1
|
Hoste A, Lagarde R, Amilhat E, Bouchard C, Bustamante P, Covaci A, Faliex E, Migne E, Poma G, Tetrel C, Verbrugghe K, Vey Payre H, Nicolas D. Investigating the quality of European silver eels by quantifying contaminants and parasite infestation in a French Mediterranean lagoon complex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4181-4198. [PMID: 39862372 DOI: 10.1007/s11356-024-35815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/14/2024] [Indexed: 01/27/2025]
Abstract
Coastal lagoons are diverse habitats with significant ecological gradients, which provide crucial ecosystem services but face threats from human activities such as invasive species and pollution. Among the species inhabiting the lagoons, the critically endangered European eel (Anguilla anguilla) is an emblematic species strongly impacted by contamination and parasitism. Several indicators were developed to assess the quality of eel at a large geographic scale. Most indicators are based on the concentration of individual pollutant and/or abundance of parasites separately without considering individual variations. This study assessed the quality of 59 eels captured at three different sites inside a Mediterranean lagoon complex (the Camargue, South of France), by integrating multiple degradation factors (POPs, TEs, and A. crassus infestation) and considering individual eel characteristics (length, age, growth rate, and sex). Using multivariate TOPSIS analysis including these degradation factors, this study found that eel quality decreased with age but did not significantly vary between sites. When focusing on each degradation factor, A. crassus infestation rates were lower in older eels, independently to the site; however, the POPs and TEs contaminations were lower in the Grandes Cabanes site compared to the Vaccarès and Fumemorte sites even if smaller and younger eels were more contaminated by POPs. These findings reveal the fine-scale spatial variability in eel quality, with TOPSIS analysis providing a robust method to rank and score scenarios. This approach enhances the understanding of habitat degradation sources affecting eel contamination and parasitic infestation, supporting more effective strategies for sustainable habitat management.
Collapse
Affiliation(s)
- Amélie Hoste
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, Arles, France.
| | - Raphaël Lagarde
- Centre de Formation Et de Recherche Sur Les Environnements Méditerranéens, Université de Perpignan Via Domitia, UMR 5110, 66860, Perpignan, France
- Centre de Formation Et de Recherche Sur Les Environnements Méditerranéens, CNRS, UMR 5110, 66860, Perpignan, France
| | - Elsa Amilhat
- Centre de Formation Et de Recherche Sur Les Environnements Méditerranéens, Université de Perpignan Via Domitia, UMR 5110, 66860, Perpignan, France
- Centre de Formation Et de Recherche Sur Les Environnements Méditerranéens, CNRS, UMR 5110, 66860, Perpignan, France
| | - Colin Bouchard
- Science Management Interface for Biodiversity Conservation, SCIMABIO Interface, 173 Route de Saint-Jean de Luz, Saint-Pée-Sur-Nivelle, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Elisabeth Faliex
- Centre de Formation Et de Recherche Sur Les Environnements Méditerranéens, Université de Perpignan Via Domitia, UMR 5110, 66860, Perpignan, France
- Centre de Formation Et de Recherche Sur Les Environnements Méditerranéens, CNRS, UMR 5110, 66860, Perpignan, France
| | - Emmanuelle Migne
- Réserve Naturelle Nationale de Camargue, Société Nationale de Protection de La Nature (SNPN), La Capeliere, 13200, Arles, France
| | - Giulia Poma
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Claire Tetrel
- Office Français de La Biodiversité, Mas Des Grandes Cabanes Sud, 13460, Les Saintes-Maries-de-La-Mer, France
| | - Klervi Verbrugghe
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, Arles, France
| | - Hugo Vey Payre
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, Arles, France
| | - Delphine Nicolas
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, Arles, France
| |
Collapse
|
2
|
Calgaro L, Giubilato E, Lamon L, Semenzin E, Marcomini A. Fate and transport of ten plant protection products of emerging concern in a coastal lagoon: Application and evaluation of a multimedia level III fugacity model. ENVIRONMENTAL RESEARCH 2024; 263:120047. [PMID: 39313173 DOI: 10.1016/j.envres.2024.120047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Multimedia fugacity models are effective tools for studying the environmental behaviour and occurrence of contaminants of emerging concern (CECs) and assessing associated risks, especially when experimental data is limited. These models describe processes controlling chemical partitioning, transport, and reactions in environmental media using mathematical statements based on the concept of fugacity. To aid in identifying and prioritizing CECs for future local monitoring, we present here the application of a level III multimedia fugacity model assuming non-equilibrium between compartments and steady-state conditions. This model estimated predicted environmental concentrations (PECs), persistence, distribution, and transport of ten plant protection products (PPPs) in the Venice Lagoon, a complex coastal environment under high anthropogenic pressure. The model was evaluated through uncertainty and sensitivity analysis using the Monte Carlo approach and by comparing PECs with PPP concentrations measured during four sampling campaigns. Results showed good agreement with field data, with the highest concentrations in water and sediments estimated for glyphosate, followed by imidacloprid, metaflumizone, and triallate. The model indicated accumulation of all investigated PPPs in sediments. For most chemicals, advection outflow and degradation in the water column were the main removal mechanisms, while volatilization was significant only for oxadiazon and triallate. Sensitivity and uncertainty analysis revealed that degradation rates, organic carbon/water partitioning coefficients (KOC), and parameters describing air-water interactions had the strongest influence on the model's results, followed by inputs accounting for sediment sinking and resuspension. The lack of data on PPP degradation in brackish waters accounted for most of the uncertainty in model results. This work shows how a relatively simple multimedia model can offer new insights into the environmental behaviour of PPPs in a complex transitional waterbody such as the Venice lagoon, providing useful data for the identification of the CECs to be prioritised in future local monitoring efforts.
