1
|
Pesce S, Mamy L, Sanchez W, Artigas J, Bérard A, Betoulle S, Chaumot A, Coutellec MA, Crouzet O, Faburé J, Hedde M, Leboulanger C, Margoum C, Martin-Laurent F, Morin S, Mougin C, Munaron D, Nélieu S, Pelosi C, Leenhardt S. The use of copper as plant protection product contributes to environmental contamination and resulting impacts on terrestrial and aquatic biodiversity and ecosystem functions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32145-z. [PMID: 38324154 DOI: 10.1007/s11356-024-32145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Copper-based plant protection products (PPPs) are widely used in both conventional and organic farming, and to a lesser extent for non-agricultural maintenance of gardens, greenspaces, and infrastructures. The use of copper PPPs adds to environmental contamination by this trace element. This paper aims to review the contribution of these PPPs to the contamination of soils and waters by copper in the context of France (which can be extrapolated to most of the European countries), and the resulting impacts on terrestrial and aquatic biodiversity, as well as on ecosystem functions. It was produced in the framework of a collective scientific assessment on the impacts of PPPs on biodiversity and ecosystem services in France. Current science shows that copper, which persists in soils, can partially transfer to adjacent aquatic environments (surface water and sediment) and ultimately to the marine environment. This widespread contamination impacts biodiversity and ecosystem functions, chiefly through its effects on phototrophic and heterotrophic microbial communities, and terrestrial and aquatic invertebrates. Its effects on other biological groups and biotic interactions remain relatively under-documented.
Collapse
Affiliation(s)
| | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Joan Artigas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome Et Environnement (LMGE), 63000, Clermont-Ferrand, France
| | - Annette Bérard
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, 51100, Reims, France
| | | | - Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro-Agrocampus Ouest, IFREMER, Rennes, France
| | - Olivier Crouzet
- OFB, Direction Recherche Et Appui Scientifique, Service Santé-Agri, 78610, Auffargis, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | | | | | - Fabrice Martin-Laurent
- Agroécologie, Institut Agro, INRAE, Université Bourgogne-Franche-Comté, 21110, Dijon, France
| | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Sophie Leenhardt
- INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, 75338, Paris, France
| |
Collapse
|
2
|
Laderriere V, Richard M, Morin S, Le Faucheur S, Fortin C. Temperature and Photoperiod Affect the Sensitivity of Biofilms to Nickel and its Accumulation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1649-1662. [PMID: 35343607 DOI: 10.1002/etc.5335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/25/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Whereas metal impacts on fluvial communities have been extensively investigated, effects of abiotic parameters on community responses to contaminants are poorly documented. Variations in photoperiod and temperature commonly occur over the course of a season and could affect aquatic biofilm communities and their responses to contaminants. Our objective was to characterize the influence of environmental conditions (photoperiod and temperature) on nickel (Ni) bioaccumulation and toxicity using a laboratory-grown biofilm. Environmental parameters were chosen to represent variations that can occur over the summer season. Biofilms were exposed for 7 days to six dissolved Ni treatments (ranging from 6 to 115 µM) at two temperatures (14 and 20 °C) using two photoperiods (16:8 and 12:12-h light:dark cycle). Under these different scenarios, structural (dry weight biomass and chlorophyll-a) and functional biomarkers (photosynthetic yield and Ni content) were analyzed at four sampling dates, allowing us to evaluate Ni sensitivity of biofilms over time. The results highlight the effects of temperature on Ni accumulation and tolerance of biofilms. Indeed, biofilms exposed at 20 °C accumulated 1.6-4.2-fold higher concentrations of Ni and were characterized by a lower median effect concentration value using photosynthetic yield compared with those exposed at 14 °C. In terms of photoperiod, significantly greater rates of Ni accumulation were observed at the highest tested Ni concentration for biofilms exposed to a 12:12-h compared with a 16:8-h light:dark cycle. Our study demonstrates the influence of temperature on biofilm metabolism and illustrates that environmental factors may influence Ni accumulation response and thus Ni responses of phototrophic biofilms. Environ Toxicol Chem 2022;41:1649-1662. © 2022 SETAC.
