1
|
Mondal R, Majumdar A, Sarkar S, Goswami C, Joardar M, Das A, Mukhopadhyay PK, Roychowdhury T. An extensive review of arsenic dynamics and its distribution in soil-aqueous-rice plant systems in south and Southeast Asia with bibliographic and meta-data analysis. CHEMOSPHERE 2024; 352:141460. [PMID: 38364927 DOI: 10.1016/j.chemosphere.2024.141460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Millions of people worldwide are affected by arsenic (As) contamination, particularly in South and Southeast Asian countries, where large-scale dependence on the usage of As-contaminated groundwater in drinking and irrigation is a familiar practice. Rice (Oryza sativa) cultivation is commonly done in South and Southeast Asian countries as a preferable crop which takes up more As than any other cereals. The present article has performed a scientific meta-data analysis and extensive bibliometric analysis to demonstrate the research trend in global rice As contamination scenario in the timeframe of 1980-2023. This study identified that China contributes most with the maximum number of publications followed by India, USA, UK and Bangladesh. The two words 'arsenic' and 'rice' have been identified as the most dominant keywords used by the authors, found through co-occurrence cluster analysis with author keyword association study. The comprehensive perceptive attained about the factors affecting As load in plant tissue and the nature of the micro-environment augment the contamination of rice cultivars in the region. This extensive review analyses soil parameters through meta-data regression assessment that influence and control As dynamics in soil with its further loading into rice grains and presents that As content and OM are inversely related and slightly correlated to the pH increment of the soil. Additionally, irrigation and water management practices have been found as a potential modulator of soil As concentration and bioavailability, presented through a linear fit with 95% confidence interval method.
Collapse
Affiliation(s)
- Rubia Mondal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Sukamal Sarkar
- Divison of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Chandrima Goswami
- Department of Environmental Studies, Rabindra Bharati University, Kolkata, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | | | | |
Collapse
|
2
|
Chen C, Yu Y, Tian T, Xu B, Wu H, Wang G, Chen Y. Arsenic (As) accumulation in different genotypes of indica rice (Oryza sativa L.) and health risk assessment based on inorganic As. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:310. [PMID: 38407801 DOI: 10.1007/s10661-024-12470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
To reveal differences in arsenic (As) accumulation among indica rice cultivars and assess the human health risks arising from inorganic arsenic (iAs) intake via rice consumption, a total of 320 field indica rice samples and corresponding soil samples were collected from Fujian Province in China. The results showed that available soil As (0.03 to 3.83 mg/kg) showed a statistically significant positive correlation with total soil As (0.10 to 19.45 mg/kg). The inorganic As content in brown rice was between 0.001 and 0.316 mg/kg. Among the cultivars, ten brown rice samples (3.13%) exceeded the maximum contaminant level (MCL) of iAs in food of 0.2 mg/kg in China. The estimated daily intake (EDI) and calculated individual incremental lifetime cancer risk (ILCR) ranged from 0.337 µg/day to 106.60 µg/day and from 8.18 × 10-6 to 2.59 × 10-3, respectively. Surprisingly, the average EDI and the EDIs of 258 (80.63%) brown rice samples were higher than the maximum daily intake (MDI) of 10 µg/day in drinking water as set by the National Research Council. The mean ILCR associated with iAs was 54.3 per 100,000, which exceeds the acceptable upper limit (AUL) of 10 per 100,000 set by the USEPA. Notably, the cultivars Y-Liang-You 1 and Shi-Ji 137 exhibited significantly higher mean ILCRs compared to the AUL and other cultivars, indicating that they pose more serious cancer risks to the local population. Finally, this study demonstrated that the cultivars Yi-Xiang 2292 and Quan-Zhen 10 were the optimal cultivars to mitigate risks associated with iAs to human health from rice consumption.
Collapse
Affiliation(s)
- Chunle Chen
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, Fujian, 350002, People's Republic of China
| | - Yanhang Yu
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Tian Tian
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, Fujian, 350002, People's Republic of China
| | - Bo Xu
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, Fujian, 350002, People's Republic of China
| | - Hongyan Wu
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Guo Wang
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, Fujian, 350002, People's Republic of China
| | - Yanhui Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, Fujian, 350002, People's Republic of China.
| |
Collapse
|
3
|
Etesami H, Jeong BR, Maathuis FJM, Schaller J. Exploring the potential: Can arsenic (As) resistant silicate-solubilizing bacteria manage the dual effects of silicon on As accumulation in rice? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166870. [PMID: 37690757 DOI: 10.1016/j.scitotenv.2023.166870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Rice (Oryza sativa L.) cultivation in regions marked by elevated arsenic (As) concentrations poses significant health concerns due to As uptake by the plant and its subsequent entry into the human food chain. With rice serving as a staple crop for a substantial share of the global population, addressing this issue is critical for food security. In flooded paddy soils, where As availability is pronounced, innovative strategies to reduce As uptake and enhance agricultural sustainability are mandatory. Silicon (Si) and Si nanoparticles have emerged as potential candidates to mitigate As accumulation in rice. However, their effects on As uptake exhibit complexity, influenced by initial Si levels in the soil and the amount of Si introduced through fertilization. While low Si additions may inadvertently increase As uptake, higher Si concentrations may alleviate As uptake and toxicity. The interplay among existing Si and As availability, Si supplementation, and soil biogeochemistry collectively shapes the outcome. Adding water-soluble Si fertilizers (e.g., Na2SiO3 and K2SiO3) has demonstrated efficacy in mitigating As toxicity stress in rice. Nonetheless, the expense associated with these fertilizers underscores the necessity for low cost innovative solutions. Silicate-solubilizing bacteria (SSB) resilient to As hold promise by enhancing Si availability by accelerating mineral dissolution within the rhizosphere, thereby regulating the Si biogeochemical cycle in paddy soils. Promoting SSB could make cost-effective Si sources more soluble and, consequently, managing the intricate interplay of Si's dual effects on As accumulation in rice. This review paper offers a comprehensive exploration of Si's nuanced role in modulating As uptake by rice, emphasizing the potential synergy between As-resistant SSB and Si availability enhancement. By shedding light on this interplay, we aspire to shed light on an innovative attempt for reducing As accumulation in rice while advancing agricultural sustainability.