Collapse
Affiliation(s)
- Loris Calgaro
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| | - Lara Lamon
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| |
Collapse
|
3
|
Tuan TQ, Mawarda PC, Ali N, Curias A, Nguyen TPO, Khoa ND, Springael D. Niche-specification of aerobic 2,4-dichlorophenoxyacetic acid biodegradation by tfd-carrying bacteria in the rice paddy ecosystem. Front Microbiol 2024; 15:1425193. [PMID: 39247702 PMCID: PMC11377324 DOI: 10.3389/fmicb.2024.1425193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
This study aimed for a better understanding of the niche specification of bacteria carrying the tfd-genes for aerobic 2,4-dichlorphenoxyacetic acid (2,4-D) degradation in the rice paddy ecosystem. To achieve this, a dedicated microcosm experiment was set up to mimic the rice paddy system, with and without 2,4-D addition, allowing spatial sampling of the different rice paddy compartments and niches, i.e., the main anaerobic bulk soil and the aerobic surface water, surface soil, root surface and rhizosphere compartments. No effect of 2,4-D on the growth and morphology of the rice plant was noted. 2,4-D removal was faster in the upper soil layers compared to the deeper layers and was more rapid after the second 2,4-D addition compared to the first. Moreover, higher relative abundances of the 2,4-D catabolic gene tfdA and of the mobile genetic elements IncP-1 and IS1071 reported to carry the tfd-genes, were observed in surface water and surface soil when 2,4-D was added. tfdA was also detected in the root surface and rhizosphere compartment but without response to 2,4-D addition. While analysis of the bacterial community composition using high-throughput 16S rRNA gene amplicon sequencing did not reveal expected tfd-carrying taxa, subtle community changes linked with 2,4-D treatment and the presence of the plant were observed. These findings suggest (i) that the surface soil and surface water are the primary and most favorable compartements/niches for tfd-mediated aerobic 2,4-D biodegradation and (ii) that the community structure in the 2,4-D treated rice paddy ecosystem is determined by a niche-dependent complex interplay between the effects of the plant and of 2,4-D.
Collapse
Affiliation(s)
- Tran Quoc Tuan
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Panji Cahya Mawarda
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia (BRIN), KST Samaun Sadikun, Bogor, Indonesia
| | - Norhan Ali
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Arne Curias
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Thi Phi Oanh Nguyen
- Department of Biology, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Nguyen Dac Khoa
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Dirk Springael
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Dhanda V, Kumar R, Yadav N, Sangwan S, Duhan A. Ultimate fate, transformation, and toxicological consequences of herbicide pretilachlor to biotic components and associated environment: An overview. J Appl Toxicol 2024; 44:41-65. [PMID: 37350328 DOI: 10.1002/jat.4507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Herbicides are applied for effective weed management in order to increase the crop yield. In recent decades, the overuse of these chemicals has posed adverse effects on different biotic components of the environment. Pretilachlor has been widely used during last few decades for weed management in paddy crop. Its excessive use may prove fatal for environment, various organisms, and nontarget plants. Thus, it is pertinent to know the extent to which herbicide residues remain in environment. The potential mobility and the release rate of herbicide in the soil are important factors governing ecotoxicological impact and degradation rate. Therefore, several techniques are being investigated for its effective removal from the contaminated sites. Furthermore, efforts have also been made to study the degradation of pretilachlor by various physicochemical processes, resulting into the formation of different types of metabolites. This review summarizes the available information on environmental fate, various degradation processes, microbial biotransformation, metabolites formed, ecotoxicological effects, techniques for detection in environmental samples, effect of safener, and various control release formulations for sustained release of pretilachlor in applied fields. The information so obtained will be very advantageous in deciding the future policies for safe and judicious use of the herbicide by maintaining health and environmental sustainability.
Collapse
Affiliation(s)
- Vidhi Dhanda
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Ravi Kumar
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Neelam Yadav
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Sarita Sangwan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Anil Duhan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| |
Collapse
|
5
|
Sarrazin B, Wezel A, Guerin M, Robin J. Pesticide contamination of fish ponds in relation to crop area in a mixed farmland-pond landscape (Dombes area, France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66858-66873. [PMID: 35513618 DOI: 10.1007/s11356-022-20492-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/24/2022] [Indexed: 11/03/2022]
Abstract
Pesticides are still widely used by agriculture, leading to the exposure of surface water. This may be the case for fish ponds located in farmland landscapes. To address this issue, the present study investigated the contamination by pesticides of fish ponds located in the mixed agriculture-pond landscape of the Dombes area, France. Ten ponds were selected in water catchments with a gradient of 3-57 ha of cropland with maize and winter cereals as the dominant crops. A total of 197 water samples were collected in the ponds during the fish production season over 3 years. Recently used pesticides were the most frequent residues occurring. Occurrences greater than 0.1 µgL-1 particularly concerned chlorotoluron and S-metolachlor. Maximum observed concentrations were slightly above 3 µgL-1 for S-metolachlor, acetochlor, and dimethenamide, all herbicides allowed for maize cultivation. Isoproturon and chlorotoluron, herbicides allowed in cereal crops, reached up to 1.2 and 1.0 µgL-1, respectively. We found a significant positive effect of crop area in catchments on the pond contamination frequency by pesticides and more significantly on the contamination frequency by broad-spectrum herbicides (glyphosate and AMPA residues). The cumulative antecedent rainfall was best correlated to the frequency of highest contaminations (> 0.5 µgL-1). In such a hydrological context, the crop area within catchment was identified as a good indicator of fish pond exposure to pesticide residues. Finally, we proposed to adapt some mitigation measures to reduce fish pond contamination.