Collapse
Affiliation(s)
- Vincent Laderriere
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Canada
| | - Maxime Richard
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Canada
| | - Soizic Morin
- Ecosystèmes Aquatiques et Changements Globaux, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Cestas, France
| | | | - Claude Fortin
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Canada
| |
Collapse
|
3
|
Pascual G, Sano D, Sakamaki T, Akiba M, Nishimura O. The water temperature changes the effect of pH on copper toxicity to the green microalgae Raphidocelis subcapitata. CHEMOSPHERE 2022; 291:133110. [PMID: 34848234 DOI: 10.1016/j.chemosphere.2021.133110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Rising temperature enhances the algal growth, which in turn increases the water pH. Ecotoxicity studies have suggested that copper becomes more toxic to microalgae species by increasing the temperature (within 20-30 °C) and pH. In this study, the joined effect of pH and temperature on copper toxicity to the microalgae Raphidocelis subcapitata was investigated using acclimated cells. Algal growth and toxicity tests were conducted using the medium recommended by the Organisation for Economic Co-operation and Development (OECD medium) at pH 6, 7, and 8 units from 15 to 30 °C, spaced by 3 °C. The specific growth rate of R. subcapitata increased by raising the pH and temperature, attributed to the higher membrane permeability and metabolism. The ecotoxicity tests showed that temperature changes the effect of pH on copper toxicity. Copper became less toxic when rising the temperature from 15 to 18 °C and from 6 to 8 pH-unit, suggesting that high pH controls copper bioavailability and toxicity. In contrast, from 21 to 30 °C, the effect of copper was not significantly altered by temperature, but it became more toxic at high pH. Results of this study warn about the higher risk of copper in cold seasons rather than warm conditions.
Collapse
Affiliation(s)
- Gissela Pascual
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba-ku, Aramaki, 6-6-06, Sendai, Miyagi, 980-8579, Japan.
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba-ku, Aramaki, 6-6-06, Sendai, Miyagi, 980-8579, Japan
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba-ku, Aramaki, 6-6-06, Sendai, Miyagi, 980-8579, Japan
| | - Michihiro Akiba
- National Institute of Public Health, 2-3-6 Minami Wako, Saitama, Japan
| | - Osamu Nishimura
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba-ku, Aramaki, 6-6-06, Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
4
|
Loustau E, Leflaive J, Boscus C, Amalric Q, Ferriol J, Oleinikova O, Pokrovsky OS, Girbal-Neuhauser E, Rols JL. The Response of Extracellular Polymeric Substances Production by Phototrophic Biofilms to a Sequential Disturbance Strongly Depends on Environmental Conditions. Front Microbiol 2021; 12:742027. [PMID: 34707592 PMCID: PMC8542934 DOI: 10.3389/fmicb.2021.742027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Phototrophic biofilms are exposed to multiple stressors that can affect them both directly and indirectly. By modifying either the composition of the community or the physiology of the microorganisms, press stressors may indirectly impact the ability of the biofilms to cope with disturbances. Extracellular polymeric substances (EPS) produced by the biofilm are known to play an important role in its resilience to various stresses. The aim of this study was to decipher to what extent slight modifications of environmental conditions could alter the resilience of phototrophic biofilm EPS to a realistic sequential disturbance (4-day copper exposure followed by a 14-day dry period). By using very simplified biofilms with a single algal strain, we focused solely on physiological effects. The biofilms, composed by the non-axenic strains of a green alga (Uronema confervicolum) or a diatom (Nitzschia palea) were grown in artificial channels in six different conditions of light intensity, temperature and phosphorous concentration. EPS quantity (total organic carbon) and quality (ratio protein/polysaccharide, PN/PS) were measured before and at the end of the disturbance, and after a 14-day rewetting period. The diatom biofilm accumulated more biomass at the highest temperature, with lower EPS content and lower PN/PS ratio while green alga biofilm accumulated more biomass at the highest light condition with lower EPS content and lower PN/PS ratio. Temperature, light intensity, and P concentration significantly modified the resistance and/or recovery of EPS quality and quantity, differently for the two biofilms. An increase in light intensity, which had effect neither on the diatom biofilm growth nor on EPS production before disturbance, increased the resistance of EPS quantity and the resilience of EPS quality. These results emphasize the importance of considering the modulation of community resilience ability by environmental conditions, which remains scarce in the literature.
