1
|
Schultz A, Owens J, Demidenko E, Roy Chowdhury P. Differential Toxicity of Arsenic in Daphnia pulex Under Phosphorus and Food Limitation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1807-1819. [PMID: 38837804 DOI: 10.1002/etc.5901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
The on-going anthropogenic degradation of freshwater habitats has drastically altered the environmental supply of both nutrients and common pollutants. Most organisms living in these altered habitats experience interactive effects of various stressors that can initiate adjustments at multiple levels impacting their fitness. Hence, studies measuring response to a single environmental parameter fail to capture the complexities of the status quo. We tested both the individual and the interactive effect of arsenic (As) exposure, food quantity, and dietary phosphorus (P)-supply on six life-history traits (Juvenile Growth Rate; Adult Growth Rate; Age and Size at Maturity, Lifespan, and Fecundity) as surrogates for organismal fitness in the keystone aquatic grazer Daphnia pulex. We also tested the effect of food quantity and P-supply on somatic As accumulation in Daphnia. Our results indicated an influence of P-supply on neonatal growth and an influence of As and food quantity on growth and maintenance later in life. Maturation was strongly influenced by all three variables, with no reproduction observed in the presence of two or more environmental stressors. We found a strong interaction between As and dietary P, with increased P-supply intensifing the toxicity effect of As. No such effects were seen between As and food quantity, indicating a differential role of quantity versus quality on As toxicity. We found a nominal effect of diet on somatic As accumulation. The results from the present study emphasize the importance of considering such interactions between co-occurring environmental stressors and the dietary status of organisms, to better predict and manage impacts and risks associated with common environmental toxicants in highly vulnerable ecosystems. Environ Toxicol Chem 2024;43:1807-1819. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Anthony Schultz
- Department of Biology, Keene State College, Keene, New Hampshire, USA
| | - Joseph Owens
- Translational Biology, Medicine, and Health, Virginia Tech Graduate School, Blacksburg, Virginia, USA
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | | |
Collapse
|
2
|
Wang Y, Guo J, Jia X, Luo X, Zhou Y, Mao X, Fan X, Hu H, Zhu H, Jia C, Guo X, Cheng L, Li X, Zhang Z. Genome and transcriptome of Chinese medaka (Oryzias sinensis) and its uses as a model fish for evaluating estrogenicity of surface water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120724. [PMID: 36427818 DOI: 10.1016/j.envpol.2022.120724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Ecological toxicity assessments of contaminants in aquatic environments are of great concern. However, a dilemma in ecological toxicity assessments often arises when linking the effects found in model animals in the laboratory and the phenomena observed in wild fishes in the field due to species differences. Chinese medaka (Oryzias sinensis), widely distributed in East Asia, is a satisfactory model animal to assess aquatic environment in China. Here, we domesticated this species and assembled its genome (814 Mb) using next-generation sequencing (NGS). A total of 21,922 high-confidence genes with 41,306 transcripts were obtained and annotated, and their expression patterns in tissues were determined by RNA-sequencing. Six mostly sensitive biomarker genes, including vtg1, vtg3, vtg6, zp3a.2, zp2l1, and zp2.3 to estrogen exposure were screened and validated in the fish exposed to concentrations of estrone (E1), 17β-estradiol (E2), and estriol (E3) under laboratory condition. Field investigations were then performed to evaluating the gene expression of biomarkers in wild Chinese medaka and levels of E1, E2, and E3 in the fish habitats. It was found that in 40 sampling sites, the biomarker genes were obviously highly expressed in the wild fish from about half sites, and the detection frequencies of E1, E2, and E3, were 97.5%, 42.5%, and 45% with mean concentrations of 82.48, 43.17, 52.69 ng/L, respectively. Correlation analyses of the biomarker gene expressions in the fish with the estrogens levels which were converted to EEQs showed good correlation, indicating that the environmental estrogens and estrogenicity of the surface water might adversely affect wild fishes. Finally, histologic examination of gonads in male wild Chinese medaka was performed and found the presence of intersex in the fish. This study facilitated the uses of Chinese medaka as a model animal for ecotoxicological studies.