Collapse
Affiliation(s)
- Benoit Sarrazin
- Agroecology and Environment Research Unit, ISARA, 23 rue Jean Baldassini, 69364, Lyon Cedex 07, France.
| | - Alexander Wezel
- Agroecology and Environment Research Unit, ISARA, 23 rue Jean Baldassini, 69364, Lyon Cedex 07, France
| | - Mathieu Guerin
- Agroecology and Environment Research Unit, ISARA, 23 rue Jean Baldassini, 69364, Lyon Cedex 07, France
| | - Joel Robin
- Agroecology and Environment Research Unit, ISARA, 23 rue Jean Baldassini, 69364, Lyon Cedex 07, France
| |
Collapse
|
6
|
Sumudumali RGI, Jayawardana JMCK. A Review of Biological Monitoring of Aquatic Ecosystems Approaches: with Special Reference to Macroinvertebrates and Pesticide Pollution. ENVIRONMENTAL MANAGEMENT 2021; 67:263-276. [PMID: 33462679 DOI: 10.1007/s00267-020-01423-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Biological monitoring is the evaluating changes in the environment using the biological responses with the intent of using such information in quality control of the ecosystem. Biomarkers and bioindicators are two main components of the hierarchy of biomonitoring process. Bioindicators can be used to monitor changes of ecosystems and to distinguish alteration of human impact from natural variability. There is a wide range of aquatic taxa such as macroinvertebrates, fish and periphyton, planktons which are successfully used in the biomonitoring process. Among them, macroinvertebrates are an important group of aquatic organisms that involves transferring energy and material through the trophic levels of the aquatic food chain and their sensitivity to environmental changes differs among the species. The main approaches of assessing freshwater ecosystems health using macroinvertebrates include measurement of diversity indices, biotic indices, multimetric approaches, multivariate approaches, Indices of Biological Integrity (IBI), and trait-based approaches. Among these, biotic indices and multimetric approaches are commonly used to evaluate the pesticide impacts on aquatic systems. Recently developed trait-based approaches such as SPEcies At Risk of pesticides (SPEAR) index was successfully applied in temperate regions to monitor the events of pesticide pollution of aquatic ecosystems but with limited use in tropics. This paper reviews the literature on different approaches of biomonitoring of the aquatic environment giving special reference to macroinvertebrates. It also reviews the literature on how biomonitoring could be used to monitor pesticide pollution of the aquatic environment. Thus the review aims to instil the importance of current approaches of biomonitoring for the conservation and management of aquatic ecosystems especially in the regions of the world where such knowledge has not been integrated in ecosystem conservation approaches.
Collapse
Affiliation(s)
- R G I Sumudumali
- Faculty of Graduate Studies, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - J M C K Jayawardana
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka.
| |
Collapse
|
7
|
Pietrzak D, Kania J, Kmiecik E, Malina G, Wątor K. Fate of selected neonicotinoid insecticides in soil-water systems: Current state of the art and knowledge gaps. CHEMOSPHERE 2020; 255:126981. [PMID: 32408130 DOI: 10.1016/j.chemosphere.2020.126981] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 05/03/2020] [Indexed: 05/20/2023]
Abstract
The occurrence of emerging contaminants, such as: personal care products, medicines, pharmaceuticals, pesticides, and their transformation products in the environment is of concern for human health and aquatic ecosystems due to their high persistence, toxicity and potential to bioaccumulation. Among pesticides, the main attention and thus our focus is on neonicotinoids: acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam, which are widely used classes of insecticides in agriculture. Determining the associated risk to humans and ecosystems from neonicotinoid insecticides requires detailed understanding of their fate and transport in the environment which is complex and includes diverse pathways and processes depending on environmental compartments in which they occur. This paper critically reviews the current state of the art about processes, parameters and phenomena influencing the fate of neonicotinoid insecticides in soil-water systems (i.e. soil and groundwater), and reveals existing knowledge gaps. Sorption, biodegradation, chemical transformations of neonicotinoid insecticides in the soil and leaching to the groundwater, as well as groundwater/surface water interactions are highlighted, as they determine their further migration from sources, through soils to groundwater systems and then to other environmental compartments posing ecological and human risks. A number of key knowledge gaps in fate of neonicotinoid insecticides in soil-water systems are identified, that concern mostly processes and pathways occurring in the groundwater, and require further research to assess the associated risk to humans and ecosystems.
Collapse
Affiliation(s)
- Damian Pietrzak
- AGH University of Science and Technology, Mickiewicza 30 Av., 30-059, Kraków, Poland
| | - Jarosław Kania
- AGH University of Science and Technology, Mickiewicza 30 Av., 30-059, Kraków, Poland
| | - Ewa Kmiecik
- AGH University of Science and Technology, Mickiewicza 30 Av., 30-059, Kraków, Poland.
| | - Grzegorz Malina
- AGH University of Science and Technology, Mickiewicza 30 Av., 30-059, Kraków, Poland
| | - Katarzyna Wątor
- AGH University of Science and Technology, Mickiewicza 30 Av., 30-059, Kraków, Poland
| |
Collapse
|
8
|
Carena L, Vione D. Mapping the Photochemistry of European Mid-Latitudes Rivers: An Assessment of Their Ability to Photodegrade Contaminants. Molecules 2020; 25:molecules25020424. [PMID: 31968645 PMCID: PMC7024250 DOI: 10.3390/molecules25020424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
The abiotic photochemical reactions that take place naturally in sunlit surface waters can degrade many contaminants that pose concern to water bodies for their potentially toxic and long-term effects. This works aims at assessing the ability of European rivers to photoproduce reactive transient intermediates, such as HO• radicals and the excited triplet states of chromophoric dissolved organic matter (3CDOM*), involved in pollutant degradation. A photochemical mapping of the steady-state concentrations of these transients was carried out by means of a suitable modeling tool, in the latitude belt between 40 and 50°N. Such a map allowed for the prediction of the photochemical lifetimes of the phenylurea herbicide isoproturon (mostly undergoing photodegradation upon reaction with HO• and especially 3CDOM*) across different European countries. For some rivers, a more extensive dataset was available spanning the years 1990–2002, which allowed for the computation of the steady-state concentration of the carbonate radicals (CO3•−). With these data, it was possible to assess the time trends of the photochemical half-lives of further contaminants (atrazine, ibuprofen, carbamazepine, and clofibric acid). The calculated lifetimes were in the range of days to weeks, which might or might not allow for efficient depollution depending on the river-water flow velocity.