Collapse
Affiliation(s)
- Emilie Loustau
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France.,LBAE, Université de Toulouse, Université Toulouse 3 - Paul Sabatier (UPS), Auch, France
| | - Joséphine Leflaive
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Claire Boscus
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Quentin Amalric
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Jessica Ferriol
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Olga Oleinikova
- GET, Université de Toulouse, CNRS, IRD, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Oleg S Pokrovsky
- GET, Université de Toulouse, CNRS, IRD, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France.,BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
| | | | - Jean-Luc Rols
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
5
|
Vidal T, Santos M, Santos JI, Luís AT, Pereira MJ, Abrantes N, Gonçalves FJM, Pereira JL. Testing the response of benthic diatom assemblages to common riverine contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142534. [PMID: 33035979 DOI: 10.1016/j.scitotenv.2020.142534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Benthic diatoms constitute keystone assemblages in riverine ecosystems, and their structure is used to support regulatory water quality assessment. However, no standard ecotoxicological tests exist using integrated responses of the benthic diatom assemblages. This work aimed to assess whether benthic diatom assemblages are responsive to different riverine contaminants through a previously developed rapid toxicity test, supporting future attempts towards its standardization and integration in both prospective and retrospective Environmental Risk Assessment (ERA) schemes. We selected two benthic diatoms assemblages likely responding similarly to pollution (similar IPS diatom index score), collected from two rivers in Northern-Central Portugal (sites: Palhal and Cabreia). Fresh whole diatom assemblages were exposed for 48 h to five model contaminants (glyphosate, imidacloprid, SDS, CuSO4, and Pb). At the end of the test, changes induced by the exposures in overall yield and in the yield of each diatom genus were assessed. The assemblage collected at Palhal was invariably more responsive and sensitive than that collected at Cabreia, both considering overall and genus-specific yields, regardless of the tested contaminant. Achnanthes, Fragilaria and Navicula were the most responsive genus, regardless of the tested contaminant or assemblage. The distinct response profiles observed for the two assemblages to the same contaminants at the same concentration ranges suggest that using this test method to support prospective ERA is inadequate. However, the method can be an asset supporting retrospective ERA, as the responses seem to be shaped by the interplay of resilience drivers promoted by the local conditions, e.g. adaptive changes in assemblage structure.
Collapse
Affiliation(s)
- Tânia Vidal
- Department of Biology, University of Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| | - Martha Santos
- Department of Biology, University of Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Joana I Santos
- Department of Biology, University of Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Ana T Luís
- Department of Geosciences, University of Aveiro, Portugal; GeoBioTec - Geobiociências, Geotecnologias e Geo-engenharias, University of Aveiro, Portugal
| | - Mário J Pereira
- Department of Biology, University of Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal; Department of Environment and Planning, Portugal
| | - Fernando J M Gonçalves
- Department of Biology, University of Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology, University of Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| |
Collapse
|
6
|
Bonnineau C, Artigas J, Chaumet B, Dabrin A, Faburé J, Ferrari BJD, Lebrun JD, Margoum C, Mazzella N, Miège C, Morin S, Uher E, Babut M, Pesce S. Role of Biofilms in Contaminant Bioaccumulation and Trophic Transfer in Aquatic Ecosystems: Current State of Knowledge and Future Challenges. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:115-153. [PMID: 32166435 DOI: 10.1007/398_2019_39] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In freshwater environments, microbial assemblages attached to submerged substrates play an essential role in ecosystem processes such as primary production, supported by periphyton, or organic matter decomposition, supported by microbial communities attached to leaf litter or sediments. These microbial assemblages, also called biofilms, are not only involved in nutrients fluxes but also in contaminants dynamics. Biofilms can accumulate metals and organic contaminants transported by the water flow and/or adsorbed onto substrates. Furthermore, due to their high metabolic activity and their role in aquatic food webs, microbial biofilms are also likely to influence contaminant fate in aquatic ecosystems. In this review, we provide (1) a critical overview of the analytical methods currently in use for detecting and quantifying metals and organic micropollutants in microbial biofilms attached to benthic substrata (rocks, sediments, leaf litter); (2) a review of the distribution of those contaminants within aquatic biofilms and the role of these benthic microbial communities in contaminant fate; (3) a set of future challenges concerning the role of biofilms in contaminant accumulation and trophic transfers in the aquatic food web. This literature review highlighted that most knowledge on the interaction between biofilm and contaminants is focused on contaminants dynamics in periphyton while technical limitations are still preventing a thorough estimation of contaminants accumulation in biofilms attached to leaf litter or sediments. In addition, microbial biofilms represent an important food resource in freshwater ecosystems, yet their role in dietary contaminant exposure has been neglected for a long time, and the importance of biofilms in trophic transfer of contaminants is still understudied.