Collapse
Affiliation(s)
- Yue Wang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Jilong Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xiaojing Jia
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xiaozhe Luo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Ying Zhou
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xingtai Mao
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xiaolin Fan
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Hongxia Hu
- Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
| | - Hua Zhu
- Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
| | - Chengxia Jia
- Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
| | - Xuan Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Lan Cheng
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Xiqing Li
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China
| | - Zhaobin Zhang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
See MJ, Bencic DC, Flick RW, Lazorchak J, Biales AD. Characterization of vitellogenin concentration in male fathead minnow mucus compared to plasma, and liver mRNA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113428. [PMID: 35366562 PMCID: PMC9109421 DOI: 10.1016/j.ecoenv.2022.113428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 05/03/2023]
Abstract
The objective of this study was to characterize vitellogenin (VTG) protein in male fathead minnow (Pimephales promelas) mucus compared with more conventional measures in plasma and mRNA isolated from liver. To assess the intensity and duration of changes in mucus VTG concentrations, male fathead minnows were exposed to 17α-ethinylestradiol (EE2) for 7 days with a subsequent depuration period of 14 days. The experiment was conducted in a flow-through system to maintain a consistent concentration of EE2 at a nominal EC50 concentration of 2.5 ng/L and high concentration of 10 ng/L as a positive control. Mucus, plasma and liver were sampled at regular intervals throughout the study. Relative abundance of vtg mRNA increased after 2 days of exposure and returned to control levels after 4 days of depuration. VTG protein concentration displayed similar induction kinetics in both mucus and plasma, however, it was found to be significantly increased after 2 days of exposure using the mucus-based assays and 7 days with the plasma-based assay. Significantly elevated levels of VTG were detected by both assays throughout the 14-day depuration period. The elimination of the laborious plasma collection step in the mucus-based workflow allowed sampling of smaller organisms where blood volume is limiting. It also resulted in significant gains in workflow efficiency, decreasing sampling time without loss of performance.
Collapse
Affiliation(s)
- Mary Jean See
- US EPA Office of Research and Development, Center for Computational Toxicology and Exposure, Cincinnati, OH, USA
| | - David C Bencic
- US EPA Office of Research and Development, Center for Computational Toxicology and Exposure, Cincinnati, OH, USA
| | - Robert W Flick
- US EPA Office of Research and Development, Center for Computational Toxicology and Exposure, Cincinnati, OH, USA
| | - Jim Lazorchak
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH, USA
| | - Adam D Biales
- US EPA Office of Research and Development, Center for Computational Toxicology and Exposure, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Viganò L, Loizeau JL, Mandich A, Mascolo G. Medium- and Long-Term Effects of Estrogenic Contaminants on the Middle River Po Fish Community as Reconstructed from a Sediment Core. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:454-472. [PMID: 27655388 DOI: 10.1007/s00244-016-0315-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Recent studies showed that endocrine active compounds (EDs) capable to induce fish gonadal histopathologies, plasma vitellogenin and thyroid disruption, are transported by the River Lambro to the River Po, potentially affecting the fish community of the main Italian river. To assess whether fish relative abundance, composition and health were impaired by the River Lambro, a 3-year survey was undertaken in the main river. Results showed that the tributary supports in the River Po a denser fish community (+43 %), with a higher total biomass (+35 %). The survey also showed niche- and sensitivity-dependent effects, so that three benthopelagic species (bleak, topmouth gudgeon, and bitterling) were, for example, more abundant downstream from the tributary (up to 3.4×), but their sizes were significantly smaller. The present fish community was then compared with that described 30 years before in the same area of the Po River. This comparison highlighted that some fish species have disappeared and many have severely declined. To better evaluate this contrast, a sediment core of the Lambro tributary was analysed for the time trends of natural estrogens (E1, E2, E3), bisphenol A and alkylphenols. The results showed that during the last 50 years the River Lambro has been exposed to high estrogenic activities (16.1 ± 9.3 ng E2 equivalents/g), which inevitably affected also the River Po. In addition, at the time of the previous survey, six species of the main river had skewed sex ratios toward all-female populations, providing evidence that EDs and particularly (xeno)estrogens were already affecting the long-term viability of fish populations. Estrogens thus can be ascribed among the causal factors of fish qualitative and quantitative decline of the River Po, although long-term effects have been likely mitigated by nonconfinement of fish populations and nutrient enrichment.
