) in the environment is a global public health concern. To date, over 5000 genes have been identified to express resistance to antibiotics. ARGs are usually low in abundance for wastewater samples, making them difficult to detect. Metagenomic sequencing and quantitative polymerase chain reaction (qPCR), two conventional ARG detection methods, have low sensitivity and low throughput limitations, respectively. We developed a CRISPR-Cas9-modified next-generation sequencing (NGS) method to enrich the targeted ARGs during library preparation. The false negative and false positive of this method were determined based on a mixture of bacterial isolates with known whole-genome sequences. Low values of both false negative (2/1208) and false positive (1/1208) proved the method's reliability. We compared the results obtained by this CRISPR-NGS and the conventional NGS method for six untreated wastewater samples. As compared to the ARGs detected in the same samples using the regular NGS method, the CRISPR-NGS method found up to 1189 more ARGs and up to 61 more ARG families in low abundances, including the clinically important KPC beta-lactamase genes in the six wastewater samples collected from different sources. Compared to the regular NGS method, the CRISPR-NGS method lowered the detection limit of ARGs from the magnitude of 10-4 to 10-5 as quantified by qPCR relative abundance. The CRISPR-NGS method is promising for ARG detection in wastewater. A similar workflow can also be applied to detect other targets that are in low abundance but of high diversity.
Collapse
Affiliation(s)
- Yuqing Mao
- Department of Civil and Environmental Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA.
| | - Joanna L Shisler
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA; Department of Microbiology, University of Illinois Urbana-Champaign, IL, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, IL, USA
| |
Collapse
|
3
|
Zhou Z, Lin Z, Shuai X, Achi C, Chen H. Antibiotic resistance genes alterations in murine guts microbiome are associated with different types of drinking water. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133422. [PMID: 38183944 DOI: 10.1016/j.jhazmat.2023.133422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging contaminants threatening public health and commonly found in drinking water. However, the effect of different types of drinking water on ARG alterations in the gut microbiome is unclear. This study examines this issue in murine models in three phases (phase I: acclimation using ddH2O; phase II: treatment using different types of water, i.e. river water (RW), tap water (TW) and commercial bottled water (CBW); and phase III: recovery using ddH2O) using high-throughput qPCR and 16S rRNA amplicon sequencing. Results reveal that exposure to different types of drinking water could lead to significant changes in the gut microbiome, mobile genetic elements (MGEs), and ARGs. In phase II, treatment of RW and TW significantly increased the abundance of aminoglycoside and tetracycline resistance genes in mice guts (P < 0.01). In the recovery phase, consuming distilled water was found to restore ARG profiles to a certain extent in mice guts. Procrustes, network, redundancy and variation partitioning analysis indicated that ARG alterations in mice guts might relate to MGEs and bacterial communities. Our work suggests that the type of drinking water consumed may play a crucial role in shaping ARGs in gut microbiomes, emphasizing the urgent need for access to clean drinking water to mitigate the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Zhenchao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zejun Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shuai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chioma Achi
- Ineos Oxford Institute of Antimicrobial Research, Department of Biology, University of Oxford, United Kingdom
| | - Hong Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China.
| |
Collapse
|
4
|
Zhang L, Cui W, Zhai H, Cheng S, Wu W. Performance of public drinking water purifiers in control of trihalomethanes, antibiotics and antibiotic resistance genes. CHEMOSPHERE 2024; 352:141459. [PMID: 38360417 DOI: 10.1016/j.chemosphere.2024.141459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Point-of-use water purifiers are widely applied as a terminal treatment device to produce drinking water with high quality. However, concerns are raised regarding low efficiency in eliminating emerging organic pollutants. To enhance our understanding of the reliability and potential risks of water purifiers, the removal of trihalomethanes, antibiotics, and antibiotic resistance genes (ARGs) in four public water purifiers was investigated. In the four public water purifiers in October and November, the removal efficiencies of trichloromethane (TCM) and bromodichloromethane (BDCM) were 15%-69% (averagely 37%) and 6%-44% (averagely 23%). The levels of TCM and BDCM were lowered by all water purifiers in October and November, but accelerated in effluent compared to the influent in one public water purifier in December. The removal efficiencies of twelve antibiotics greatly varied with species and time. Out of twelve sampling cases, the removal efficiencies of total antibiotics were 25%-75% in ten cases. In the other two cases, very low removal efficiency (6%) or higher levels of antibiotics present in effluent compared to the influent were observed. Two public water purifiers effectively remove ARGs from water, with log removal rates of 0.45 log-3.89 log. However, in the other two public water purifiers, the ARG abundance accidently increased in the effluents. Overall, public water purifiers were more effective in removing antibiotics and ARGs compared to household water purifiers, but less or equally effective in removing trihalomethanes. Both public and household water purifiers could be contaminated and release the accumulated micro-pollutants or biofilm-related pollutants into effluent. The production frequency and standing time of water within water purifiers can impact the internal contamination and purification efficacy.