Collapse
Affiliation(s)
| | - Joan Artigas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Clermont-Ferrand, France
| | | | | | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Versailles, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fadhlaoui M, Laderriere V, Lavoie I, Fortin C. Influence of Temperature and Nickel on Algal Biofilm Fatty Acid Composition. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1566-1577. [PMID: 32367541 DOI: 10.1002/etc.4741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Freshwater biofilms play an important role in aquatic ecosystems and are widely used to evaluate environmental conditions. Little is known about the effects of temperature and metals on biofilm fatty acid composition. In the present study, we exposed a natural biofilm cultured in mesocosms to a gradient of nickel (Ni) concentrations at 15 and 21 °C for 28 d. Metal bioaccumulation, algal taxonomic composition, and biofilm fatty acid profiles were determined. At both temperatures, bioaccumulated Ni increased with Ni exposure concentration and reached the highest values at 25 µM Ni, followed by a decrease at 55 and 105 µM Ni. In control biofilms, palmitic acid (16:0), palmitoleic acid (16:1n7), oleic acid (18:1n9), linoleic acid (18:2n6), and linolenic acid (18:3n3) were the dominant fatty acids at 15 and 21 °C. This composition suggests a dominance of cyanobacteria and green algae, which was subsequently confirmed by microscopic observations. The increase in temperature resulted in a decrease in the ratio of unsaturated to saturated fatty acids, which is considered to be an adaptive response to temperature variation. Polyunsaturated fatty acids (PUFAs) tended to decrease along the Ni gradient, as opposed to saturated fatty acids which increased with Ni concentrations. Temperature and Ni affected differently the estimated desaturase and elongase activities (product/precursor ratios). The increase in PUFAs at 15 °C was concomitant to an increase in Δ9-desaturase (D9D). The estimated activities of D9D, Δ12-desaturase, and Δ15-desaturase decreased along the Ni gradient and reflected a decline in PUFAs. The elevated estimated elongase activity reflected the observed increase in saturated fatty acids at the highest Ni exposure concentration (105 µM). Our results suggest that fatty acids could be used as an endpoint to evaluate environmental perturbations. Environ Toxicol Chem 2020;39:1566-1577. © 2020 SETAC.