Collapse
Affiliation(s)
| | - Byoung Ryong Jeong
- Division of Applied Life Science, Graduate School, Gyeongsang National University, Republic of Korea 52828
| | | | - Jörg Schaller
- "Silicon Biogeochemistry" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
4
|
Etesami H, Jeong BR, Raheb A. Arsenic (As) resistant bacteria with multiple plant growth-promoting traits: Potential to alleviate As toxicity and accumulation in rice. Microbiol Res 2023; 272:127391. [PMID: 37121023 DOI: 10.1016/j.micres.2023.127391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
A currently serious agronomic concern for paddy soils is arsenic (As) contamination. Paddy soils are mostly utilized for rice cultivation. Arsenite (As(III)) is prevalent in paddy soils, and its high mobility and toxicity make As uptake by rice substantially greater than that by other food crops. Globally, interest has increased towards using As-resistant plant growth-promoting bacteria (PGPB) to improve plant metal tolerance, promote plant growth, and immobilize As to prevent its uptake and accumulation in the edible parts of rice as much as possible. This review focuses on the As-resistant PGPB characteristics influencing rice growth and the mechanisms by which they function to alleviate As toxicity stress in rice plants. Several recent examples of mechanisms responsible for decreasing the availability of As to rice and coping with As stresses facilitated by the PGPB with multiple PGP traits (e.g., phosphate and silicate solubilization, the production of 1-aminocyclopropane-1-carboxylate deaminase, phytohormones, and siderophore, N2 fixation, sulfate reduction, the biosorption, bioaccumulation, methylation, and volatilization of As, and arsenite oxidation) are also reviewed. In addition, future research needs about the application of As-resistant PGPB with PGP traits to mitigate As accumulation in rice plants are described.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Byoung Ryong Jeong
- Department of Horticulture, College of Agriculture & Life Sciences, Gyeongsang National University (GNU), Jinju 52828, South Korea
| | - Alireza Raheb
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Das S, Ghosh A, Powell MA, Banik P. Meta-analyses of arsenic accumulation in Indica and Japonica rice grains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58827-58840. [PMID: 36997784 DOI: 10.1007/s11356-023-26729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023]
Abstract
Arsenic (As) is a worldwide concern because of its toxic effects on crop yield and prevalence in the food chain. Rice is consumed by half of the world's population and is known to accumulate As. The present study reviews the available literatures on As accumulation in different subspecies of rice grains (indica, japonica and aromatic) and performs meta-analyses for grain size and texture; these data include 120 studies conducted over the last 15 years across different parts of the world. Aromatic rice varieties accumulate less As with its 95% confidence interval (CI) being 73.90 - 80.94 μg kg-1 which is significantly lower than the As accumulation by either indica or japonica rice varieties with their overall 95% CI being 135.48 - 147.78 μg kg-1 and 204.71 - 212.25 μg kg-1, respectively. Japonica rice varieties accumulate higher As than indica rice grains and within each subspecies polished and/or shorter rice grains accumulated significantly lower As compared to larger and/or unpolished grains; 95% CIs for the polished indica and japonica rice varieties are seen to be 96.33 - 111.11 μg kg-1 and 203.34 - 211.09 μg kg-1, respectively, whereas the same for unpolished varieties are seen to be 215.99 - 238.18 μg kg-1 and 215.27 - 248.63 μg kg-1, respectively. This shows that rice-based As bioaccumulation in humans could be lowered by increased use of aromatic or polished indica rice varieties, followed by the cultivation of shorter polished grains of japonica rice. These findings will be important to inform policy on rice cultivation and dietary uptake of As for a large portion of the global population.
Collapse
Affiliation(s)
- Susmita Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Abhik Ghosh
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Michael A Powell
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences (ALES), University of Alberta, Edmonton, CA, Canada
| | - Pabitra Banik
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India.
| |
Collapse
|
6
|
Li S, Li G, Huang X, Chen Y, Lv C, Bai L, Zhang K, He H, Dai J. Cultivar-specific response of rhizosphere bacterial community to uptake of cadmium and mineral elements in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114403. [PMID: 36508785 DOI: 10.1016/j.ecoenv.2022.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Toxic metal-contaminated farmland from Cadmium (Cd) can enhance the accumulation of Cd and impair the absorption of mineral elements in brown rice. Although several studies have been conducted on Cd exposure on rice, little has been reported on the relationship between Cd and mineral elements in brown rice and the regulatory mechanism of rhizosphere microorganisms during element uptake. Thus, a field study was undertaken to screen japonica rice cultivars with low Cd and high mineral elements levels, analyze the quantitative relationship between Cd and seven mineral elements, and investigate the cultivar-specific response of rice rhizosphere bacterial communities to differences in Cd and mineral uptake in japonica rice. Results showed that Huaidao-9 and Xudao-7 had low Cd absorption and high amounts of mineral nutrient elements (Fe, Zn, Mg, and Ca, LCHM group), whereas Zhongdao-1 and Xinkedao-31 showed opposite accumulation characteristics (HCLM group). Stepwise regression analysis showed that zinc, iron, and potassium are the key minerals that affect Cd accumulation in japonica rice and zinc was the most important factor, accounting for 68.99 %. The accumulation of Cd and mineral elements is potentially associated with rhizosphere soil bacteria. Taxa enriched in the LCHM rhizosphere (phyla Acidobacteriota and MBNT15) indicated the high nutrient characteristics of the soil and reduced activity of Cd in soil. The HCLM rhizosphere was highly colonized by metal-activating bacteria (Actinobacteria), lignin-degrading bacteria (Actinobacteria and Chlorofexi), and bacteria scavenging nutrients and trace elements (Anaerolinea and Ketobacter). Moreover, the differences in the uptake of Cd and mineral elements affected predicted functions of microbial communities, including sulfur oxidation and sulfur derivative formation, human or plant pathogen, and functions related to the iron oxidation and nitrate reduction. The results indicate a potential association of Cd and mineral elements uptake and accumulation with rhizosphere bacteria in rice, thus providing theoretical basis and a new perspective on the maintenance of rice security and high quality simultaneously.
Collapse
Affiliation(s)
- Shuangshuang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Guangxian Li
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xianmin Huang
- Shandong General Station of Agricultural Environmental Protection and Rural Energy, Jinan 250100, China
| | - Yihui Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Cheng Lv
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Liyong Bai
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ke Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Huan He
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Khan MI, Ahmad MF, Ahmad I, Ashfaq F, Wahab S, Alsayegh AA, Kumar S, Hakeem KR. Arsenic Exposure through Dietary Intake and Associated Health Hazards in the Middle East. Nutrients 2022; 14:2136. [PMID: 35631276 PMCID: PMC9146532 DOI: 10.3390/nu14102136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Dietary arsenic (As) contamination is a major public health issue. In the Middle East, the food supply relies primarily on the import of food commodities. Among different age groups the main source of As exposure is grains and grain-based food products, particularly rice and rice-based dietary products. Rice and rice products are a rich source of core macronutrients and act as a chief energy source across the world. The rate of rice consumption ranges from 250 to 650 g per day per person in South East Asian countries. The source of carbohydrates through rice is one of the leading causes of human As exposure. The Gulf population consumes primarily rice and ready-to-eat cereals as a large proportion of their meals. Exposure to arsenic leads to an increased risk of non-communicable diseases such as dysbiosis, obesity, metabolic syndrome, diabetes, chronic kidney disease, chronic heart disease, cancer, and maternal and fetal complications. The impact of arsenic-containing food items and their exposure on health outcomes are different among different age groups. In the Middle East countries, neurological deficit disorder (NDD) and autism spectrum disorder (ASD) cases are alarming issues. Arsenic exposure might be a causative factor that should be assessed by screening the population and regulatory bodies rechecking the limits of As among all age groups. Our goals for this review are to outline the source and distribution of arsenic in various foods and water and summarize the health complications linked with arsenic toxicity along with identified modifiers that add heterogeneity in biological responses and suggest improvements for multi-disciplinary interventions to minimize the global influence of arsenic. The development and validation of diverse analytical techniques to evaluate the toxic levels of different As contaminants in our food products is the need of the hour. Furthermore, standard parameters and guidelines for As-containing foods should be developed and implemented.