Collapse
Affiliation(s)
- Liangyu Zhang
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Wenjie Cui
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| | - Shengzi Cheng
- Tianjin LVYIN Landscape & Ecology Construction Co. Ltd., Kaihua Road 20, Hi-Tech, Tianjin, 300110, China
| | - Wenling Wu
- China Construction Industrial Engineering and Technology Research Academy Co. Ltd., Beijing, 101399, China
| |
Collapse
|
5
|
Zhou ZC, Shuai XY, Lin ZJ, Zheng J, Chen H. Comprehensive profiling and risk assessment of antibiotic resistance genes in a drinking water watershed by integrated analysis of air-water-soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119092. [PMID: 37742410 DOI: 10.1016/j.jenvman.2023.119092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in diverse habitats threatens public health. Watersheds represent critical freshwater ecosystems that interact with both the soil and atmosphere. However, a holistic understanding of ARGs distribution across these environmental media is currently inadequate. We profiled ARGs and bacterial communities in air-water-soil in the same watershed area during four seasons using high-throughput qPCR and 16S rRNA gene sequencing. Our findings demonstrated that aminoglycoside resistance genes (58.5%) were dominant in water, and multidrug resistance genes (55.2% and 54.2%) were dominant in soil and air. Five ARGs and nineteen bacterial genera were consistently detected in all samples, were named as shared genes or bacteria. Co-occurrence Network analysis revealed the co-occurrence module of resistance genes, mobile genetic elements (MGEs), and potential bacterial hosts, indicating that shared genes and bacteria may persist and co-spread across different environmental media. The risk assessment framework, based on ARGs' abundance, detection rate, and mobility, identified 33 high-risk ARGs. This is essential to evaluate the health risks of ARGs and to develop strategies to limit the threat of antibiotic resistance. Our study offers new insights into the risks associated with ARGs in the environment and suggests that ARGs may depend on specific bacterial cohabitants that co-exist with MGEs to facilitate their spread across environmental interfaces.
Collapse
Affiliation(s)
- Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ze-Jun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Zheng
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, 315012, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Gu Q, Lin T, Wei X, Zhang Y, Wu S, Yang X, Zhao H, Wang C, Wang J, Ding Y, Zhang J, Wu Q. Prevalence of antimicrobial resistance in a full-scale drinking water treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118396. [PMID: 37331316 DOI: 10.1016/j.jenvman.2023.118396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Antibiotic resistance in drinking water has received increasing attention in recent years. In this study, the occurrence and abundance of antibiotic resistance genes (ARGs) in a drinking water treatment plant (DWTP) was comprehensively investigated using metagenomics. Bioinformatics analysis showed that 381 ARG subtypes belonging to 15 ARG types were detected, and bacitracin had the highest abundance (from 0.26 × 10-2 to 0.86 copies/cell), followed by multidrug (from 0.57 × 10-1 to 0.47 copies/cell) and sulfonamide (from 0.83 × 10-2 to 0.35 copies/cell). Additionally, 933 ARG-carrying contigs (ACCs) were obtained from the metagenomic data, among which 153 contigs were annotated as pathogens. The most abundant putative ARG host was Staphylococcus (7.9%), which most frequently carried multidrug ARGs (43.2%). Additionally, 38 high-quality metagenome-assembled genomes (MAGs) were recovered, one of which was identified as Staphylococcus aureus (Bin.624) and harboured the largest number of ARGs (n = 16). Using the cultivation technique, 60 isolates were obtained from DWTP samples, and Staphylococcus spp. (n = 11) were found to be dominant in all isolates, followed by Bacillus spp. (n = 17). Antimicrobial susceptibility testing showed that most Staphylococcus spp. were multidrug resistant (MDR). These results deepen our understanding of the distribution profiles of ARGs and antibiotic resistant bacteria (ARB) in DWTPs for potential health risk evaluation. Our study also highlights the need for new and efficient water purification technologies that can be introduced and applied in DWTPs.