Collapse
Affiliation(s)
- Mariem Fadhlaoui
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Québec, Canada
| | - Vincent Laderriere
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Québec, Canada
| | - Isabelle Lavoie
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Québec, Canada
| | - Claude Fortin
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Québec, Canada
| |
Collapse
|
8
|
Lan WR, Huang XG, Lin LX, Li SX, Liu FJ. Thermal discharge influences the bioaccumulation and bioavailability of metals in oysters: Implications of ocean warming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113821. [PMID: 31884212 DOI: 10.1016/j.envpol.2019.113821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Human-induced temperature changes influence coastal regions, both via thermal pollution and ocean warming, which exerts profound effects on the chemistry of metals and the physiology of organisms. However, it remains unknown whether the increased temperature of discharged water or ocean warming, as a result of climate change, lead to an increase of human health risks associated with the consumption of sea foods. In this study, the influence of temperature on metal accumulation by oysters was studied in individuals collected from a coastal area affected by the thermal water discharge of the Houshi Power Plant, China. The bioaccumulation factor (BAF) and oral bioavailability (OBA) of metals in oysters was determined. Elevated temperatures led to an increase in BAF for Cu, Zn, Hg, and Cd (p < 0.05), but no change was observed for As and Pb (p > 0.05). The OBA for Cd, As, and Pb correlated positively to elevated temperatures (p < 0.05). However, for Cu and Zn, OBA was negatively correlated with increasing temperature (p < 0.05). As, Pb, and Cd in the trophically available metal (defined as a sum of heat-stable proteins, heat-denaturable proteins, and organelles) was significantly elevated at the highest temperature seawater site (site A) compared to the lowest seawater site (site B). Thus, the irregular variation of OBA for each metal may be the result of variations in the subcellular distribution of metals and the protein quality influenced by the increased temperature. Moreover, the increased temperature and increased the hazard quotient values of As and Cd (p < 0.05 for As, n = 6, p < 0.05 for Cd, n = 6), which provided an indication of the potential risks of the consumption of oysters or other seafood to future warming under climate change scenarios.
Collapse
Affiliation(s)
- Wang-Rong Lan
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China
| | - Xu-Guang Huang
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Lu-Xiu Lin
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Shun-Xing Li
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; Key Laboratory of Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen, 361005, China
| | - Feng-Jiao Liu
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| |
Collapse
|
9
|
Temperature-dependent competitive advantages of an allelopathic alga over non-allelopathic alga are altered by pollutants and initial algal abundance levels. Sci Rep 2020; 10:4419. [PMID: 32157147 PMCID: PMC7064544 DOI: 10.1038/s41598-020-61438-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/27/2020] [Indexed: 11/09/2022] Open
Abstract
In the context of climate warming, the dominance of allelopathic algae that cause ecosystem disturbances is an important topic. Although the hypothesis that an increase in temperature will be favorable to the dominance of allelopathic algae has been increasingly supported by many studies, it is still unclear how other factors can affect the influence of temperature. In this study, the effects of copper exposure and initial algal abundance on the competition between Pseudokirchneriella subcapitata (non-allelopathic alga) and Chlorella vulgaris (allelopathic alga) were investigated during temperature changes. The results showed that increased temperatures enhanced the competitive advantage of C. vulgaris only in the absence of copper exposure. Our data confirmed that copper exposure along with increased temperature (20-30 °C) may change the competitive advantage of C. vulgaris from favorable to unfavorable. The initial algal abundance was found to affect competition outcome by controlling copper toxicity. This study suggests that pollutants and initial abundance can alter the effects of increased temperature on the allelopathic interaction. Given the temporal dynamics of algal abundance and the pollutants in natural ecosystems, these findings should be considered in the prediction of temperature influence on an algal community.
Collapse
|
10
|
Loustau E, Ferriol J, Koteiche S, Gerlin L, Leflaive J, Moulin F, Girbal-Neuhauser E, Rols JL. Physiological responses of three mono-species phototrophic biofilms exposed to copper and zinc. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35107-35120. [PMID: 31679142 DOI: 10.1007/s11356-019-06560-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
In freshwater ecosystem, phototrophic biofilms play a crucial role through adsorption and sequestration of organic and inorganic pollutants. However, extracellular polymeric substance (EPS) secretion by phototrophic biofilms exposed to metals is poorly documented. This work evaluated the physiological responses of phototrophic biofilms by exposing three microorganisms (cyanobacterium Phormidium autumnale, diatom Nitzschia palea and green alga Uronema confervicolum) to 20 and 200 μg L-1 of Cu or 60 and 600 μg L-1 of Zn, both individually and in combination. Analysis of metal effects on algal biomass and photosynthetic efficiency showed that metals were toxic at higher concentrations for these two parameters together and that all the strains were more sensitive to Cu than to Zn. U. confervicolum was the most impacted in terms of growth, while P. autumnale was the most impacted in terms of photosynthetic efficiency. In consequence to metal exposure at higher concentrations (Cu200, Zn600 and Cu200Zn600), a higher EPS production was measured in diatom and cyanobacterium biofilms, essentially caused by an overproduction of protein-like polymers. On the other hand, the amount of secreted polysaccharides decreased during metal exposure of the diatom and green alga biofilms. Size exclusion chromatography revealed specific EPS molecular fingerprints in P. autumnale and N. palea biofilms that have secreted different protein-like polymers during their development in the presence of Zn600. These proteins were not detected in the presence of Cu200 despite an increase of proteins in the EPS extracts compared to the control. These results highlight interesting divergent responses between the three mono-species biofilms and suggest that increasing protein production in EPS biofilms may be a fingerprint of natural biofilm against metal pollutants in freshwater rivers.