Collapse
Affiliation(s)
- Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Buraydah 58883, Saudi Arabia;
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (F.A.); (A.A.A.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia;
| | - Fauzia Ashfaq
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (F.A.); (A.A.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (F.A.); (A.A.A.)
| | - Sachil Kumar
- Department of Forensic Chemistry, College of Forensic Sciences, Naif Arab University for Security Sciences (NAUSS), Riyadh 14812, Saudi Arabia;
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
8
|
Kandhol N, Aggarwal B, Bansal R, Parveen N, Singh VP, Chauhan DK, Sonah H, Sahi S, Grillo R, Peralta-Videa J, Deshmukh R, Tripathi DK. Nanoparticles as a potential protective agent for arsenic toxicity alleviation in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118887. [PMID: 35077838 DOI: 10.1016/j.envpol.2022.118887] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/19/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Aggrandized technological and industrial progression in past decades have occasioned immense depreciation in the quality of environment and ecosystem, majorly due to augmentation in the number of obnoxious pollutants incessantly being released in soil, water or air. Arsenic (As) is one such hazardous metalloid contaminating the environment which has the potential to detrimentally affect the life on earth. Even in minute quantity, As is known to cause various critical diseases in humans and toxicity in plants. Recent studies on nanoparticles (NPs) approve of their ability to qualify the criterion of becoming a potent tool for mitigating As-induced phytotoxicity. Nanoparticles are reported to promote plant growth under As-stress by stimulating various alterations at physiological, biochemical, and molecular levels. In this review, we provide an up-to-date compilation of research that has been carried out in comprehending the mechanisms utilized by nanoparticles including controlled As uptake and distribution in plants, maintenance of ROS homeostasis during stress and chelation and vacuolar sequestration of As so as to reduce the severity of toxicity induced by As, and potential areas of research in this field will also be indicated for future perspectives.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Bharti Aggarwal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Nishat Parveen
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, 211002, India
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Shivendra Sahi
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, 19104-4495, USA
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP, 15385-000, Brazil
| | - José Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
9
|
Moulick D, Samanta S, Sarkar S, Mukherjee A, Pattnaik BK, Saha S, Awasthi JP, Bhowmick S, Ghosh D, Samal AC, Mahanta S, Mazumder MK, Choudhury S, Bramhachari K, Biswas JK, Santra SC. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149477. [PMID: 34426348 DOI: 10.1016/j.scitotenv.2021.149477] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination and its adverse consequences on rice agroecosystem are well known. Rice has the credit to feed more than 50% of the world population but concurrently, rice accumulates a substantial amount of As, thereby compromising food security. The gravity of the situation lays in the fact that the population in theAs uncontaminated areas may be accidentally exposed to toxic levels of As from rice consumption. In this review, we are trying to summarize the documents on the impact of As contamination and phytotoxicity in past two decades. The unique feature of this attempt is wide spectrum coverages of topics, and that makes it truly an interdisciplinary review. Aprat from the behaviour of As in rice field soil, we have documented the cellular and molecular response of rice plant upon exposure to As. The potential of various mitigation strategies with particular emphasis on using biochar, seed priming technology, irrigation management, transgenic variety development and other agronomic methods have been critically explored. The review attempts to give a comprehensive and multidiciplinary insight into the behaviour of As in Paddy -Water - Soil - Plate prospective from molecular to post-harvest phase. From the comprehensive literature review, we may conclude that considerable emphasis on rice grain, nutritional and anti-nutritional components, and grain quality traits under arsenic stress condition is yet to be given. Besides these, some emerging mitigation options like seed priming technology, adoption of nanotechnological strategies, applications of biochar should be fortified in large scale without interfering with the proper use of biodiversity.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Suman Samanta
- Division of Agricultural Physics, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India.
| | - Sukamal Sarkar
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Arkabanee Mukherjee
- Indian Institute of Tropical Meteorology, Dr Homi Bhabha Rd, Panchawati, Pashan, Pune, Maharashtra 411008, India.
| | - Binaya Kumar Pattnaik
- Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune, Maharashtra, India.
| | - Saikat Saha
- Nadia Krishi Vigyan Kendra, Bidhan Chandra Krishi Viswavidyalaya, Gayeshpur, Nadia 741234, West Bengal, India.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India.
| | - Alok Chandra Samal
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| | - Subrata Mahanta
- Department of Chemistry, NIT Jamshedpur, Adityapur, Jamshedpur, Jharkhand 831014, India.
| | | | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Koushik Bramhachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| |
Collapse
|
10
|
Murugaiyan V, Ali J, Frei M, Zeibig F, Pandey A, Wairich A, Wu LB, Murugaiyan J, Li Z. Identification of Promising Genotypes Through Systematic Evaluation for Arsenic Tolerance and Exclusion in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2021; 12:753063. [PMID: 34777432 PMCID: PMC8589031 DOI: 10.3389/fpls.2021.753063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Rice remains a major staple food source for the rapidly growing world population. However, regular occurrences of carcinogenic arsenic (As) minerals in waterlogged paddy topsoil pose a great threat to rice production and consumers across the globe. Although As contamination in rice has been well recognized over the past two decades, no suitable rice germplasm had been identified to exploit in adaptive breeding programs. Therefore, this current study identified suitable rice germplasm for As tolerance and exclusion based on a variety of traits and investigated the interlinkages of favorable traits during different growth stages. Fifty-three different genotypes were systematically evaluated for As tolerance and accumulation. A germination screening assay was carried out to identify the ability of individual germplasm to germinate under varying As stress. Seedling-stage screening was conducted in hydroponics under varying As stress to identify tolerant and excluder genotypes, and a field experiment was carried out to identify genotypes accumulating less As in grain. Irrespective of the rice genotypes, plant health declined significantly with increasing As in the treatment. However, genotype-dependent variation in germination, tolerance, and As accumulation was observed among the genotypes. Some genotypes (WTR1-BRRI dhan69, NPT-IR68552-55-3-2, OM997, and GSR IR1-5-Y4-S1-Y1) showed high tolerance by excluding As in the shoot system. Arsenic content in grain ranged from 0.12 mg kg-1 in Huang-Hua-Zhan (indica) from China to 0.48 mg kg-1 in IRAT 109 (japonica) from Brazil. This current study provides novel insights into the performance of rice genotypes under varying As stress during different growth stages for further use in ongoing breeding programs for the development of As-excluding rice varieties for As-polluted environments.
Collapse
Affiliation(s)
- Varunseelan Murugaiyan
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Philippines
- Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Michael Frei
- Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Frederike Zeibig
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Philippines
- Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Ambika Pandey
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Philippines
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Andriele Wairich
- Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Lin-Bo Wu
- Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | - Zhikang Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
11
|
Niu A, Lin C. Managing soils of environmental significance: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125990. [PMID: 34229372 DOI: 10.1016/j.jhazmat.2021.125990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 06/13/2023]
Abstract
Globally, environmentally significant soils (ESSs) mainly include acid sulfate, heavy metal(loid)-contaminated, petroleum hydrocarbon-contaminated, pesticide-contaminated, and radionuclide-contaminated soils. These soils are interrelated and have many common characteristics from an environmental management perspective. In this review, we critically evaluate the available literature on individual ESSs, aiming to identify common problems related to environmental quality/risk assessment, remediation approaches, and environmental regulation for these soils. Based on these findings, we highlight the challenges to, and possible solutions for sustainable ESS management. Contaminated land has been rapidly expanding since the first industrial revolution from the industrialized Western countries to the emerging industrialized Asia and other parts of the world. Clean-up of contaminated lands and slowdown of their expansion require concerted international efforts to develop advanced cleaner production and cost-effective soil remediation technologies in addition to improvement of environmental legislation, regulatory enforcement, financial instruments, and stakeholder involvement to create enabling environments. Two particular areas require further action and research efforts: developing a universal system for assessing ESS quality and improving the cost-effectiveness of remediation technologies. We propose an integrated framework for deriving ESS quality indicators and make suggestions for future research directions to improve the performance of soil remediation technologies.
Collapse
Affiliation(s)
- Anyi Niu
- School of Geography, South China Normal University, Guangzhou 510631, China
| | - Chuxia Lin
- Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC 3125, Australia.
| |
Collapse
|
12
|
Usage of Si, P, Se, and Ca Decrease Arsenic Concentration/Toxicity in Rice, a Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rice is one of the most important routes for arsenic to enter the human food chain and threatens more than half of the world’s population. In addition, arsenic-contaminated soils and waters increase the concentration of this element in various tissues of rice plants. Thus, direct or indirect—infecting livestock and poultry—increase diseases such as respiratory diseases, gastrointestinal tract, liver, and cardiovascular diseases, cancer, and ultimately death in the long term. Therefore, finding different ways to reduce the uptake and transfer of arsenic by rice would reduce the contamination of rice plants with this dangerous element and improve animal and human nutrition and ultimately disease and mortality. In this article, we aim to take a small step in improving sustainable life on earth by referring to the various methods that researchers have taken to reduce rice contamination by arsenic in recent years. Adding micronutrients and macronutrients as fertilizer for rice is one way to improve this plant’s growth and health. In this study, by examining two types of macronutrients and two types of micronutrients, their role in reducing arsenic toxicity and absorption was investigated. Therefore, both calcium and phosphorus were selected from the macronutrients, and selenium and silicon were selected from the micronutrients, whose roles in previous studies had been investigated.