Collapse
|
9
|
Muszyński P, Brodowska MS, Paszko T. Occurrence and transformation of phenoxy acids in aquatic environment and photochemical methods of their removal: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1276-1293. [PMID: 31788729 PMCID: PMC6994553 DOI: 10.1007/s11356-019-06510-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/10/2019] [Indexed: 05/07/2023]
Abstract
The article presents the behavior of phenoxy acids in water, the levels in aquatic ecosystems, and their transformations in the water environment. Phenoxy acids are highly soluble in water and weakly absorbed in soil. These highly mobile compounds are readily transported to surface and groundwater. Monitoring studies conducted in Europe and in other parts of the world indicate that the predominant phenoxy acids in the aquatic environment are mecoprop, 4-chloro-2-methylphenoxyacetic acid (MCPA), dichlorprop, 2,4-dichlorophenoxyacetic acid (2,4-D), and their metabolites which are chlorophenol derivatives. In water, the concentrations of phenoxy acids are effectively lowered by hydrolysis, biodegradation, and photodegradation, and a key role is played by microbial decomposition. This process is determined by the qualitative and quantitative composition of microorganisms, oxygen levels in water, and the properties and concentrations of phenoxy acids. In shallow and highly insolated waters, phenoxy acids can be decomposed mainly by photodegradation whose efficiency is determined by the form of the degraded compound. Numerous studies are underway on the use of advanced oxidation processes (AOPs) to remove phenoxy acids. The efficiency of phenoxy acid degradation using AOPs varies depending on the choice of oxidizing system and the conditions optimizing the oxidation process. Most often, methods combining UV radiation with other reagents are used to oxidize phenoxy acids. It has been found that this solution is more effective compared with the oxidation process carried out using only UV.
Collapse
Affiliation(s)
- Paweł Muszyński
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| | - Marzena S Brodowska
- Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland.
| | - Tadeusz Paszko
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| |
Collapse
|
10
|
Di Lorenzo T, Cifoni M, Fiasca B, Di Cioccio A, Galassi DMP. Ecological risk assessment of pesticide mixtures in the alluvial aquifers of central Italy: Toward more realistic scenarios for risk mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:161-172. [PMID: 29981516 DOI: 10.1016/j.scitotenv.2018.06.345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
In this study we used the data of an extensive pesticide monitoring survey that took place in 11 alluvial aquifers of central Italy from 2010 to 2015 to explore 4 different scenarios of risk. The Scenarios 1 and 2 were used to depict the risk of failing to meet the good groundwater chemical status as defined by the Water Framework Directive. The Scenarios 3 and 4 were used to assess for the first time the ecological risk in groundwater bodies, defined as the likelihood of hazard to the groundwater communities stably residing in the 11 alluvial aquifers that may be affected by pesticide contamination. The ecological risk was assessed through a new procedure called GERAp (Groundwater Ecological Risk Assessment due to pesticides). The main results of this study highlighted that: 1) the Scenario 1 provided information of little use for risk managers; 2) more realistic information was provided by using the highest concentrations measured in the six-year monitoring period and considering the ecological risk in a combined scenario (Scenarios 2 and 4); 3) the achievement of the good chemical status by 2027 in 3 aquifers will be likely much more difficult than in the others because the ecosystem services, such as pesticide biodegradation, are likely less efficient in the 3 groundwater bodies; 4) some pesticides that were banned in Europe in 2009 should be kept monitored in the next surveys because they showed a persistent occurrence in the 11 aquifers; 5) DDT forms, Dieldrin and Heptachlor are expected to damage groundwater communities at concentrations that are lower than the present legal limits.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Institute of Ecosystem Study of the CNR, National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy.
| | - Marco Cifoni
- Gran Sasso-Laga National Park, Via Del Convento 1, 67010 Assergi, L'Aquila, Italy
| | - Barbara Fiasca
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Alessia Di Cioccio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| |
Collapse
|
11
|
Variation of bacterial biodiversity from saline soils and estuary sediments present near the Mediterranean Sea coast of Camargue (France). Antonie van Leeuwenhoek 2018; 112:351-365. [PMID: 30232678 DOI: 10.1007/s10482-018-1164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Salinity is an important environmental factor influencing microbial community composition. To better understand this influence, we determined the bacterial communities present in 17 different sites of brackish sediment (underwater) and soil (surface) samples from the Camargue region (Rhône river delta) in southern France during the fall of 2013 and 2014 using pyrosequencing of the V3-V4 regions of the 16S rRNA genes amplified by PCR. This region is known for abundant flora and fauna and, though saline, 30% of rice consumed in France is grown here. We found that bacterial abundance in 1 g of soil or sediment, calculated by qPCR, was higher in sediments than in surface soil samples. Members belonging to the Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes phyla dominated the bacterial communities of sediment samples, while members belonging to the Proteobacteria, Bacteroidetes, Gemmatimonadetes, Actinobacteria, Firmicutes and Acidobacteria phyla dominated the bacterial communities of the soil samples. The most abundant bacterial genera present in the saline sediments and soils from the Camargue belonged mostly to halophilic and sulphate reducing bacteria, suggesting that the Camargue may be a valuable system to investigate saline, yet agriculturally productive, sediment and soil microbial ecosystem.
Collapse
|
12
|
Imaizumi Y, Suzuki N, Shiraishi F, Nakajima D, Serizawa S, Sakurai T, Shiraishi H. Development and validation of a simulation method, PeCHREM, for evaluating spatio-temporal concentration changes of paddy herbicides in rivers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:120-132. [PMID: 29328337 DOI: 10.1039/c7em00517b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In pesticide risk management in Japan, predicted environmental concentrations are estimated by a tiered approach, and the Ministry of the Environment also performs field surveys to confirm the maximum concentrations of pesticides with risk concerns. To contribute to more efficient and effective field surveys, we developed the Pesticide Chemicals High Resolution Estimation Method (PeCHREM) for estimating spatially and temporally variable emissions of various paddy herbicides from paddy fields to the environment. We used PeCHREM and the G-CIEMS multimedia environmental fate model to predict day-to-day environmental concentration changes of 25 herbicides throughout Japan. To validate the PeCHREM/G-CIEMS model, we also conducted a field survey, in which river waters were sampled at least once every two weeks at seven sites in six prefectures from April to July 2009. In 20 of 139 sampling site-herbicide combinations in which herbicides were detected in at least three samples, all observed concentrations differed from the corresponding prediction by less than one order of magnitude. We also compared peak concentrations and the dates on which the concentrations reached peak values (peak dates) between predictions and observations. The peak concentration differences between predictions and observations were less than one order of magnitude in 66% of the 166 sampling site-herbicide combinations in which herbicide was detected in river water. The observed and predicted peak dates differed by less than two weeks in 79% of these 166 combinations. These results confirm that the PeCHREM/G-CIEMS model can improve the efficiency and effectiveness of surveys by predicting the peak concentrations and peak dates of various herbicides.