Collapse
Affiliation(s)
- Emilie Loustau
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- LBAE, Université de Toulouse, UPS, Auch, France
| | - Jessica Ferriol
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Shams Koteiche
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Léo Gerlin
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Frédéric Moulin
- IMFT, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Jean-Luc Rols
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
11
|
He Q, Silliman BR. Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Curr Biol 2019; 29:R1021-R1035. [DOI: 10.1016/j.cub.2019.08.042] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Pesce S, Lambert AS, Morin S, Foulquier A, Coquery M, Dabrin A. Experimental Warming Differentially Influences the Vulnerability of Phototrophic and Heterotrophic Periphytic Communities to Copper Toxicity. Front Microbiol 2018; 9:1424. [PMID: 30013533 PMCID: PMC6036129 DOI: 10.3389/fmicb.2018.01424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
Aquatic ecosystems are generally subjected to multiple perturbations due to simultaneous or successive combinations of various natural and anthropogenic environmental pressures. To better assess and predict the resulting ecological consequences, increasing attention should be given to the accumulation of stresses on freshwater ecosystems and its effects on the vulnerability of aquatic organisms, including microbial communities, which play crucial functional roles. Here we used a microcosm study to assess the influence of an experimental warming on the vulnerability of phototrophic and heterotrophic periphytic communities to acute and chronic copper (Cu) toxicity. Natural periphytic communities were submitted for 4 weeks to three different temperatures (18, 23, and 28°C) in microcosms contaminated (at about 15 μg L-1) or not with Cu. The vulnerability of both phototrophic and heterotrophic microbial communities to subsequent acute Cu stress was then assessed by measuring their levels of sensitivity to Cu from bioassays targeting phototrophic (photosynthetic activity) and heterotrophic (β-glucosidase and leucine aminopeptidase extracellular enzymatic activities) microbial functions. We postulated that both the increase in temperature and the chronic Cu exposure would modify microbial community structure, thus leading to changes in the capacity of phototrophic and heterotrophic communities to tolerate subsequent acute exposure to Cu. Our results demonstrated that the influence of temperature on the vulnerability of phototrophic and heterotrophic microbial communities to Cu toxicity can vary greatly according to function studied. These findings emphasize the importance of considering different functional compartments and different functional descriptors to better assess the vulnerability of periphyton to multiple stresses and predict the risks induced by multiple stressors for ecosystem balance and functioning.