Collapse
|
13
|
Hussain MM, Bibi I, Niazi NK, Shahid M, Iqbal J, Shakoor MB, Ahmad A, Shah NS, Bhattacharya P, Mao K, Bundschuh J, Ok YS, Zhang H. Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145040. [PMID: 33581647 DOI: 10.1016/j.scitotenv.2021.145040] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) contamination is a well-recognized environmental and health issue, threatening over 200 million people worldwide with the prime cases in South and Southeast Asian and Latin American countries. Rice is mostly cultivated under flooded paddy soil conditions, where As speciation and accumulation by rice plants is controlled by various geo-environmental (biotic and abiotic) factors. In contrast to other food crops, As uptake in rice has been found to be substantially higher due to the prevalence of highly mobile and toxic As species, arsenite (As(III)), under paddy soil conditions. In this review, we discussed the biogeochemical cycling of As in paddy soil-rice system, described the influence of critical factors such as pH, iron oxides, organic matter, microbial species, and pathways affecting As transformation and accumulation by rice. Moreover, we elucidated As interaction with organic and inorganic amendments and mineral nutrients. The review also elaborates on As (im)mobilization processes and As uptake by rice under the influence of different mineral nutrients and amendments in paddy soil conditions, as well as their role in mitigating As transfer to rice grain. This review article provides critical information on As contamination in paddy soil-rice system, which is important to develop suitable strategies and mitigation programs for limiting As exposure via rice crop, and meet the UN's key Sustainable Development Goals (SDGs: 2 (zero hunger), 3 (good health and well-being), 12 (responsible consumption and production), and 13 (climate action)).
Collapse
Affiliation(s)
- Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Muhammad Bilal Shakoor
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Arslan Ahmad
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands; Department of Environmental Technology, Wageningen University and Research (WUR), Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands; KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program, & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
14
|
Kinimo KC, Yao KM, Marcotte S, Kouassi NLB, Trokourey A. Trace metal(loid)s contamination in paddy rice (Oryza sativa L.) from wetlands near two gold mines in Côte d'Ivoire and health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22779-22788. [PMID: 33423204 DOI: 10.1007/s11356-021-12360-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
This study examined the concentrations of arsenic (As), cadmium (Cd), and mercury (Hg) in rice grains grown in wetlands associated with gold mining in central-southern of Côte d'Ivoire to evaluate potential health risks exposure via rice consumption. In total, 30 rice grains were sampled around Agbaou and Bonikro gold mines. Arsenic and cadmium concentrations were determined using an inductively coupled plasma-optical emission spectrometer (ICP-OES), while atomic absorption spectrometry (AAS) was used for mercury. Results showed that As and Hg average concentrations in rice were above the permissible limits, while Cd average concentrations were below the permissible limit established by FAO/WHO in both sites. Except for Hg at Agbaou, no significant (p < 0.05) difference was found between trace metal concentrations in the two sites. The average daily intake (ADI) of As via rice consumption exceeded the USEPA reference dose (RfD) of 0.0003 μg g-1 day-1, indicating that rice ingestion is a pathway of As exposure for adults and children in the area. The average values of non-carcinogen (HQ) for As and carcinogen (CR) for As and Cd risks index suggest that potential health risks exist for both adults and children due to rice consumption at Agbaou and Bonikro. The maximum safe weekly consumption (MSWC) of rice relative to As, Cd, and Hg was estimated for the study area. Overall, this study provides strong evidence that As could threaten local population health in Côte d'Ivoire regions where gold mine extraction is occurring through rice ingestion.
Collapse
Affiliation(s)
- Kakou Charles Kinimo
- UFR Sciences Biologiques, Département de Mathématiques Physique Chimie, Université Peleforo Gon Coulibaly, BP 1328, Korhogo, Côte d'Ivoire.
| | - Koffi Marcellin Yao
- Centre de Recherches Océanologiques (CRO), 29, rue des pêcheurs, BP V18, Abidjan, Côte d'Ivoire
| | - Stéphane Marcotte
- Normandie University, COBRA, UMR CNRS 6014 et FR 3038, INSA de Rouen, 1 rue Tesnière, Cedex 76821, Mont Saint-Aignan, France
| | - N'Guessan Louis Berenger Kouassi
- UFR Sciences Biologiques, Département de Mathématiques Physique Chimie, Université Peleforo Gon Coulibaly, BP 1328, Korhogo, Côte d'Ivoire
| | - Albert Trokourey
- Physic Chemistry Laboratory, Félix Houphouët Boigny University, BP 522, Abidjan, Côte d'Ivoire
| |
Collapse
|
15
|
Influence of Mining Activities on Arsenic Concentration in Rice in Asia: A Review. MINERALS 2021. [DOI: 10.3390/min11050472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Crop and livestock farming on contaminated soil has been found to induce the accumulation of trace elements in edible parts of plants, with subsequent risk to human and animal health. Since rice crop is a major source of energy in worldwide diets and is consumed by more than 3 billion people, the soil–rice pathway is regarded as a prominent route of human exposure to potentially toxic elements. This study provides an overview of arsenic contamination in paddy rice from mining-impacted areas in several Asian countries that are primary rice consumers. From this review, it may be concluded that mining activities, along with the associated residual waste, significantly contribute to arsenic contamination of this food crop as rice samples from these regions were highly contaminated, with the highest total arsenic concentrations recorded being 3–4 times higher than the maximum levels proposed by the Codex Alimentarius Commission. While the contamination in China, Korea, Indonesia, and Thailand appeared to be slightly affected by mining activities, the elevated levels of arsenic in rice from mining areas in India, Bangladesh, and Vietnam could be derived from arsenic-contaminated groundwater.
Collapse
|
16
|
Misra A, Mishra P, Kumar B, Shukla PK, Kumar M, Singh SP, Sundaresan V, Adhikari D, Agrawal PK, Barik SK, Srivastava S. Chemodiversity and molecular variability in the natural populations (India) of Gloriosa superba (L.) and correlation with eco- geographical factors for the identification of elite chemotype(s). Fitoterapia 2021; 150:104831. [PMID: 33545298 DOI: 10.1016/j.fitote.2021.104831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
Gloriosa superba L. has economic significance due to colchicine, a bioactive compound used for gout. In present study metabolic and molecular variability in natural population of species was analyzed and correlated with edaphic and climatic factors. Thirty populations (wild) of G. superba were mapped from 10 different eco-regions of India at an elevation range of 10-1526 m, having no morphotypic variations. The two known biologically active alkaloids colchicine (ranged from 0.015-0.516%) and gloriosine (0.19-0.44%) were significantly varied (p < 0.05) among populations, leading to the identification of four elite chemotypes. Molecular variability from ISSR data divides the population in different sub clusters at intra-specific level, presenting the high similarity percentage with bootstrap value of 66-100%. Principal component analysis (PCA) revealed that elite chemotypes are related to temperature, precipitation and aridity gradient. The rhizospheric soil selenium was significantly correlated with colchicine content in G. superba.
