1
|
Yang Y, Jing J, Fan S, Chen Z, Qu Y. Unraveling the molecular mechanisms of selenite reduction: transcriptomic analysis of Bacillus reveals the key role of sulfur assimilation. Biotechnol Lett 2023; 45:1513-1520. [PMID: 37864746 DOI: 10.1007/s10529-023-03439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
Selenite biotransformation by microorganisms is an effective detoxification and assimilation process. However, current knowledge of the molecular mechanisms of selenite reduction remains circumscribed. Here, the reduction of Se(IV) by a highly selenite-resistant Bacillus sp. SL (up to 50 mM) was systematically analyzed, and the molecular mechanisms of selenite reduction were investigated. Remarkably, 10 mM selenite was entirely transformed by the strain SL within 20 h, demonstrating a faster conversion rate compared to other microorganisms. Furthermore, glutathione (GSH) and exopolysaccharides (EPS) changes were also monitored during the process. Transcriptomic analysis revealed that the genes of ferredoxin-sulfite oxidoreductase (6.82) and sulfate adenylyltransferase (6.32) were significantly upregulated, indicating that the sulfur assimilation pathway is the primary reducing pathway involved in selenite reduction by strain SL. Moreover, key genes associated with NAD(P)/FAD-dependent oxidoreductases and thioredoxin were significantly upregulated. The reduction of Se(IV) was mediated by multiple pathways in strain SL. To our knowledge, this is the initial report to identify the involvement of sulfur assimilation pathway in selenite reduction for bacillus, which is rare in aerobic bacteria.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Jiawei Jing
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Shuling Fan
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Zhuo Chen
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Yuanyuan Qu
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| |
Collapse
|
2
|
Song B, Weijma J, Buisman CJN, van der Weijden RD. How sulfur species can accelerate the biological immobilization of the toxic selenium oxyanions and promote stable hexagonal Se 0 formation. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129367. [PMID: 35897181 DOI: 10.1016/j.jhazmat.2022.129367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Toxic selenium oxyanions and sulfur species are often jointly present in contaminated waters and soils. This study investigated the effect on kinetics and resulting products for bio-reduction of selenium oxyanions in the presence of biologically produced sulfur resulting from bio-oxidation of sulfide in (bio)gas-desulfurization (bio-S0) and of sulfate. Selenite and selenate (~2 mmol L-1) bio-reduction was studied in batch up to 28 days at 30 oC and pH 7 using lactic acid and a sulfate-reducing sludge, 'Emmtec'. Bio-S0 addition increased the selenite removal rate, but initially slightly decreased selenate reduction rates. Selenite reacted with biologically generated sulfide resulting in selenium-sulfur, which upon further bio-reduction creates a sulfur bio-reduction cycle. Sulfate addition increased the bio-reduction rate for both selenite and sulfate. Bio-S0 or sulfate promoted hexagonal selenium formation, whereas without these, mostly amorphous Se0 resulted. With another inoculum, 'Eerbeek', bio-S0 accelerated the selenite reduction rate less than for 'Emmtec' because of lower sulfur and higher selenite bio-reduction rates. Bio-S0 addition increased the selenate reduction rate slightly and accelerated hexagonal selenium formation. Hexagonal selenium formation is advantageous because it facilitates separation and recovery and is less mobile and toxic than amorphous Se0. Insights into the interaction between selenium and sulfur bio-reduction are valuable for understanding environmental pathways and considerations regarding remediation and recovery.
Collapse
Affiliation(s)
- B Song
- Department of Environmental Technology, Wageningen University and Research, the Netherlands
| | - J Weijma
- Department of Environmental Technology, Wageningen University and Research, the Netherlands
| | - C J N Buisman
- Department of Environmental Technology, Wageningen University and Research, the Netherlands
| | - R D van der Weijden
- Department of Environmental Technology, Wageningen University and Research, the Netherlands.
| |
Collapse
|
3
|
Borah SN, Goswami L, Sen S, Sachan D, Sarma H, Montes M, Peralta-Videa JR, Pakshirajan K, Narayan M. Selenite bioreduction and biosynthesis of selenium nanoparticles by Bacillus paramycoides SP3 isolated from coal mine overburden leachate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117519. [PMID: 34380220 DOI: 10.1016/j.envpol.2021.117519] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/18/2021] [Accepted: 05/17/2021] [Indexed: 05/15/2023]
Abstract
A native strain of Bacillus paramycoides isolated from the leachate of coal mine overburden rocks was investigated for its potential to produce selenium nanoparticles (SeNPs) by biogenic reduction of selenite, one of the most toxic forms of selenium. 16S rDNA sequencing was used to identify the bacterial strain (SP3). The SeNPs were characterized using spectroscopic (UV-Vis absorbance, dynamic light scattering, X-ray diffraction, and Raman), surface charge measurement (zeta potential), and ultramicroscopic (FESEM, EDX, FETEM) analyses. SP3 exhibited extremely high selenite tolerance (1000 mM) and reduced 10 mM selenite under 72 h to produce spherical monodisperse SeNPs with an average size of 149.1 ± 29 nm. FTIR analyses indicated exopolysaccharides coating the surface of SeNPs, which imparted a charge of -29.9 mV (zeta potential). The XRD and Raman spectra revealed the SeNPs to be amorphous. Furthermore, biochemical assays and microscopic studies suggest that selenite was reduced by membrane reductases. This study reports, for the first time, the reduction of selenite and biosynthesis of SeNPs by B. paramycoides, a recently discovered bacterium. The results suggest that B. paramycoides SP3 could be exploited for eco-friendly removal of selenite from contaminated sites with the concomitant biosynthesis of SeNPs.