Collapse
Affiliation(s)
- Luigi Viganò
- Water Research Institute, National Council of Research (IRSA-CNR), via del Mulino 19, 20861, Milan, Brugherio, Italy.
| | - J-L Loizeau
- Institut F.-A. Forel, University of Geneva, Uni Carl Vogt, Bd Carl-Vogt 66, 1211, Genève 4, Switzerland
| | - A Mandich
- Department of Earth, Environment and Life Sciences, University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - G Mascolo
- Water Research Institute, National Council of Research (IRSA-CNR), via F. de Blasio 5, Bari, Italy
| |
Collapse
|
5
|
Baldigo BP, George SD, Phillips PJ, Hemming JDC, Denslow ND, Kroll KJ. Potential estrogenic effects of wastewaters on gene expression in Pimephales promelas and fish assemblages in streams of southeastern New York. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2803-2815. [PMID: 26423596 DOI: 10.1002/etc.3120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/10/2015] [Accepted: 06/13/2015] [Indexed: 06/05/2023]
Abstract
Direct linkages between endocrine-disrupting compounds (EDCs) from municipal and industrial wastewaters and impacts on wild fish assemblages are rare. The levels of plasma vitellogenin (Vtg) and Vtg messenger ribonucleic acid (mRNA) in male fathead minnows (Pimephales promelas) exposed to wastewater effluents and dilutions of 17α-ethinylestradiol (EE2), estrogen activity, and fish assemblages in 10 receiving streams were assessed to improve understanding of important interrelations. Results from 4-d laboratory assays indicate that EE2, plasma Vtg concentration, and Vtg gene expression in fathead minnows, and 17β-estradiol equivalents (E2Eq values) were highly related to each other (R(2) = 0.98-1.00). Concentrations of E2Eq in most effluents did not exceed 2.0 ng/L, which was possibly a short-term exposure threshold for Vtg gene expression in male fathead minnows. Plasma Vtg in fathead minnows only increased significantly (up to 1136 μg/mL) in 2 wastewater effluents. Fish assemblages were generally unaffected at 8 of 10 study sites, yet the density and biomass of 79% to 89% of species populations were reduced (63-68% were reduced significantly) in the downstream reach of 1 receiving stream. These results, and moderate to high E2Eq concentrations (up to 16.1 ng/L) observed in effluents during a companion study, suggest that estrogenic wastewaters can potentially affect individual fish, their populations, and entire fish communities in comparable systems across New York, USA.