Collapse
Affiliation(s)
- Ankita Misra
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Priyanka Mishra
- Department of Plant Biology and Systematics, CSIR-Central Institute of Medicinal and Aromatic Plants, Bangalore, Karnataka, India
| | - Bhanu Kumar
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Pushpendra Kumar Shukla
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Manish Kumar
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Satyendra Pratap Singh
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Velusamy Sundaresan
- Department of Plant Biology and Systematics, CSIR-Central Institute of Medicinal and Aromatic Plants, Bangalore, Karnataka, India
| | - Dibyendu Adhikari
- Department of Botany, North-Eastern Hill University, Shillong, India
| | | | - Saroj Kanta Barik
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Sharad Srivastava
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
17
|
Microbiomes in agricultural and mining soils contaminated with arsenic in Guanajuato, Mexico. Arch Microbiol 2020; 203:499-511. [PMID: 32964256 DOI: 10.1007/s00203-020-01973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
In this report, physical and chemical properties, and total arsenic (As) concentrations were analyzed in agricultural (MASE) and mining soils (SMI) in the State of Guanajuato, México. Additionally, a metagenomic analysis of both types of soils was the bases for the identification and selection of bacteria and fungi resistant to As. The SMI soil showed higher concentration of As (39 mg kg-1) as compared to MASE soil (15 mg kg-1). The metagenome showed a total of 175,240 reads from both soils. MASE soil showed higher diversity of bacteria, while the SMI soil showed higher diversity of fungi. 16S rRNA analysis showed that the phylum Proteobacteria showed the highest proportion (39.6% in MASE and 36.4% in SMI) and Acidobacteria was the second most representative (24.2% in SMI and 11.6% in MASE). 18S rRNA analysis, showed that the phylum Glomeromycota was found only in the SMI soils (11.6%), while Ascomycota was the most abundant, followed by Basidiomycota, and Zygomycota, in both soils. Genera Bacillus and Penicillium were able to grow in As concentrations as high as 5 and 10 mM, reduced As (V) to As (III), and removed As at 9.8% and 12.1% rates, respectively. When aoxB, arsB, ACR3(1), ACR3(2,) and arrA genes were explored, only the arsB gene was identified in Bacillus sp., B. simplex, and B. megaterium. In general, SMI soils showed more microorganisms resistant to As than MASE soils. Bacteria and fungi selected in this work may show potential to be used as bioremediation agents in As contaminated soils.
Collapse
|
18
|
Arsenic Uptake and Accumulation Mechanisms in Rice Species. PLANTS 2020; 9:plants9020129. [PMID: 31972985 PMCID: PMC7076356 DOI: 10.3390/plants9020129] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Rice consumption is a source of arsenic (As) exposure, which poses serious health risks. In this study, the accumulation of As in rice was studied. Research shows that As accumulation in rice in Taiwan and Bangladesh is higher than that in other countries. In addition, the critical factors influencing the uptake of As into rice crops are defined. Furthermore, determining the feasibility of using effective ways to reduce the accumulation of As in rice was studied. AsV and AsIII are transported to the root through phosphate transporters and nodulin 26-like intrinsic channels. The silicic acid transporter may have a vital role in the entry of methylated As, dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA), into the root. Amongst As species, DMA(V) is particularly mobile in plants and can easily transfer from root to shoot. The OsPTR7 gene has a key role in moving DMA in the xylem or phloem. Soil properties can affect the uptake of As by plants. An increase in organic matter and in the concentrations of sulphur, iron, and manganese reduces the uptake of As by plants. Amongst the agronomic strategies in diminishing the uptake and accumulation of As in rice, using microalgae and bacteria is the most efficient.
Collapse
|
19
|
Sandil S, Dobosy P, Kröpfl K, Füzy A, Óvári M, Záray G. Effect of irrigation water containing arsenic on elemental composition of bean and lettuce plants cultivated in calcareous sandy soil. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0014-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The uptake of arsenic by vegetables from soil irrigated with arsenic enriched groundwater poses a major health hazard. The edible portion of these vegetables transfer arsenic to the human beings. The uptake of arsenic was studied in bean (Phaseolus vulgaris L.) and lettuce (Lactuca sativa L.) in a controlled greenhouse pot culture with calcareous sandy soil as substrate. The plants were irrigated with water containing sodium arsenate at concentrations 0.1, 0.25 and 0.5 mg L− 1. The total arsenic concentration of the different plants parts was determined by ICP-MS, following microwave-assisted acid digestion. The change in plant biomass production and essential macroelements (Mg, P, K) and microelements concentration (Fe, Mn, Cu, Zn) was also studied.
Results
The As concentration in the bean was in the order: root>stem>leaf>bean fruit and in lettuce: root>leaves. At the highest dose (0.5 mg L− 1) the As concentration in the bean fruit and lettuce leaves was 22.1 μg kg− 1 and 1207.5 μg kg− 1 DW, respectively. Increasing As concentration in the irrigation water resulted in decreased edible biomass production in bean, while in lettuce the edible biomass production increased. Neither plant exhibited any visible toxicity symptoms. No significant change was observed in the macro and microelements concentration. The total and the water-soluble arsenic in soil amounted to 3.5 mg kg− 1 and 0.023 mg kg− 1, respectively. The transfer factor was found to increase with increase in the As treatment applied. The transfer factor range for bean from root to fruit was 0.003–0.005, and for lettuce from root to leaves was 0.14–0.24.
Conclusion
Considering the FAO-WHO recommended maximum tolerable daily intake (MTDI) limit of 2.1 μg kg− 1 body weight, and the biomass production, both plants should not be cultivated at As treatment level higher than 0.1 mg L− 1.
Graphical abstract
Collapse
|
20
|
Anawar HM, Rengel Z, Damon P, Tibbett M. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:1003-1012. [PMID: 29033177 DOI: 10.1016/j.envpol.2017.09.098] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 08/02/2017] [Accepted: 09/29/2017] [Indexed: 05/13/2023]
Abstract
High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway.
Collapse
Affiliation(s)
- Hossain M Anawar
- School of Earth and Environment (M087), The University of Western Australia, Crawley, WA 6009, Australia.
| | - Zed Rengel
- School of Earth and Environment (M087), The University of Western Australia, Crawley, WA 6009, Australia
| | - Paul Damon
- School of Earth and Environment (M087), The University of Western Australia, Crawley, WA 6009, Australia
| | - Mark Tibbett
- Centre for Agri-Environmental Research & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, RG6 6AR Reading, UK
| |
Collapse
|
21
|
Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7040067] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Chowdhury MTA, Deacon CM, Jones GD, Imamul Huq SM, Williams PN, Manzurul Hoque AFM, Winkel LHE, Price AH, Norton GJ, Meharg AA. Arsenic in Bangladeshi soils related to physiographic region, paddy management, and mirco- and macro-elemental status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:406-415. [PMID: 28285852 DOI: 10.1016/j.scitotenv.2016.11.191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/07/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
While the impact of arsenic in irrigated agriculture has become a major environmental concern in Bangladesh, to date there is still a limited understanding of arsenic in Bangladeshi paddy soils at a landscape level. A soil survey was conducted across ten different physiographic regions of Bangladesh, which encompassed six types of geomorphology (Bil, Brahmaputra floodplain, Ganges floodplain, Meghna floodplain, Karatoya-Bangali floodplain and Pleistocene terrace). A total of 1209 paddy soils and 235 matched non-paddy soils were collected. The source of irrigation water (groundwater and surface water) was also recorded. The concentrations of arsenic and sixteen other elements were determined in the soil samples. The concentration of arsenic was higher in paddy soils compared to non-paddy soils, with soils irrigated with groundwater being higher in arsenic than those irrigated with surface water. There was a clear difference between the Holocene floodplains and the Pleistocene terraces, with Holocene floodplain soils being higher in arsenic and other elements. The results suggest that arsenic is most likely associated with less well weathered/leached soils, suggesting it is either due to the geological newness of Holocene sediments or differences between the sources of sediments, which gives rise to the arsenic problems in Bangladeshi soils.