Collapse
Affiliation(s)
- Yoshitaka Imaizumi
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Trinh HT, Marcussen H, Hansen HCB, Le GT, Duong HT, Ta NT, Nguyen TQ, Hansen S, Strobel BW. Screening of inorganic and organic contaminants in floodwater in paddy fields of Hue and Thanh Hoa in Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7348-7358. [PMID: 28105594 DOI: 10.1007/s11356-017-8433-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
In the rainy season, rice growing areas in Vietnam often become flooded by up to 1.5 m water. The floodwater brings contaminants from cultivated areas, farms and villages to the rice fields resulting in widespread contamination. In 2012 and 2013, the inorganic and organic contaminants in floodwater was investigated in Thanh Hoa and Hue. Water samples were taken at 16 locations in canals, paddy fields and rivers before and during the flood. In total, 940 organic micro-pollutants in the water samples were determined simultaneously by GC-MS method with automatic identification and quantification system (AIQS), while ICP-MS was used for determination of ten trace elements in the samples. The concentrations of 277 organic micro-pollutants and ten elements (As, Cu, Cd, Cr, Co, Pb, Zn, Fe, Mn, Al) ranged from 0.01 to 7.6 μg L-1 and 0.1 to 3170 μg L-1, respectively, in the floodwater. Contaminants originated from industrial sources (e.g. PAH) were detected at low concentrations, ranged from 0.01 to 0.18 μg L-1, while concentrations of pollutants originated from domestic sources (e.g. sterols, pharmaceuticals and personal care products and pesticides) were ranged from 0.01 to 2.12 μg L-1. Isoprocarb had the highest detection frequency of 90%, followed by isoprothiolane (88%) and fenobucarb (71%). The results indicated that contaminants in floodwater come from untreated wastewater from villages, and the agricultural activities are the major sources of increased pesticides resuspended in the floodwater in this study.
Collapse
Affiliation(s)
- Ha Thu Trinh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Helle Marcussen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Hans Christian B Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Giang Truong Le
- Department of Planning and Finance, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hanh Thi Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thuy Ta
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Trung Quang Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Soren Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| |
Collapse
|
14
|
Paszko T, Muszyński P, Materska M, Bojanowska M, Kostecka M, Jackowska I. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:271-86. [PMID: 26292078 DOI: 10.1002/etc.3212] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 08/14/2015] [Indexed: 05/23/2023]
Abstract
The primary aim of the present review on phenoxyalkanoic acid herbicides-2-(2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), (2R)-2-(2,4-dichlorophenoxy) propanoic acid (dichlorprop-P), (2R)-2-(4-chloro-2-methylphenoxy) propanoic acid (mecoprop-P), 4-(2,4-dichlorophenoxy) butanoic acid (2,4-DB), and 4-(4-chloro-2-methylphenoxy) butanoic acid (MCPB)-was to compare the extent of their adsorption in soils and degradation rates to assess their potential for groundwater contamination. The authors found that adsorption decreased in the sequence of 2,4-DB > 2,4-D > MCPA > dichlorprop-P > mecoprop-P. Herbicides are predominantly adsorbed as anions-on organic matter and through a water-bridging mechanism with adsorbed Fe cations-and their neutral forms are adsorbed mainly on organic matter. Adsorption of anions of 2,4-D, MCPA, dichlorprop-P, and mecoprop-P is inversely correlated with their lipophilicity values, and modeling of adsorption of the compounds based on this relationship is possible. The predominant dissipation mechanism of herbicides in soils is bacterial degradation. The contribution of other mechanisms, such as degradation by fungi, photodegradation, or volatilization from soils, is much smaller. The rate of bacterial degradation decreased in the following order: 2,4-D > MCPA > mecoprop-P > dichlorprop-P. It was found that 2,4-D and MCPA have the lowest potential for leaching into groundwater and that mecoprop-P and dichlorprop-P have slightly higher potential. Because of limited data on adsorption and degradation of 2,4-DB and MCPB, estimation of their leaching potential was not possible.
Collapse
Affiliation(s)
- Tadeusz Paszko
- Department of Chemistry, University of Life Sciences, Lublin, Poland
| | - Paweł Muszyński
- Department of Chemistry, University of Life Sciences, Lublin, Poland
| | | | - Monika Bojanowska
- Department of Chemistry, University of Life Sciences, Lublin, Poland
| | | | | |
Collapse
|
15
|
Benito X, Trobajo R, Ibáñez C, Cearreta A, Brunet M. Benthic foraminifera as indicators of habitat change in anthropogenically impacted coastal wetlands of the Ebro Delta (NE Iberian Peninsula). MARINE POLLUTION BULLETIN 2015; 101:163-173. [PMID: 26563545 DOI: 10.1016/j.marpolbul.2015.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
Present-day habitats of the Ebro Delta, NE Iberian Peninsula, have been ecologically altered as a consequence of intensive human impacts in the last two centuries (especially rice farming). Benthic foraminiferal palaeoassemblages and sediment characteristics of five short cores were used to reconstruct past wetland habitats, through application of multivariate DCA and CONISS techniques, and dissimilarity coefficients (SCD). The timing of environmental changes was compared to known natural and anthropogenic events in order to identify their possible relationships. In deltaic wetlands under altered hydrological conditions, we found a decrease in species diversity and calcareous-dominated assemblages, and a significant positive correlation between microfaunal changes and organic matter content. Modern analogues supported palaeoenvironmental interpretation of the recent evolution of the Delta wetlands. This research provides the first recent reconstruction of change in the Ebro Delta wetlands, and also illustrates the importance of benthic foraminifera for biomonitoring present and future conditions in Mediterranean deltas.