Collapse
Affiliation(s)
- Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Tao Lin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Chufang Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China.
| |
Collapse
|
7
|
Yang T, Wang X, Hui X, Jiang L, Bi X, Ng HY, Zheng X, Huang S, Jiang B, Zhou X. Antibiotic resistome associated with inhalable bioaerosols from wastewater to atmosphere: Mobility, bacterial hosts, source contributions and resistome risk. WATER RESEARCH 2023; 243:120403. [PMID: 37506636 DOI: 10.1016/j.watres.2023.120403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Antibiotic resistome can be carried by the bioaerosols and propagate from wastewater treatment plants (WWTPs) to the atmosphere, but questions remain regarding their mobility, bacterial hosts, source, and resistome risk. Here, fine particulate matter (PM2.5) was collected within and around a large WWTP and analyzed by the metagenomic assembly and binning. PM2.5 was discovered with increasing enrichment of total antibiotic resistance genes (ARGs), potentially mobile ARGs, and antibiotic-resistant bacteria (ARB) along the WWTP-downwind-upwind gradient. Some ARGs were found to be flanked by certain mobile genetic elements and generally mediated by plasmids in WWTP-PM2.5. Totally, 198 metagenome assembled genomes assigning to seven phyla were identified as the ARB, and a contig-based analysis indicated that 32 pathogens were revealed harboring at least two ARGs. Despite disparate aerosolization potentials of ARGs or ARB at different WWTP units, high resistome risks were found, along with the dominant contribution of wastewater for airborne ARGs (44.79-62.82%) and ARB (35.03-40.10%). Among the detected WWTP matrices, the sludge dewatering room was characterized by the highest resistome risk associated with PM2.5. This study underscores the dispersion of ARGs and ARB from WWTPs to the atmosphere and provides a reference for managing risks of antibiotic resistance.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xiaoliang Hui
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Lu Jiang
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, PR China
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xiaolin Zhou
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| |
Collapse
|
8
|
Ke Y, Sun W, Chen X, Zhu Y, Guo X, Yan W, Xie S. Seasonality Determines the Variations of Biofilm Microbiome and Antibiotic Resistome in a Pilot-Scale Chlorinated Drinking Water Distribution System Deciphered by Metagenome Assembly. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11430-11441. [PMID: 37478472 DOI: 10.1021/acs.est.3c01980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Understanding the biofilm microbiome and antibiotic resistome evolution in drinking water distribution systems (DWDSs) is crucial to ensure the safety of drinking water. We explored the 10 month evolution of the microbial community, antibiotic resistance genes (ARGs), mobile gene elements (MGEs) co-existing with ARGs and pathogenic ARG hosts, and the ARG driving factors in DWDS biofilms using metagenomics assembly. Sampling season was critical in determining the microbial community and antibiotic resistome shift. Pseudomonas was the primary biofilm colonizer, and biofilms diversified more as the formation time increased. Most genera tended to cooperate to adapt to an oligotrophic environment with disinfectant stress. Biofilm microbial community and antibiotic resistome assembly were mainly determined by stochastic processes and changed with season. Metagenome assembly provided the occurrence and fates of MGEs co-existing with ARGs and ARG hosts in DWDS biofilms. The abundance of ARG- and MGE-carrying pathogen Stenotrophomonas maltophilia was high in summer. It primarily harbored the aph(3)-IIb, multidrug transporter, smeD, and metallo-beta-lactamase ARGs, which were transferred via recombination. The microbial community was the most crucial factor driving the antibiotic resistance shift. We provide novel insights about the evolution of pathogens and ARGs and their correlations in DWDS biofilms to ensure the safety of drinking water.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xu Guo
- Fangshan District Water Bureau, Beijing 102445, China
| | - Weixin Yan