Collapse
Affiliation(s)
- M Tanvir A Chowdhury
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, UK; Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Claire M Deacon
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, UK
| | - Gerrad D Jones
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, CH, 8600 Duebendorf, Switzerland
| | - S M Imamul Huq
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Paul N Williams
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN, Northern Ireland, UK
| | - A F M Manzurul Hoque
- Soil Resource Development Institute (SRDI), Khamar Bari Road, Dhaka 1215, Bangladesh
| | - Lenny H E Winkel
- Swiss Federal Institute of Technology (ETH), Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CH, 8092 Zurich, Switzerland
| | - Adam H Price
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, UK
| | - Gareth J Norton
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, UK.
| | - Andrew A Meharg
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN, Northern Ireland, UK.
| |
Collapse
|
23
|
Bakhat HF, Zia Z, Fahad S, Abbas S, Hammad HM, Shahzad AN, Abbas F, Alharby H, Shahid M. Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9142-9158. [PMID: 28160172 DOI: 10.1007/s11356-017-8462-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/16/2017] [Indexed: 05/13/2023]
Abstract
Arsenic (As) is a toxic metalloid. Serious concerns have been raised in literature owing to its potential toxicity towards living beings. The metalloid causes various water- and food-borne diseases. Among food crops, rice contains the highest concentrations of As. Consuming As-contaminated rice results in serious health issues. Arsenic concentration in rice is governed by various factors in the rhizosphere such as availability and concentration of various mineral nutrients (iron, phosphate, sulfur and silicon) in soil solution, soil oxidation/reduction status, inter-conversion between organic and inorganic As compounds. Agronomic and civil engineering methods can be adopted to decrease As accumulation in rice. Agronomic methods such as improving soil porosity/aeration by irrigation management or creating the conditions favorable for As-precipitate formation, and decreasing As uptake and translocation by adding a inorganic nutrients that compete with As are easy and cost effective techniques at field scale. This review focuses on the factors regulating and competing As in soil-plant system and As accumulation in rice grains. Therefore, it is suggested that judicious use of water, management of soil, antagonistic effects of various inorganic plant-nutrients to As should be considered in rice cultivated areas to mitigate the building up of As in human food chain and with minimum negative impact to the environment.
Collapse
Affiliation(s)
- Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan.
| | - Zahida Zia
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | - Shah Fahad
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Sunaina Abbas
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | - Hafiz Mohkum Hammad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | | | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Hesham Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| |
Collapse
|
24
|
Llorente-Mirandes T, Rubio R, López-Sánchez JF. Inorganic Arsenic Determination in Food: A Review of Analytical Proposals and Quality Assessment Over the Last Six Years. APPLIED SPECTROSCOPY 2017; 71:25-69. [PMID: 28033722 DOI: 10.1177/0003702816652374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we review recent developments in analytical proposals for the assessment of inorganic arsenic (iAs) content in food products. Interest in the determination of iAs in products for human consumption such as food commodities, wine, and seaweed among others is fueled by the wide recognition of its toxic effects on humans, even at low concentrations. Currently, the need for robust and reliable analytical methods is recognized by various international safety and health agencies, and by organizations in charge of establishing acceptable tolerance levels of iAs in food. This review summarizes the state of the art of analytical methods while highlighting tools for the assessment of quality assessment of the results, such as the production and evaluation of certified reference materials (CRMs) and the availability of specific proficiency testing (PT) programmes. Because the number of studies dedicated to the subject of this review has increased considerably over recent years, the sources consulted and cited here are limited to those from 2010 to the end of 2015.
Collapse
Affiliation(s)
| | - Roser Rubio
- Department of Analytical Chemistry, University of Barcelona, Spain
| | | |
Collapse
|
25
|
Azam SMGG, Sarker TC, Naz S. Factors affecting the soil arsenic bioavailability, accumulation in rice and risk to human health: a review. Toxicol Mech Methods 2016; 26:565-579. [DOI: 10.1080/15376516.2016.1230165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Wang X, Peng B, Tan C, Ma L, Rathinasabapathi B. Recent advances in arsenic bioavailability, transport, and speciation in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5742-50. [PMID: 25827791 DOI: 10.1007/s11356-014-4065-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/30/2014] [Indexed: 05/15/2023]
Abstract
Widespread arsenic (As) contamination in paddy rice (Oryza sativa) from both geologic and anthropogenic origins is an increasing concern globally. Substantial efforts have been made to elucidate As transformation and uptake processes in rhizosphere and metabolism in rice plant, which provides an essential foundation for the development of mitigation strategies. However, a range of crucial mechanisms from As mobilization in rhizosphere to transport to grains remain poorly understood. To provide new insight into the underlying mechanisms of As accumulation in rice, a range of new perspectives on As bioavailability, transport pathways, and in situ speciation are reviewed here. Specifically, the prominent effects of water regime, Fe plaque, and biochar on As mobilization in rice rhizosphere are discussed critically. An updated understanding of arsenite (AsIII) and methylated As transport from root to vascular bundle and grain is integrated and discussed in detail. Special attention is given to As speciation and distribution in rice grain with potential coping strategies being provided and discussed. Future research priorities are also identified. The new insight into As bioavailability, transport and speciation in rice would lead to a better understanding of As contamination in rice. They would also provide useful strategies from agronomic measures to genetic engineering for more effective restriction of As transport and accumulation in food chain.
Collapse
Affiliation(s)
- Xin Wang
- College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, Hunan, China,
| | | | | | | | | |
Collapse
|
27
|
Zhang J, Zhang G, Cai D, Wu Z. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation. JOURNAL OF HAZARDOUS MATERIALS 2015; 285:208-211. [PMID: 25497313 DOI: 10.1016/j.jhazmat.2014.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/15/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS).
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031, PR China; Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031, PR China
| | - Guilong Zhang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031, PR China; Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031, PR China
| | - Dongqing Cai
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031, PR China; Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031, PR China.
| | - Zhengyan Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031, PR China; Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031, PR China.
| |
Collapse
|
28
|
Ansari MKA, Ahmad A, Umar S, Zia MH, Iqbal M, Owens G. Genotypic variation in phytoremediation potential of Indian mustard exposed to nickel stress: a hydroponic study. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:135-144. [PMID: 25237724 DOI: 10.1080/15226514.2013.862206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ten Indian mustard (Brassica juncea L.) genotypes were screened for their nickel (Ni) phytoremediation potential under controlled environmental conditions. All ten genotypes were grown hydroponically in aqueous solution containing Ni concentrations (as nickel chloride) ranging from 0 to 50 μM and changes in plant growth, biomass and total Ni uptake were evaluated. Of the ten genotypes (viz. Agrini, BTO, Kranti, Pusa Basant, Pusa Jai Kisan, Pusa Bahar, Pusa Bold, Vardhan, Varuna, and Vaibhav), Pusa Jai Kisan was the most Ni tolerant genotype accumulating up to 1.7 μg Ni g(-1) dry weight (DW) in its aerial parts. Thus Pusa Jai Kisan had the greatest potential to become a viable candidate in the development of practical phytoremediation technologies for Ni contaminated sites.