Collapse
Affiliation(s)
- Xavier Benito
- IRTA, Institute of Agriculture and Food Research and Technology, Aquatic Ecosystems Program, Carretera Poble Nou km 5.5, E-43540 St. Carles de la Ràpita, Catalonia, Spain; Centre for Climate Change, Geography Department, University Rovira i Virgili, E-43500 Tortosa, Spain.
| | - Rosa Trobajo
- IRTA, Institute of Agriculture and Food Research and Technology, Aquatic Ecosystems Program, Carretera Poble Nou km 5.5, E-43540 St. Carles de la Ràpita, Catalonia, Spain.
| | - Carles Ibáñez
- IRTA, Institute of Agriculture and Food Research and Technology, Aquatic Ecosystems Program, Carretera Poble Nou km 5.5, E-43540 St. Carles de la Ràpita, Catalonia, Spain.
| | - Alejandro Cearreta
- Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
| | - Manola Brunet
- Centre for Climate Change, Geography Department, University Rovira i Virgili, E-43500 Tortosa, Spain; Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
16
|
An Unstructured Numerical Model to Study Wind-Driven Circulation Patterns in a Managed Coastal Mediterranean Wetland: The Vaccarès Lagoon System. WATER 2015. [DOI: 10.3390/w7115986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Bokán K, Syberg K, Jensen K, Rank J. Genotoxic potential of two herbicides and their active ingredients assessed with comet assay on a fish cell line, epithelioma papillosum cyprini (EPC). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:1129-1137. [PMID: 24279814 DOI: 10.1080/15287394.2013.843068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of this study was to optimize the epithelioma papillosum cyprini (EPC) cell line handling procedure for the comet assay to investigate the genotoxic potential of widely used pesticides. The effects of various media and handling of the EPC cell line were examined. Results indicated that avoiding trypsin to detach cells led to lower level of DNA damage in the negative control. Further, two commonly used herbicides (Dezormon and Optica trio) and their four active ingredients (4-chloro-o-tolyloxyacetic acid, 2,4-dichlorophenoxyacetic acid, 2-(4-chloro-2-methylphenoxy)propionic acid, 2-(2,4-dichlorophenoxy)propionic acid) individually and in a ternary mixture were examined with the comet assay. Data showed that among the active ingredients only 2,4-D and MCPA induced DNA damage, while both herbicides were genotoxic at high concentrations.
Collapse
Affiliation(s)
- Katalin Bokán
- a Department of Environmental, Social and Spatial Change (ENSPAC) , Roskilde University , Roskilde , Denmark
| | | | | | | |
Collapse
|
18
|
Fulazzaky MA. Assessing the suitability of stream water for five different uses and its aquatic environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:523-535. [PMID: 22373956 DOI: 10.1007/s10661-012-2572-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 02/10/2012] [Indexed: 05/31/2023]
Abstract
Surface water is one of the essential resources for supporting sustainable development. The suitability of such water for a given use depends both on the available quantity and tolerable quality. Temporary status for a surface water quality has been identified extensively. Still the suitability of the water for different purposes needs to be verified. This study proposes a water quality evaluation system to assess the aptitude of the Selangor River water for aquatic biota, drinking water production, leisure and aquatic sport, irrigation use, livestock watering, and aquaculture use. Aptitude of the water has been classified in many parts of the river segment as unsuitable for aquatic biota, drinking water production, leisure and aquatic sport as well as aquaculture use. The water quality aptitude classes of the stream water for nine locations along the river are evaluated to contribute to decision support system. The suitability of the water for five different uses and its aquatic ecosystem are verified.
Collapse
Affiliation(s)
- Mohamad Ali Fulazzaky
- Institute of Environmental and Water Resources Management, Water Research Alliance, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia.
| |
Collapse
|
19
|
Anyusheva M, Lamers M, La N, Nguyen VV, Streck T. Fate of pesticides in combined paddy rice-fish pond farming systems in northern Vietnam. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:515-525. [PMID: 22370414 DOI: 10.2134/jeq2011.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
During the last decades, high population growth and export-oriented economics in Vietnam have led to a tremendous intensification of rice production, which in turn has significantly increased the amount of pesticides applied in rice cropping systems. Since pesticides are toxic by design, there is a natural concern on the impact of their presence in the environment on human health and environmental quality. The present study was designed to examine the water regime and fate of pesticides (fenitrothion, dimethoate) during two consecutive rice crop seasons in combined paddy rice-fish pond farming systems in northern Vietnam. Major results revealed that 5 and 41% (dimethoate), and 1 and 17% (fenitrothion) of the applied mass of pesticides were lost from the paddy field to the adjacent fish pond during spring and summer crop seasons, respectively. The decrease of pesticide concentration in paddy surface water was very rapid with dissipation half-life values of 0.3 to 0.8 and 0.2 d for dimethoate and fenitrothion, respectively. Key factors controlling the transport of pesticides were water solubility and paddy water management parameters, such as hydraulic residence time and water holding period. Risk assessment indicates that the exposure to toxic levels of pesticides for aquaculture (, ) is significant, at least shortly after pesticide application.