- Beijing BiSheng United Water Company, Beijing 102400, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Ke Y, Sun W, Jing Z, Zhao Z, Xie S. Seasonal variations of microbial community and antibiotic resistome in a suburb drinking water distribution system in a northern Chinese city. J Environ Sci (China) 2023; 127:714-725. [PMID: 36522100 DOI: 10.1016/j.jes.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance genes (ARGs) are an emerging issue for drinking water safety. However, the seasonal variation of ARGs in drinking water distribution systems (DWDS) is still unclear. This work revealed the tempo-spatial changes of microbial community, ARGs, mobile genetic elements (MGEs) co-occurring with ARGs, ARG hosts in DWDS bulk water by means of metagenome assembly. The microbial community and antibiotic resistome varied with sampling season and site. Temperature, ammonia, chlorite and total plate count (TPC) drove the variations of microbial community structure. Moreover, environmental parameters (total organic carbon (TOC), chlorite, TPC and hardness) shifted antibiotic resistome. ARGs and MGEs co-occurring with ARGs showed higher relative abundance in summer and autumn, which might be attributed to detached pipe biofilm. In particular, ARG-bacitracin and plasmid were the predominant ARG and MGE, respectively. ARG hosts changed with season and site and were more diverse in summer and autumn. In winter and spring, Limnohabitans and Mycobacterium were the major ARG hosts as well as the dominant genera in microbial community. In addition, in summer and autumn, high relative abundance of Achromobacter and Stenotrophomonas were the hosts harboring many kinds of ARGs and MGEs at site in a residential zone (0.4 km from the water treatment plant). Compared with MGEs, microbial community had a greater contribution to the variation of antibiotic resistome. This work gives new insights into the dynamics of ARGs in full-scale DWDS and the underlying factors.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Wang Y, Li H, Li Y, Guo H, Zhou J, Wang T. Metagenomic analysis revealed sources, transmission, and health risk of antibiotic resistance genes in confluence of Fenhe, Weihe, and Yellow Rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159913. [PMID: 36343807 DOI: 10.1016/j.scitotenv.2022.159913] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Rivers are important vectors and reservoirs of antibiotics resistance genes (ARGs). Information regarding transmission and health risk of ARGs in river confluence is still lacking. In this study, metagenomics was used to distinguish contributions of human activities on ARGs and human pathogenic bacteria (HPB) in confluence of Fenhe, Weihe, and Yellow Rivers. Bacitracin resistance gene and bacA were the highest in all rivers, with 1.86 × 10-2-7.26 × 10-2 and 1.79 × 10-2-9.12 × 10-2 copies/16S rRNA copies, respectively. River confluence significantly increased the abundance of ARGs, especially at the confluence of three rivers with the highest 1.53 × 10-1 copies/16S rRNA copies. Antibiotic efflux and antibiotic target alteration were the dominant resistant mechanisms in three rivers. ARGs profiles were influenced by multiple factors, with the contributions of various factors ranked as microbial communities > physicochemical factors > human activities > mobile genetic elements (MGEs). Notably, human activities and animal feces were important potential contributors of ARGs in the Weihe River and Yellow River. Transposons, as the main MGEs in three rivers, played important roles in ARGs transfer. The confluence of three rivers had the highest abundance of MGEs with the greatest transfer potentials, and therefore exhibiting the largest exposure risk of ARGs with 232.4 copies/cap·d. Furthermore, correlations of ARGs, MGEs, and HPB in different rivers were constructed via co-occurrence modes to systematically illustrate the health risks of ARGs. This study firstly unveiled the transmission and health risk of ARGs in river confluence, providing supports for ARGs control in watershed.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hu Li
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in northwestern, China; Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, China; School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Yingwei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Zhang M, Wang Y, Bai M, Jiang H, Cui R, Lin K, Tan C, Gao C, Zhang C. Metagenomics analysis of antibiotic resistance genes, the bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158572. [PMID: 36075417 DOI: 10.1016/j.scitotenv.2022.158572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to explore the influence and removal of household water purifiers (HWPs) on emerging contaminants in drinking water, and their distribution characteristics. The antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs) and bacterial communities were profiled in the fouled filters, influents, and effluents from HWPs with five steps of filtration after 150 days operation, using metagenomics. The results showed that the