Collapse
Affiliation(s)
- Mohd Kafeel Ahmad Ansari
- a Molecular Ecology Laboratory, Department of Botany, Faculty of Science , Hamdard University , New Delhi , India
| | | | | | | | | | | |
Collapse
|
29
|
Nemati S, Mosaferi M, Ostadrahimi A, Mohammadi A. Arsenic Intake through Consumed Rice in Iran: Markets Role or Government Responsibility. Health Promot Perspect 2014; 4:180-6. [PMID: 25648387 DOI: 10.5681/hpp.2014.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/15/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND the present study investigated arsenic content in Iranian, imported rice on sale in Tabriz (fourth most populous city of Iran) market, and assesses daily arsenic intake from rice. METHODS A total of 33 locally available rice samples from different brands were collected and then wet and dry ashing digestion procedures were compared for decomposition of them before analyzing by graphite furnace atomic absorption spectrometry (GFAAS). RESULTS The mean arsenic concentration in Iranian rice was 0.065 mg/kg versus 0.082 mg/kg in imported samples. There was no significant difference between arsenic concentrations between two groups of samples (P=0.061). The average daily ingestion rate of total arsenic was 0.11 and 0.15 μg/kg body weight from consumption of 110g of Iranian and imported rice respectively. CONCLUSION Based on our estimation, daily dietary intake of arsenic from Iranian and imported rice was approximately 7 and 9 μg/day for local population, respectively.All of the rice grains that were sampled from Tabriz market were low in total arsenic compared to the standard. Nonetheless regular monitoring of all rice varieties should be continued.
Collapse
Affiliation(s)
- Sepideh Nemati
- Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mosaferi
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mohammadi
- Center of Student Researches, Yazd University of Medical Sciences, Yazd, Iran
| |
Collapse
|
30
|
Li J, Dong F, Lu Y, Yan Q, Shim H. Mechanisms controlling arsenic uptake in rice grown in mining impacted regions in South China. PLoS One 2014; 9:e108300. [PMID: 25251438 PMCID: PMC4177218 DOI: 10.1371/journal.pone.0108300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 08/27/2014] [Indexed: 11/19/2022] Open
Abstract
Foods produced on soils impacted by Pb-Zn mining activities are a potential health risk due to plant uptake of the arsenic (As) associated with such mining. A field survey was undertaken in two Pb-Zn mining-impacted paddy fields in Guangdong Province, China to assess As accumulation and translocation, as well as other factors influencing As in twelve commonly grown rice cultivars. The results showed that grain As concentrations in all the surveyed rice failed national food standards, irrespective of As speciation. Among the 12 rice cultivars, "SY-89" and "DY-162" had the least As in rice grain. No significant difference for As concentration in grain was observed between the rice grown in the two areas that differed significantly for soil As levels, suggesting that the amount of As contamination in the soil is not necessarily the overriding factor controlling the As content in the rice grain. The iron and manganese plaque on the root surface curtailed As accumulation in rice roots. Based on our results, the accumulation of As within rice plants was strongly associated with such soil properties such as silicon, phosphorus, organic matter, pH, and clay content. Understanding the factors and mechanisms controlling As uptake is important to develop mitigation measures that can reduce the amount of As accumulated in rice grains produced on contaminated soils.
Collapse
Affiliation(s)
- Junhui Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Fei Dong
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Agricultural Bureau of Xiangfen County, Shanxi Province, Xiangfen, China
| | - Ying Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Qiuyan Yan
- Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| |
Collapse
|
31
|
Jiang W, Hou Q, Yang Z, Zhong C, Zheng G, Yang Z, Li J. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 188:159-65. [PMID: 24598788 DOI: 10.1016/j.envpol.2014.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/09/2014] [Accepted: 02/11/2014] [Indexed: 05/11/2023]
Abstract
The transfer of arsenic from paddy field to rice is a major exposure route of the highly toxic element to humans. The aim of our study is to explore the effects of soil available phosphorus on As uptake by rice, and identify the effects of soil properties on arsenic transfer from soil to rice under actual field conditions. 56 pairs of topsoil and rice samples were collected. The relevant parameters in soil and the inorganic arsenic in rice grains were analyzed, and then all the results were treated by statistical methods. Results show that the main factors influencing the uptake by rice grain include soil pH and available phosphorus. The eventual impact of phosphorus is identified as the suppression of As uptake by rice grains. The competition for transporters from soil to roots between arsenic and phosphorus in rhizosphere soil has been a dominant feature.
Collapse
Affiliation(s)
- Wei Jiang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Qingye Hou
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Cong Zhong
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Guodong Zheng
- General Academy of Geological Survey of Guangxi, Nanning 530023, China
| | - Zhiqiang Yang
- General Academy of Geological Survey of Guangxi, Nanning 530023, China
| | - Jie Li
- General Academy of Geological Survey of Guangxi, Nanning 530023, China
| |
Collapse
|
32
|
Tripathi P, Dwivedi S, Mishra A, Kumar A, Dave R, Srivastava S, Shukla MK, Srivastava PK, Chakrabarty D, Trivedi PK, Tripathi RD. Arsenic accumulation in native plants of West Bengal, India: prospects for phytoremediation but concerns with the use of medicinal plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:2617-31. [PMID: 21713498 DOI: 10.1007/s10661-011-2139-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 05/25/2011] [Indexed: 05/15/2023]
Abstract
Arsenic (As) is a widespread environmental and food chain contaminant and class I, non-threshold carcinogen. Plants accumulate As due to ionic mimicry that is of importance as a measure of phytoremediation but of concern due to the use of plants in alternative medicine. The present study investigated As accumulation in native plants including some medicinal plants, from three districts [Chinsurah (Hoogly), Porbosthali (Bardhman), and Birnagar (Nadia)] of West Bengal, India, having a history of As pollution. A site-specific response was observed for Specific Arsenic Uptake (SAU; mg kg(-1) dw) in total number of 13 (8 aquatic and 5 terrestrial) collected plants. SAU was higher in aquatic plants (5-60 mg kg(-1) dw) than in terrestrial species (4-19 mg kg(-1) dw). The level of As was lower in medicinal plants (MPs) than in non-medicinal plants, however it was still beyond the WHO permissible limit (1 mg kg(-1) dw). The concentration of other elements (Cu, Zn, Se, and Pb) was found to be within prescribed limits in medicinal plants (MP). Among the aquatic plants, Marsilea showed the highest SAU (avg. 45 mg kg(-1) dw), however, transfer factor (TF) of As was the maximum in Centella asiatica (MP, avg. 1). Among the terrestrial plants, the maximum SAU and TF were demonstrated by Alternanthera ficoidea (avg. 15) and Phyllanthus amarus (MP, avg. 1.27), respectively. In conclusion, the direct use of MP or their by products for humans should not be practiced without proper regulation. In other way, one fern species (Marsilea) and some aquatic plants (Eichhornia crassipes and Cyperus difformis) might be suitable candidates for As phytoremediation of paddy fields.
Collapse
Affiliation(s)
- Preeti Tripathi
- National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, 226 001, UP, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ye J, Rensing C, Rosen BP, Zhu YG. Arsenic biomethylation by photosynthetic organisms. TRENDS IN PLANT SCIENCE 2012; 17:155-62. [PMID: 22257759 PMCID: PMC3740146 DOI: 10.1016/j.tplants.2011.12.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 05/03/2023]
Abstract
Arsenic (As) is a ubiquitous element that is widespread in the environment and causes numerous health problems. Biomethylation of As has implications for its mobility and toxicity. Photosynthetic organisms may play a significant role in As geochemical cycling by methylating it to different As species, but little is known about the mechanisms of methylation. Methylated As species have been found in many photosynthetic organisms, and several arsenite S-adenosylmethionine (SAM) methyltransferases have been characterized in cyanobacteria and algae. However, higher plants may not have the ability to methylate As. Instead, methylated arsenicals in plants probably originate from microorganisms in soils and the rhizosphere. Here, we propose possible approaches for developing 'smart' photosynthetic organisms with an enhanced and sensitive biomethylation capacity for bioremediation and safer food.