Collapse
Affiliation(s)
- Siddhartha Narayan Borah
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Lalit Goswami
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Suparna Sen
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India
| | - Deepa Sachan
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Hemen Sarma
- Department of Botany, N. N. Saikia College, Titabor, 785630, Assam, India
| | - Milka Montes
- Department of Chemistry, The University of Texas of the Permian Basin, Odessa, TX, 79762, USA
| | - Jose R Peralta-Videa
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Kannan Pakshirajan
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| |
Collapse
|
4
|
Breaching Barriers: The Fight for Indigenous Participation in Water Governance. WATER 2020. [DOI: 10.3390/w12082113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Indigenous peoples worldwide face barriers to participation in water governance, which includes planning and permitting of infrastructure that may affect water in their territories. In the United States, the extent to which Indigenous voices are heard—let alone incorporated into decision-making—depends heavily on whether or not Native nations are recognized by the federal government. In the southeastern United States, non-federally recognized Indigenous peoples continue to occupy their homelands along rivers, floodplains, and wetlands. These peoples, and the Tribal governments that represent them, rarely enter environmental decision-making spaces as sovereign nations and experts in their own right. Nevertheless, plans to construct the Atlantic Coast Pipeline prompted non-federally recognized Tribes to demand treatment as Tribal nations during permitting. Actions by the Tribes, which are recognized by the state of North Carolina, expose barriers to participation in environmental governance faced by Indigenous peoples throughout the United States, and particularly daunting challenges faced by state-recognized Tribes. After reviewing the legal and political landscapes that Native nations in the United States must navigate, we present a case study focused on Atlantic Coast Pipeline planning and permitting. We deliberately center Native voices and perspectives, often overlooked in non-Indigenous narratives, to emphasize Indigenous actions and illuminate participatory barriers. Although the Atlantic Coast Pipeline was cancelled in 2020, the case study reveals four enduring barriers to Tribal participation: adherence to minimum standards, power asymmetries, procedural narrowing, and “color-blind” planning. We conclude by highlighting opportunities for federal and state governments, developers, and Indigenous peoples to breach these barriers.
Collapse
|
5
|
Nancharaiah YV, Lens PNL. Selenium biomineralization for biotechnological applications. Trends Biotechnol 2015; 33:323-30. [PMID: 25908504 DOI: 10.1016/j.tibtech.2015.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/18/2022]
Abstract
Selenium (Se) is not only a strategic element in high-tech electronics and an essential trace element in living organisms, but also a potential toxin with low threshold concentrations. Environmental biotechnological applications using bacterial biomineralization have the potential not only to remove selenium from contaminated waters, but also to sequester it in a reusable form. Selenium biomineralization has been observed in phylogenetically diverse microorganisms isolated from pristine and contaminated environments, yet it is one of the most poorly understood biogeochemical processes. Microbial respiration of selenium is unique because the microbial cells are presented with both soluble (SeO(4)(2-) and SeO(3)(2-)) and insoluble (Se(0)) forms of selenium as terminal electron acceptor. Here, we highlight selenium biomineralization and the potential biotechnological uses for it in bioremediation and wastewater treatment.
Collapse
Affiliation(s)
- Yarlagadda V Nancharaiah
- Environmental Engineering and Water Technology Department, UNESCO-IHE Institute for Water Education, PO Box 3015, Delft DA 2601, The Netherlands; Biofouling and Biofilm Processes Section of Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India.
| | - Piet N L Lens
- Environmental Engineering and Water Technology Department, UNESCO-IHE Institute for Water Education, PO Box 3015, Delft DA 2601, The Netherlands; Department of Chemistry and Bioengineering, Tampere University of Technology, PO Box 541, Tampere, Finland.
| |
Collapse
|
6
|
Dennis Lemly A. Damage cost of the Dan River coal ash spill. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 197:55-61. [PMID: 25497306 DOI: 10.1016/j.envpol.2014.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/19/2014] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
The recent coal ash spill on the Dan River in North Carolina, USA has caused several negative effects on the environment and the public. In this analysis, I report a monetized value for these effects after the first 6 months following the spill. The combined cost of ecological damage, recreational impacts, effects on human health and consumptive use, and esthetic value losses totals $295,485,000. Because the environmental impact and associated economic costs of riverine coal ash spills can be long-term, on the order of years or even decades, this 6-month assessment should be viewed as a short-term preview. The total cumulative damage cost from the Dan River coal ash spill could go much higher.
Collapse
|