Collapse
Affiliation(s)
- Barry P Baldigo
- New York Water Science Center, US Geological Survey, Troy, New York, USA
| | - Scott D George
- New York Water Science Center, US Geological Survey, Troy, New York, USA
| | - Patrick J Phillips
- New York Water Science Center, US Geological Survey, Troy, New York, USA
| | | | | | | |
Collapse
|
6
|
Reddy TV, Flick R, Lazorchak JM, Smith ME, Wiechman B, Lattier DL. Experimental paradigm for in-laboratory proxy aquatic studies under conditions of static, non-flow-through chemical exposures. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2796-2802. [PMID: 26088724 DOI: 10.1002/etc.3121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/30/2014] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) such as 17α-ethynylestradiol, 17β-estradiol, estrone, and para-nonylphenol have been measured in wastewater-treatment plant effluents, surface waters, sediments, and sludge and have been shown to induce liver-specific vitellogenin (vtg) messenger RNA in male fathead minnows (Pimephales promelas). The purpose of the present study was to establish minimal concentrations of select EDCs necessary to induce transcription of vtg in 48-h static renewal exposures, as measured by quantitative real-time thermal cycle amplification. Adult males were exposed to 17α-ethynylestradiol, 17β-estradiol, estrone, and para-nonylphenol. Dose-dependent increases in vtg expression were significant with all chemicals tested. The lowest concentrations of these chemicals to induce measurable vtg expression, with significant difference from respective controls, were 17α-ethynylestradiol, 2.2 ng L(-1); para-nonylphenol, 13.9 μg L(-1); 17β-estradiol, 42.7 ng L(-1); and estrone, 46.7 ng L(-1), measured as 48-h average concentrations. The present experiments were designed to frame a commonly acceptable approach for investigators who conduct static, in-laboratory proxy environmental aquatic exposures. The present study highlights the need for investigators to report in peer-reviewed submissions the observed concentration values for minimal induction levels when measuring molecular responses to chemical exposures by means of real-time polymerase chain reaction, quantitative polymerase chain reaction, or other "omic" technologies.
Collapse
Affiliation(s)
- Tirumuru V Reddy
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio
| | - Robert Flick
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio
| | - James M Lazorchak
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio
| | - Mark E Smith
- Dynamac, US Environmental Protection Agency, Cincinnati, Ohio
| | - Barry Wiechman
- Dynamac, US Environmental Protection Agency, Cincinnati, Ohio
| | - David L Lattier
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio
| |
Collapse
|
7
|
Kidd KA. In Response: environmental and biological considerations for active pharmaceutical ingredients in the environment and their effects across multiple biological scales: an academic perspective. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:461-463. [PMID: 25711442 DOI: 10.1002/etc.2831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/04/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Karen A Kidd
- University of New Brunswick Saint John, New Brunswick, Canada
| |
Collapse
|
8
|
Gordon DA, Smith ME, Wratschko M, Agard D, Holden L, Wilcox S, Lazorchak JM. A new approach for the laboratory culture of the fathead minnow, Pimephales promelas. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:126-133. [PMID: 24115165 DOI: 10.1002/etc.2396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/12/2013] [Accepted: 09/14/2013] [Indexed: 06/02/2023]
Abstract
Fathead minnows are routinely cultured for use in aquatic toxicology studies. A new mass culture system described in the present study consisted of 6 stainless steel tanks, each containing 68 fish and 20 spawning substrates. Spawning results are compared with a previous system of 22 individual glass aquaria, which contained 16 fish and 4 spawning substrates per tank. During a 19-mo period, the new system produced an average of 4105 eggs/d, compared with an average of 2465 eggs/d with the previous system. Labor and maintenance were reduced with the new system. The stainless steel tanks eliminated aquaria glass breakage, and daily water use was reduced by 45%. Analysis of reference toxicant data from fish cultured using both systems indicated no change in the sensitivity of the test animals. Analyses of 2009 egg production data determined that a 6:1 to 7:1 female to male ratio had a significantly positive impact on egg production levels and that 6-mo-old breeding stock should be introduced to the spawning tanks in mid-spring for optimal egg production during the rest of the year. Implementing a stainless steel mass culture system significantly increased efficiency of egg production; reduced turnaround delay of mature animal availability for toxicity and molecular testing; and reduced labor time, costs, and inherent safety hazards, compared with glass aquaria systems.