Collapse
Affiliation(s)
- Jun Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | | | | |
Collapse
|
34
|
A fully validated method for the determination of arsenic species in rice and infant cereal products. PURE APPL CHEM 2012. [DOI: 10.1351/pac-con-11-09-30] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A full validation of inorganic arsenic (iAs), methylarsonic acid (MA), and dimethyl arsinic acid (DMA) in several types of rice and rice-based infant cereals is reported. The analytical method was developed and validated in two laboratories. The extraction of the As species was performed using nitric acid 0.2 % and hydrogen peroxide 1 %, and the coupled system liquid chromatography-inductively coupled plasma-mass spectrometry (LCICP-MS) was used for speciation measurements. Detection limit (DL), quantification limit, linearity, precision, trueness, accuracy, selectivity, as well as expanded uncertainty for iAs, MA, and DMA were established. The certified reference materials (CRMs) (NMIJ 7503a, NCS ZC73008, NIST SRM 1568a) were used to check the accuracy. The method was shown to be satisfactory in two proficiency tests (PTs). The broad applicability of the method is shown from the results of analysis of 29 samples including several types of rice, rice products, and infant cereal products. Total As ranged from 40.1 to 323.7 μg As kg–1. From the speciation results, iAs was predominant, and DMA was detected in some samples while MA was not detected in any sample.
Collapse
|
35
|
He Y, Pedigo CE, Lam B, Cheng Z, Zheng Y. Bioaccessibility of arsenic in various types of rice in an in vitro gastrointestinal fluid system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:74-80. [PMID: 22251206 DOI: 10.1080/03601234.2012.611431] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Rice can be a major contributor to dietary arsenic exposure because of the relatively high total arsenic concentration compared to other grains, especially for people whose main staple is rice. This study employed in vitro gastrointestinal fluid digestion to determine bioaccessible or gastrointestinal fluid extractable arsenic concentration in rice. Thirty-one rice samples, of which 60 % were grown in the United States, were purchased from food stores in New York City. Total arsenic concentrations in these samples ranged from 0.090 ± 0.004 to 0.85 ± 0.03 mg/kg with a mean value of 0.275 ± 0.161 mg/kg (n = 31). Rice samples with relatively high total arsenic (>0.20 mg/kg, n = 18) were treated by in vitro artificial gastrointestinal fluid digestion, and the extractable arsenic ranged from 53 % to 102 %. The bioaccessibility of arsenic in rice decreases in the general order of extra long grain, long grain, long grain parboiled, to brown rices.
Collapse
Affiliation(s)
- Yi He
- Department of Sciences, John Jay College, The City University of New York, 445 W59th Street, New York, NY 10019, USA.
| | | | | | | | | |
Collapse
|
36
|
Karak T, Abollino O, Bhattacharyya P, Das KK, Paul RK. Fractionation and speciation of arsenic in three tea gardens soil profiles and distribution of As in different parts of tea plant (Camellia sinensis L.). CHEMOSPHERE 2011; 85:948-60. [PMID: 21752421 DOI: 10.1016/j.chemosphere.2011.06.061] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/07/2011] [Accepted: 06/13/2011] [Indexed: 05/24/2023]
Abstract
The distribution pattern and fractionation of arsenic (As) in three soil profiles from tea (Camellia sinensis L.) gardens located in Karbi-Anglong (KA), Cachar (CA) and Karimganj (KG) districts in the state of Assam, India, were investigated depth-wise (0-10, 10-30, 30-60 and 60-100 cm). DTPA-extractable As was primarily restricted to surface horizons. Arsenic speciation study showed the presence of higher As(V) concentrations in the upper horizon and its gradual decrease with the increase in soil depths, following a decrease of Eh. As fractionation by sequential extraction in all the soil profiles showed that arsenic concentrations in the three most labile fractions (i.e., water-soluble, exchangeable and carbonate-bound fractions) were generally low. Most arsenic in soils was nominally associated with the organic and Fe-Mn oxide fractions, being extractable in oxidizing or reducing conditions. DTPA-extractable As (assumed to represent plant-available As) was found to be strongly correlated to the labile pool of As (i.e. the sum of the first three fractions). The statistical comparison of means (two-sample t-test) showed the presence of significant differences between the concentrations of As(III) and As(V) for different soil locations, depths and fractions. The risk assessment code (RAC) was found to be below the pollution level for all soils. The measurement of arsenic uptake by different parts of tea plants corroborated the hypothesis that roots act as a buffer and hold back contamination from the aerial parts.
Collapse
Affiliation(s)
- Tanmoy Karak
- Pollution Control Board, Bamunimaidam, Guwahati-21, Assam, India
| | | | | | | | | |
Collapse
|
37
|
Li H, Ye ZH, Chan WF, Chen XW, Wu FY, Wu SC, Wong MH. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2537-45. [PMID: 21737190 DOI: 10.1016/j.envpol.2011.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 05/09/2023]
Abstract
The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg(-1). In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses.
Collapse
Affiliation(s)
- H Li
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Fu Y, Chen M, Bi X, He Y, Ren L, Xiang W, Qiao S, Yan S, Li Z, Ma Z. Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:1757-1762. [PMID: 21549462 DOI: 10.1016/j.envpol.2011.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/10/2011] [Accepted: 04/12/2011] [Indexed: 05/30/2023]
Abstract
The acquaintance of arsenic concentrations in rice grain is vital in risk assessment. In this study, we determined the concentration of arsenic in 282 brown rice grains sampled from Hainan Island, China, and discussed its possible relationships to the considered soil properties. Arsenic concentrations in the rice grain from Hainan Island varied from 5 to 309 μg/kg, with a mean (92 μg/kg) lower than most published data from other countries/regions and the maximum contaminant level (MCL) for As(i) in rice. The result of correlation analysis between grain and soil properties showed that grain As concentrations correlated significantly to soil arsenic speciation, organic matter and soil P contents and could be best predicted by humic acid bound and Fe-Mn oxides bound As fractions. Grain arsenic rises steeply at soil As concentrations lower than 3.6 mg/kg and gently at higher concentrations.
Collapse
Affiliation(s)
- Yangrong Fu
- Faculty of Earth Science, China University of Geosciences, Wuhan 430074, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dwivedi S, Tripathi RD, Srivastava S, Singh R, Kumar A, Tripathi P, Dave R, Rai UN, Chakrabarty D, Trivedi PK, Tuli R, Adhikari B, Bag MK. Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. PROTOPLASMA 2010; 245:113-24. [PMID: 20490609 DOI: 10.1007/s00709-010-0151-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/14/2010] [Indexed: 05/13/2023]
Abstract
The exposure of paddy fields to arsenic (As) through groundwater irrigation is a serious concern that may not only lead to As accumulation to unacceptable levels but also interfere with mineral nutrients in rice grains. In the present field study, profiling of the mineral nutrients (iron (Fe), phosphorous, zinc, and selenium (Se)) was done in various rice genotypes with respect to As accumulation. A significant genotypic variation was observed in elemental retention on root Fe plaque and their accumulation in various plant parts including grains, specific As uptake (29-167 mg kg(-1) dw), as well as As transfer factor (4-45%). Grains retained the least level of As (0.7-3%) with inorganic As species being the dominant forms, while organic As species, viz., dimethylarsinic acid and monomethylarsonic acid, were non-detectable. In all tested varieties, the level of Se was low (0.05-0.12 mg kg(-1) dw), whereas that of As was high (0.4-1.68 mg kg(-1) dw), considering their safe/recommended daily intake limits, which may not warrant their human consumption. Hence, their utilization may increase the risk of arsenicosis, when grown in As-contaminated areas.
Collapse
Affiliation(s)
- Sanjay Dwivedi
- National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, 226 001, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|