diversity of dominant species in Poly Propylene 1 μm (PP1) and nanofiltration membrane (NM) was significantly higher than that in other filters. Post-activated carbon (AC) was used to detect low species richness or diversity, and the highest proportion of dominant species, which contributes to the greater microbial risk of HWPs effluents in drinking water. The number of dominant bacterial genera in the filters disinfected with chloramine was higher than that in the same group disinfected with chlorine. The bacterial species richness or diversity in water was reduced by the purification of HWPs because the filter elements effectively trapped a variety of microorganisms. The relative abundance of Antibiotic efflux in the effluents of chlorinated and chloraminated HWPs was 5.58 × 10-3 and 4.60 × 10-3, respectively, which was the main resistance mechanism. High abundance of VFGs was found in HWPs effluents and the relative abundance of aggressive VFGs was significantly higher than those of defensive VFGs. Based on the co-occurrence results, 243 subtypes of ARGs co-occurred with VFGs, and a variety of bacteria were thought to be possible ARGs hosts, which indicated that the host bacteria of VFGs in HWP effluents had a stronger attack ability. The effluent of HWPs with only filtration processes is exposed to the risk of ARGs and VFGs. This study helps to understand the actual purification effect of HWPs and provides a theoretical reference for the management and control of ARGs pollution in domestic drinking water.
Collapse
Affiliation(s)
- Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Miao Bai
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| | - Hairong Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ruoqi Cui
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaizong Lin
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chaohong Tan
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Cuiling Gao
- Shandong Institute of Product Quality Inspection, Testing Technology Lab of Material Safety, Jinan 250102, China
| | - Can Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China.
| |
Collapse
|
12
|
Metagenomic insights into taxonomic, functional diversity and inhibitors of microbial biofilms. Microbiol Res 2022; 265:127207. [DOI: 10.1016/j.micres.2022.127207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/17/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
|
13
|
Chen J, Liu C, Teng Y, Zhao S, Chen H. The combined effect of an integrated reclaimed water system on the reduction of antibiotic resistome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156426. [PMID: 35660592 DOI: 10.1016/j.scitotenv.2022.156426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The reuse of urban reclaimed water is conducive to alleviate the current serious shortage of water resources. However, antibiotic resistance genes (ARGs) in reclaimed water have received widespread attention due to their potential risks to public health. Deciphering the fate of ARGs in reclaimed water benefits the development of effective strategies to control resistome risk and guarantees the safety of water supply of reclaimed systems. In this study, the characteristics of ARGs in an integrated reclaimed water system (sewage treatment plant-constructed wetland, STP-CW) in Beijing (China) have been identified using metagenomic assembly-based analysis, as well as the combined effect of the STP-CW system on the reduction of antibiotic resistome. Results showed a total of 29 ARG types and 813 subtypes were found in the reclaimed water system. As expected, the STP-CW system improved the removal of ARGs, and about 58% of ARG subtypes were removed from the effluent of the integrated STP-CW system, which exceeded 43% for the STP system and 37% for the CW system. Although the STP-CW system had a great removal on ARGs, abundant and diverse ARGs were still found in the downstream river. Importantly, network analysis revealed the co-occurrence of ARGs, mobile genetic elements and virulence factors in the downstream water, implying potential resistome dissemination risk in the environment. Source identification with SourceTracker showed the STP-effluent was the largest contributor of ARGs in the downstream river, with a contribution of 45%. Overall, the integrated STP-CW system presented a combined effect on the reduction of antibiotic resistome, however, the resistome dissemination risk was still non-negligible in the downstream reclaimed water. This study provides a comprehensive analysis on the fate of ARGs in the STP-CW-river system, which would benefit the development of effective strategies to control resistome risk for the reuse of reclaimed water.