Collapse
|
20
|
Marques CR, Pereira R, Antunes SC, Cachada A, Duarte AC, Gonçalves F. In situ aquatic bioassessment of pesticides applied on rice fields using a microalga and daphnids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:3375-3385. [PMID: 21669452 DOI: 10.1016/j.scitotenv.2011.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 03/18/2011] [Accepted: 05/12/2011] [Indexed: 05/30/2023]
Abstract
This study assessed the effects of episodic contamination on a drainage canal adjacent to an area of intensive rice production (Coimbra, Portugal). Four monitoring periods were considered [i) before herbicide application (day-14), ii) at the first application day (day 0), iii) 3 or 5 and iv) 6days after]. Each one consisted in three complementary evaluation lines: a) physico-chemical analyses, b) whole effluent toxicity (WET) assays with Pseudokirchneriella subcapitata, c) in situ bioassays to assess microalgae (P. subcapitata) growth, and the feeding rate and survival of Daphnia longispina and Daphnia magna. Study sites were located upstream, in a protected wetland (L1), and downstream, in the vicinity of rice fields (L2). Along with the application of agrochemicals, there was a general decrease of the water quality, especially in L2, due to nutrient and herbicide inputs. Herbicide peaks (on days 0, 5 and 6) in L2 water samples were recorded concomitantly or immediately after their application. Regarding the in situ bioassessment, the algae growth decrease from day 0 onwards in L1, whilst in L2 its inhibition was generally coherent with the decline of the water quality. Apparently, WET tests indicated that the limitation of nutrients could be affecting algae growth in L1, however, conclusions should be cautious. The feeding depression of daphnids occurred on days 0 and 5 for D. longispina and only on day 0 for D. magna, while significant reductions on survival were restricted to day 0 for both species. The impairments occurring on day 0 were linked to a potential increased toxicity driven by the ingestion of particle-bound herbicides and suspended particles. The feeding rate of daphnids provided an earlier indication of toxic impairments, though it is prompted the use of complementary endpoints and trophic levels in order to understand the cumulative effects due to various herbicide pulses.
Collapse
Affiliation(s)
- C R Marques
- CESAM & Departamento de Biologia da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
21
|
Galhano V, Gomes-Laranjo J, Peixoto F. Exposure of the cyanobacterium Nostoc muscorum from Portuguese rice fields to Molinate (Ordram(®)): Effects on the antioxidant system and fatty acid profile. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:367-376. [PMID: 21216347 DOI: 10.1016/j.aquatox.2010.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/16/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
Herbicide contamination of aquatic ecosystems is a serious global environmental concern. Several herbicides enhance the intracellular formation of reactive oxygen species, and can lead to the damage of macromolecules and to a decrease of oxidant defenses in a wide range of non-target microorganisms including cyanobacteria. The effects of molinate (a thiocarbamate herbicide used for controlling grassy weeds in rice fields) on the activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and glutathione S-transferase were evaluated in Nostoc muscorum, a freshwater cyanobacterium with a significant spread in Portuguese rice fields. These were determined in N. muscorum cultures acutely (72h) exposed to concentrations ranging from 0.75 to 2mM of molinate. This study also analyzed the effects of molinate on: (1) the nonenzymatic antioxidant contents (reduced and oxidized glutathione, carotenoids, and proline), (2) the oxidative cell damage measured in terms of lipid peroxidation (MDA level) and electrolyte leakage (intactness of plasma membrane), and (3) the total fatty acid profile. The results showed that the activities of all antioxidant enzymes decreased dramatically with the rising concentration of molinate after 72h. Time-dependent and concentration-dependent increase in MDA and enhanced cell membrane leakage were indicative of lipid peroxidation, formation of free radicals and oxidative damage. Compared to control, 72-h herbicide exposure increased lipid peroxidation by 5.4%, 19% and 28% with 0.75, 1.5 and 2mM of molinate, respectively. Similarly, herbicide stress induced an increase in electrolyte leakage (5.8%, 29.5% and 30.2% above control, with 0.75, 1.5 and 2mM of molinate, respectively). The increased production of proline at higher molinate concentrations (the values rose above control by 45%, 95% and 156% with 0.75, 1.5 and 2mM, respectively) indicated the involvement of this osmoprotectant in a free radical scavenging mechanism. Moreover, a radical decline in both glutathione pool, carotenoids and saturated fatty acids were also observed. The results of the present study lead us to conclude that: (1) both enzymatic and nonenzymatic antioxidative defense system of N. muscorum are dramatically affected by molinate, (2) the herbicide induces peroxidation, (3) it contributes to an increase of the unsaturation level of cell membrane fatty acids. These evidences should be taken in account when using N. muscorum as an environmental indicator species in studies of herbicide biotransformation and biomarker response as well as in environmental monitoring programmes.
Collapse
Affiliation(s)
- Victor Galhano
- CITAB-Centre for Research and Technology of Agro-Environment and Biological Sciences, Sustainable Agro-Food Chains Research Group/Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal.
| | | | | |
Collapse
|
22
|
Al Housari F, Höhener P, Chiron S. Factors responsible for rapid dissipation of acidic herbicides in the coastal lagoons of the Camargue (Rhône River Delta, France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:582-587. [PMID: 21075422 DOI: 10.1016/j.scitotenv.2010.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
This study was aimed at investigating which processes cause acidic herbicides (e.g., bentazone, MCPA and dichlorprop) to rapidly disappear in the lagoons of the Rhône delta, which are peculiar brackish and shallow aquatic environments. The use of the model MASAS (Modeling of Anthropogenic Substances in Aquatic Systems) revealed that sorption, sedimentation, volatilization, flushing and abiotic hydrolysis had a minor role in the attenuation of the investigated herbicides. Laboratory scale biodegradation and photodegradation studies were conducted to better assess the significance of these two processes in the natural attenuation of herbicides in brackish (lagoons) waters with respect to fresh waters (canals draining paddy fields). Herbicide biodegradation rates were significantly lower in lagoon water than in canal water. Consequently, photodegradation was the main dissipation route of all investigated herbicides. The contribution of indirect photolysis was relevant for MCPA and dichlorprop while direct photolysis dominated for bentazone removal. There is a need to further investigate the identity of phototransformation products of herbicides in lagoons.
Collapse
Affiliation(s)
- Fadi Al Housari
- Laboratoire Chimie Provence, Aix-Marseille Universités-CNRS (UMR 6264), 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| | | | | |
Collapse
|
23
|
Fulazzaky MA. Water quality evaluation system to assess the status and the suitability of the Citarum river water to different uses. ENVIRONMENTAL MONITORING AND ASSESSMENT 2010; 168:669-684. [PMID: 19728125 DOI: 10.1007/s10661-009-1142-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 08/17/2009] [Indexed: 05/28/2023]
Abstract
Water quality degradation in the Citarum river will increase from the year to year due to increasing pollutant loads when released particularly from Bandung region of the upstream areas into the river without treatment. This will be facing the problems on water quality status to use for multi-purposes in the downstream areas. The water quality evaluation system is used to evaluate the available water condition that distinguishes into two categories, i.e., the water quality index (WQI) and water quality aptitude (WQA). The assessment of water quality for the Citarum river from 10 selected stations was found that the WQI situates in the bad category generally and the WQA ranges from the suitable quality for agriculture and livestock watering uses to the unsuitable for biological potential function, drinking water production, and leisure activities and sports in the upstream areas of Saguling dam generally.