Collapse
Affiliation(s)
- Denise A Gordon
- United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Cincinnati, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Esterhuyse MM, Venter M, Veldhoen N, Helbing CC, van Wyk JH. Characterization of vtg-1 mRNA expression during ontogeny in Oreochromis mossambicus (PETERS). J Steroid Biochem Mol Biol 2009; 117:42-9. [PMID: 19615445 DOI: 10.1016/j.jsbmb.2009.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 02/08/2023]
Abstract
The yolk-precursor lipoprotein, vitellogenin (VTG) has been widely recognized as a biomarker for the detection of estrogenic activity in water-borne chemical pollutants. We characterized the expression status of this important constituent of reproduction in the Mozambique tilapia (Oreochromis mossambicus), a tilapiine freshwater fish species indigenous to Southern Africa, and investigated its utility in detection of exposure to estrogen using a quantitative real-time polymerase chain reaction (QPCR) assay. We initially isolated a 3kb upstream promoter region of the vtg gene and identified putative binding sites for several regulatory factors including estrogen receptor (ESR). Evidence for the expression of several splice-site vtg mRNA variants was found in a number of tissue types. A quantitative real-time polymerase chain reaction (QPCR) assay was subsequently developed based upon a specific primer pair (OMV6/9) that selectively amplified the liver-enriched transcript. The level of this transcript in liver tissue was high in females and lower, but detectable, in males and was significantly increased in male fish following laboratory exposure to 17beta-estradiol (E(2)). This study further established that juvenile whole body homogenates (WBHs) contained extremely low levels of liver-specific vtg mRNA between 5 and 110 days post-fertilization (dpf) compared to adult male liver. Subsequent exposure of 20 dpf juveniles to E(2) showed a substantial increase in this transcript within hours, and when compared to classic male model under same conditions, the juveniles were remarkably more sensitive. We therefore conclude that the quantification, using QPCR methodology, of vtg mRNA expression in 20 dpf O. mossambicus juveniles has promise for assessing estrogenic EDC activity in aquatic sources.
Collapse
Affiliation(s)
- M M Esterhuyse
- Ecophysiology Laboratory, Department of Botany and Zoology, Private Bag X1, Matieland, University of Stellenbosch, Nature Sciences Building, Stellenbosch 7602, South Africa.
| | | | | | | | | |
Collapse
|
10
|
Rickwood CJ, Dubé MG, Weber LP, Lux S, Janz DM. Assessing effects of a mining and municipal sewage effluent mixture on fathead minnow (Pimephales promelas) reproduction using a novel, field-based trophic-transfer artificial stream. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 86:272-286. [PMID: 18160112 DOI: 10.1016/j.aquatox.2007.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 11/02/2007] [Accepted: 11/06/2007] [Indexed: 05/25/2023]
Abstract
The Junction Creek watershed, located in Sudbury, ON, Canada receives effluent from three metal mine wastewater treatment plants, as well as a municipal wastewater (MWW) discharge. Effects on fish have been documented within the creek (decreased egg size and increased metal body burdens). It has been difficult to identify the cause of the effects observed due to the confounded nature of the creek. The objectives of this investigation were to assess the: (1) effects of a mine effluent and municipal wastewater (CCMWW) mixture on fathead minnow (FHM; Pimephales promelas) reproduction in an on-site artificial stream and (2) importance of food (Chironomus tentans) as a source of exposure using a trophic-transfer system. Exposures to CCMWW through the water significantly decreased egg production and spawning events. Exposure through food and water using the trophic-transfer system significantly increased egg production and spawning events. Embryos produced in the trophic-transfer system showed similar hatching success but increased incidence and severity of deformities after CCMWW exposure. We concluded that effects of CCMWW on FHM were more apparent when exposed through the water. Exposure through food and water may have reduced effluent toxicity, possibly due to increased nutrients and organic matter, which may have reduced metal bioavailability. More detailed examination of metal concentrations in the sediment, water column, prey (C. tentans) and FHM tissues is recommended to better understand the toxicokinetics of potential causative compounds within the different aquatic compartments when conducting exposures through different pathways.
Collapse
Affiliation(s)
- Carrie J Rickwood
- Toxicology Centre, 44 Campus Drive, University of Saskatchewan, Saskatoon S7N 5B3, Canada.
| | | | | | | | | |
Collapse
|