Collapse
Affiliation(s)
- Jinping Chen
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chang Liu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuang Zhao
- Beijing BHZQ Environmental Engineering Technology Co., LTD, Beijing 100176, China
| | - Haiyang Chen
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
14
|
Microbial ecology of biofiltration used for producing safe drinking water. Appl Microbiol Biotechnol 2022; 106:4813-4829. [PMID: 35771243 PMCID: PMC9329406 DOI: 10.1007/s00253-022-12013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Biofiltration is a water purification technology playing a pivotal role in producing safe drinking water. This technology attracts many interests worldwide due to its advantages, such as no addition of chemicals, a low energy input, and a high removal efficiency of organic compounds, undesirable taste and odours, and pathogens. The current review describes the microbial ecology of three biofiltration processes that are routinely used in drinking water treatment plants, i.e. (i) rapid sand filtration (RSF), (ii) granular activated carbon filtration (GACF), and (iii) slow sand filtration (SSF). We summarised and compared the characteristics, removal performance, and corresponding (newly revealed) mechanisms of the three biofiltration processes. Specifically, the microbial ecology of the different biofilter processes and the role of microbial communities in removing nutrients, organic compounds, and pathogens were reviewed. Finally, we highlight the limitations and challenges in the study of biofiltration in drinking water production, and propose future perspectives for obtaining a comprehensive understanding of the microbial ecology of biofiltration, which is needed to promote and optimise its further application. Key points • Biofilters are composed of complex microbiomes, primarily shaped by water quality. • Conventional biofilters contribute to address safety challenges in drinking water. • Studies may underestimate the active/functional role of microbiomes in biofilters. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12013-x.
Collapse
|
15
|
Gu Q, Sun M, Lin T, Zhang Y, Wei X, Wu S, Zhang S, Pang R, Wang J, Ding Y, Liu Z, Chen L, Chen W, Lin X, Zhang J, Chen M, Xue L, Wu Q. Characteristics of Antibiotic Resistance Genes and Antibiotic-Resistant Bacteria in Full-Scale Drinking Water Treatment System Using Metagenomics and Culturing. Front Microbiol 2022; 12:798442. [PMID: 35273579 PMCID: PMC8902363 DOI: 10.3389/fmicb.2021.798442] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
The contamination of antibiotic resistance genes (ARGs) may directly threaten human health. This study used a metagenomic approach to investigate the ARG profile in a drinking water treatment system (DWTS) in south China. In total, 317 ARG subtypes were detected; specifically, genes encoding bacitracin, multidrug, and sulfonamide were widely detected in the DWTS. Putative ARG hosts included Acidovorax (6.0%), Polynucleobacter (4.3%), Pseudomonas (3.4%), Escherichia (1.7%), and Klebsiella (1.5%) as the enriched biomarkers in the DWTS, which mainly carried bacitracin, beta-lactam, and aminoglycoside ARGs. From a further analysis of ARG-carrying contigs (ACCs), Stenotrophomonas maltophilia and Pseudomonas aeruginosa were the most common pathogens among the 49 ACC pathogens in the DWTS. The metagenomic binning results demonstrated that 33 high-quality metagenome-assembled genomes (MAGs) were discovered in the DWTS; particularly, the MAG identified as S. maltophilia-like (bin.195) harbored the greatest number of ARG subtypes (n = 8), namely, multidrug (n = 6; smeD, semE, multidrug_transporter, mexE, semB, and smeC), beta-lactam (n = 1; metallo-beta-lactamase), and aminoglycoside [n = 1; aph(3’)-IIb]. The strong positive correlation between MGEs and ARG subtypes revealed a high ARG dissemination risk in the DWTS. Based on the pure-culture method, 93 isolates that belong to 30 genera were recovered from the DWTS. Specifically, multidrug-resistant pathogens and opportunistic pathogens such as P. aeruginosa, Bacillus cereus, and S. maltophilia were detected in the DWTS. These insights into the DWTS’s antibiotic resistome indicated the need for more comprehensive ARG monitoring and management in the DWTS. Furthermore, more effective disinfection methods need to be developed to remove ARGs in DWTSs, and these findings could assist governing bodies in the surveillance of antibiotic resistance in DWTSs.