Collapse
Affiliation(s)
- Mohamad Ali Fulazzaky
- Department of Water Resources and Environmental Engineering, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, Malaysia.
| |
Collapse
|
24
|
Beketov MA, Foit K, Schäfer RB, Schriever CA, Sacchi A, Capri E, Biggs J, Wells C, Liess M. SPEAR indicates pesticide effects in streams--comparative use of species- and family-level biomonitoring data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1841-1848. [PMID: 19232800 DOI: 10.1016/j.envpol.2009.01.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/22/2009] [Accepted: 01/25/2009] [Indexed: 05/27/2023]
Abstract
To detect effects of pesticides on non-target freshwater organisms the Species at risk (SPEAR(pesticides)) bioindicator based on biological traits was previously developed and successfully validated over different biogeographical regions of Europe using species-level data on stream invertebrates. Since many freshwater biomonitoring programmes have family-level taxonomic resolution we tested the applicability of SPEAR(pesticides) with family-level biomonitoring data to indicate pesticide effects in streams (i.e. insecticide toxicity of pesticides). The study showed that the explanatory power of the family-level SPEAR(fm)(pesticides) is not significantly lower than the species-level index. The results suggest that the family-level SPEAR(fm)(pesticides) is a sensitive, cost-effective, and potentially European-wide bioindicator of pesticide contamination in flowing waters. Class boundaries for SPEAR(pesticides) according to EU Water Framework Directive are defined to contribute to the assessment of ecological status of water bodies.
Collapse
Affiliation(s)
- M A Beketov
- UFZ-Helmholtz Centre for Environmental Research, Department System Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Roche H, Vollaire Y, Martin E, Rouer C, Coulet E, Grillas P, Banas D. Rice fields regulate organochlorine pesticides and PCBs in lagoons of the Nature Reserve of Camargue. CHEMOSPHERE 2009; 75:526-533. [PMID: 19157494 DOI: 10.1016/j.chemosphere.2008.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 05/27/2023]
Abstract
In order to assess pollutant transfer in Camargue ponds from bordering agrosystems, a biomonitoring assay was conducted in irrigation and drainage channels of rice fields in the Rhone Delta (France). A filter-feeding bivalve, the Asian clam, Corbicula fluminea, was used as bioindicator and caged in upstream and downstream channels of an area of conventional rice fields. After 6 weeks incubation, many lipophilic biocides were identified in Corbicula tissues, including pesticides used in rice plantations (pretilachlor, oxadiazon), pesticides presumed in use in the Rhone basin [diuron and its metabolite 3,4 dichloroaniline (3,4-DCA)] and organochlorine pesticides (OCPs) banned for several decades. In addition, PCBs were highly bioaccumulated in Corbicula. Downstream bivalves had significantly lower concentrations of OCPs, PCB and 3,4-DCA. However, the exposure biomarkers (glutathione S-transferase, catalase and propionylcholinesterase) were not correlated with the decreased concentrations. The results of this experiment raise several questions concerning the potential role of immersed plants in a retention process.
Collapse
Affiliation(s)
- H Roche
- Ecologie Systématique et Evolution, UMR8079 CNRS, Univ. Paris-Sud, AgroParisTech, F91405 Orsay Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Iriti M, Castorina G, Picchi V, Faoro F, Gomarasca S. Acute exposure of the aquatic macrophyte Callitriche obtusangula to the herbicide oxadiazon: the protective role of N-acetylcysteine. CHEMOSPHERE 2009; 74:1231-1237. [PMID: 19101011 DOI: 10.1016/j.chemosphere.2008.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/26/2008] [Accepted: 11/08/2008] [Indexed: 05/27/2023]
Abstract
In this study we investigated the acute exposure of the aquatic macrophyte Callitriche obtusangula to the herbicide oxadiazon (Ronstar). The toxic effects on C. obtusangula were evaluated, 24h after exposure, by assessing visible necrotic leaf lesions and, 12 h after exposure, via analyses of dead cells and hydrogen peroxide (H2O2) deposits localized by histocytochemical analysis with Trypan blue and 3,3'-diaminobenzidine (DAB), respectively. As a result, we found that 0.1275 microg L(-1) a.i. (active ingredient) oxadiazon was the maximum concentration that produced no observable adverse effects (NOAEC) both at leaf and tissue levels, at any considered exposure time. Additionally, we assayed the protective effect of pre-treatment with 0.25 mM N-acetylcysteine (NAC), a cysteine donor, on the damage caused by the toxic herbicidal dose of 6.37 microg L(-1) a.i to C. obtusangula, correlating the NAC observed protection to the direct H2O2-scavenging and to the enhancement of glutathione parameters. NAC-treated plants showed a fourfold increase in the GSH (reduced glutathione)+GSSG (oxidised glutathione) content (149.2 nmol g(-1) FW) compared to controls (36.1 nmol g(-1) FW); in the NAC+oxadiazon treatments, the GSH+GSSG content was more than fivefold higher (202.1 nmol g(-1) FW). GSH showed a similar trend in NAC and NAC+oxadiazon treatments, being six- (130.0 nmol g(-1) FW) and eightfold (185.0 nmol g(-1) FW) higher, respectively, compared to controls (20.7 nmol g(-1) FW). Accordingly, the GSH/GSSG ratio in NAC- and NAC+oxadiazon-treated plants was significantly increased compared to controls, indicating alleviation of oxidative stress.
Collapse
Affiliation(s)
- Marcello Iriti
- Istituto di Patologia Vegetale, Università di Milano, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|