Collapse
Affiliation(s)
- Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ming Sun
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenjie Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ling Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiuhua Lin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
16
|
Zhou G, Tao HB, Wen X, Wang YS, Peng H, Liu HZ, Yang XJ, Huang XM, Shi QS, Xie XB. Metagenomic analysis of microbial communities and antibiotic resistance genes in spoiled household chemicals. CHEMOSPHERE 2022; 291:132766. [PMID: 34740703 DOI: 10.1016/j.chemosphere.2021.132766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/26/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Numerous attempts have been utilized to unveil the occurrences of antibiotic resistance genes (ARGs) in human-associated and non-human-associated samples. However, spoiled household chemicals, which are usually neglected by the public, may be also a reservoir of ARGs because of the excessive and inappropriate uses of industrial drugs. Based upon the Comprehensive Antibiotic Research Database, a metagenomic sequencing method was utilized to detect and quantify Antibiotic Resistance Ontology (AROs) in six spoiled household chemicals, including hair conditioner, dishwashing detergent, bath shampoo, hand sanitizer, and laundry detergent. Proteobacteria was found to be the dominant phylum in all the samples. Functional annotation of the unigenes obtained against the KEGG pathway, eggNOG and CAZy databases demonstrated a diversity of their functions. Moreover, 186 types of AROs that were members of 72 drug classes were identified. Multidrug resistance genes were the most dominant types, and there were 17 AROs whose resistance mechanisms were categorized into the resistance-nodulation-cell division antibiotic efflux pump among the top 20 AROs. Moreover, Proteobacteria was the dominant carrier of AROs with the primary resistance mechanism of antibiotic efflux. The maximum temperature of the months of collection significantly affected the distributions of AROs. Additionally, the isolated individual bacterium from spoiled household chemicals and artificial mixed communities of isolated bacteria demonstrated diverse resistant abilities to different biocides. This study demonstrated that there are abundant microorganisms and a broad spectrum profile of AROs in spoiled household chemicals that might induce a severe threat to public healthy securities and merit particular attention.
Collapse
Affiliation(s)
- Gang Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Hong-Bing Tao
- Guangdong Dimei Biotechnology Co., Ltd, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Xia Wen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Ying-Si Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Hong Peng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Hui-Zhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Xiu-Jiang Yang
- Guangdong Dimei Biotechnology Co., Ltd, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Xiao-Mo Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China; Guangdong Dimei Biotechnology Co., Ltd, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Qing-Shan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Xiao-Bao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| |
Collapse
|
17
|
Fu S, Yang Q, Sheng Y, Wang Q, Wu J, Qiu Z, Lan R, Wang Y, Liu Y. Metagenomics combined with comprehensive validation as a public health risk assessment tool for urban and agricultural run-off. WATER RESEARCH 2022; 209:117941. [PMID: 34920315 DOI: 10.1016/j.watres.2021.117941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/13/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Early detection of emerging and life-threatening pathogens circulating in complex environments is urgently required to combat infectious diseases. This study proposed a public health risk assessment workflow with three stages, pathogen screening, pathogen genotyping, and risk assessment. In stage one, pathogens were screened with metagenomic sequencing, microfluidic chip, and qPCR. In stage two, pathogens were isolated and genotyped with multi-locus sequence typing (MLST) or conventional PCR. Finally, virulence genes from metagenomic data were assessed for pathogenicity. Two regions (Donggang and Zhanjiang) with potential public health concerns were selected for evaluation, each of which comprised of one urban and one farming wastewater sampling location. Overall, metagenomic sequencing reflected the variation in the relative abundance of medically important bacteria. Over 90 bacterial pathogens were monitored in the metagenomic dataset, of which 56 species harbored virulence genes. In Donggang, a pathogenic Acinetobacter sp. reached high abundances in 2018 and 2020, whereas all pathogenic Vibrio spp. peaked in October 2019. In Zhanjiang, A. baumanni, and other Enterobacteriaceae species were abundantly present in 2019 and 2020, whereas Aeromonas and Vibrio spp. peaked in November-2017. Forty species were subsequently isolated and subtyped by MLST, half of which were prevalent genotypes in clinical data. Additionally, we identified the African Swine Fever Virus (ASFV) in water samples collected in 2017, ahead of the first reported ASFV outbreak in 2018 in China. RNA viruses like Hepatitis A virus (HAV) and Enterovirus 71 (EV71) were also detected, with concentrations peaking in April 2020 and April 2018, respectively. The dynamics of HAV and EV71 were consistent with local epidemic trends. Finally, based on the virulence gene profiles, our study identified the risk level in wastewater of two cities. This workflow illustrates the potential for an early warning of local epidemics, which helps to prioritize the preparedness for specific pathogens locally.
Collapse
Affiliation(s)
- Songzhe Fu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian 116023, China.
| | - Qian Yang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Yijian Sheng
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qingyao Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian 116023, China
| | - Junmin Wu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian 116023, China
| | - Zhiguang Qiu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Yongjie Wang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 150791, China
| |
Collapse
|
18
|
Putri RE, Kim LH, Farhat N, Felemban M, Saikaly PE, Vrouwenvelder JS. Evaluation of DNA extraction yield from a chlorinated drinking water distribution system. PLoS One 2021; 16:e0253799. [PMID: 34166448 PMCID: PMC8224906 DOI: 10.1371/journal.pone.0253799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022] Open
Abstract
Desalination technology based on Reverse Osmosis (RO) membrane filtration has been resorted to provide high-quality drinking water. RO produced drinking water is characterized by a low bacterial cell concentration. Monitoring microbial quality and ensuring membrane-treated water safety has taken advantage of the rapid development of DNA-based techniques. However, the DNA extraction process from RO-based drinking water samples needs to be evaluated regarding the biomass amount (filtration volume) and residual disinfectant such as chlorine, as it can affect the DNA yield. We assessed the DNA recovery applied in drinking water microbiome studies as a function of (i) different filtration volumes, (ii) presence and absence of residual chlorine, and (iii) the addition of a known Escherichia coli concentration into the (sterile and non-sterile, chlorinated and dechlorinated) tap water prior filtration, and directly onto the (0.2 μm pore size, 47 mm diameter) mixed ester cellulose membrane filters without and after tap water filtration. Our findings demonstrated that the co-occurrence of residual chlorine and low biomass/cell density water samples (RO-treated water with a total cell concentration ranging between 2.47 × 102-1.5 × 103 cells/mL) failed to provide sufficient DNA quantity (below the threshold concentration required for sequencing-based procedures) irrespective of filtration volumes used (4, 20, 40, 60 L) and even after performing dechlorination. After exposure to tap water containing residual chlorine (0.2 mg/L), we observed a significant reduction of E. coli cell concentration and the degradation of its DNA (DNA yield was below detection limit) at a lower disinfectant level compared to what was previously reported, indicating that free-living bacteria and their DNA present in the drinking water are subject to the same conditions. The membrane spiking experiment confirmed no significant impact from any potential inhibitors (e.g. organic/inorganic components) present in the drinking water matrix on DNA extraction yield. We found that very low DNA content is likely to be the norm in chlorinated drinking water that gives hindsight to its limitation in providing robust results for any downstream molecular analyses for microbiome surveys. We advise that measurement of DNA yield is a necessary first step in chlorinated drinking water distribution systems (DWDSs) before conducting any downstream omics analyses such as amplicon sequencing to avoid inaccurate interpretations of results based on very low DNA content. This study expands a substantial source of bias in using DNA-based methods for low biomass samples typical in chlorinated DWDSs. Suggestions are provided for DNA-based research in drinking water with residual disinfectant.
Collapse
Affiliation(s)
- Ratna E. Putri
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lan Hee Kim
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nadia Farhat
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mashael Felemban
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pascal E. Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Johannes S. Vrouwenvelder
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Faculty of Applied Sciences, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|