Collapse
Affiliation(s)
- Stéphane Pesce
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | | | - Soizic Morin
- Irstea, UR EABX, Centre de Bordeaux, Gazinet-Cestas, France
| | - Arnaud Foulquier
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France.,UMR CNRS 5553, Laboratoire d'Écologie Alpine, Université Grenoble Alpes, Grenoble, France
| | - Marina Coquery
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Aymeric Dabrin
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| |
Collapse
|
13
|
Ma L, Wang F, Yu Y, Liu J, Wu Y. Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. BIORESOURCE TECHNOLOGY 2018; 248:61-67. [PMID: 28712782 DOI: 10.1016/j.biortech.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
This work studied Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. Periphytic biofilms immobilized in a tubular bioreactor were used to remove Cu from wastewater with different Cu concentrations. Results showed that periphytic biofilms had a high removal efficiency (max. 99%) at a hydraulic retention time (HRT) of 12h under initial Cu concentrations of 2.0 and 10.0mgL-1. Periphyton quickly adapted to Cu stress by regulating the community composition. Species richness, evenness and carbon metabolic diversity of the periphytic community increased when exposed to Cu. Diatoms, green algae, and bacteria (Gammaproteobacteria and Bacteroidia) were the dominant microorganisms and responsible for Cu removal. This study indicates that periphytic biofilms are promising in Cu removal from wastewater due to their strong adaptation capacity to Cu toxicity and also provides valuable information for understanding the relationships between microbial communities and heavy metal stress.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; School of Biology and the Environmental, Nanjing Forest University, 159 Long Pan Road, Nanjing 210037, China
| | - Fengwu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; School of Civil Engineering, East China Jiaotong University, 808 Shuang Gang East Road, Nanchang 330013, China
| | - Yuanchun Yu
- School of Biology and the Environmental, Nanjing Forest University, 159 Long Pan Road, Nanjing 210037, China
| | - Junzhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| |
Collapse
|
14
|
Lambert AS, Dabrin A, Foulquier A, Morin S, Rosy C, Coquery M, Pesce S. Influence of temperature in pollution-induced community tolerance approaches used to assess effects of copper on freshwater phototrophic periphyton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1018-1025. [PMID: 28724220 DOI: 10.1016/j.scitotenv.2017.07.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
By measuring levels of tolerance to toxicants in microbial communities using functional toxicity tests under controlled conditions, pollution-induced community tolerance (PICT) approaches offer an effect-based tool to assess the ecological risk of chemicals in aquatic systems. However, induced tolerance of exposed microbial communities cannot always be attributed solely to the presence of toxicants as various environmental factors, such as temperature, can also be involved. Several PICT studies have been conducted to assess the effects of copper (Cu) on phototrophic periphyton, but little is known about the influence of temperature on the response of these microbial communities to acute and chronic exposure to Cu. Here, we report on a microcosm approach to assess the effects of two contrasting temperatures (18°C and 28°C) on (i) the baseline level of Cu tolerance in non-Cu-exposed phototrophic periphyton (i.e. effect of temperature on tolerance baseline), (ii) Cu tolerance acquisition by phototrophic periphyton in response to a 3-week chronic exposure to Cu at a nominal concentration of 60μgL-1 (i.e. effect of temperature on PICT selection) and (iii) tolerance measured during short-term toxicity tests (i.e. effect of temperature on PICT detection). The aim was to evaluate how temperature conditions during the different phases of the PICT approaches may modify the causal relationship between chronic Cu exposure and measured Cu tolerance levels. Our results evidence the influence of temperature both on the basal capacity of phototrophic periphyton to tolerate subsequent exposure to Cu (i.e. influence on tolerance baseline) and on its capacity to acquire tolerance following chronic exposure to Cu (i.e. influence on PICT selection). Hence temperature must be considered when using PICT to establish causal links between chronic Cu exposure and effects on phototrophic periphyton.
Collapse
Affiliation(s)
- Anne Sophie Lambert
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, BP 32108, 69616 Villeurbanne Cedex, France.
| | - Aymeric Dabrin
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, BP 32108, 69616 Villeurbanne Cedex, France.
| | - Arnaud Foulquier
- Laboratoire d'Écologie Alpine - UMR CNRS 5553, Université Grenoble Alpes, BP 53, 38041 Grenoble Cedex 9, France.
| | - Soizic Morin
- Irstea, UR EABX, 50 avenue de Verdun, 33612 Cestas, France.
| | - Christophe Rosy
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, BP 32108, 69616 Villeurbanne Cedex, France.
| | - Marina Coquery
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, BP 32108, 69616 Villeurbanne Cedex, France.
| | - Stéphane Pesce
- Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 rue de la Doua, BP 32108, 69616 Villeurbanne Cedex, France.
| |
Collapse
|
15
|
Morin S, Lambert AS, Rodriguez EP, Dabrin A, Coquery M, Pesce S. Changes in copper toxicity towards diatom communities with experimental warming. JOURNAL OF HAZARDOUS MATERIALS 2017; 334:223-232. [PMID: 28415000 DOI: 10.1016/j.jhazmat.2017.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Biological communities in aquatic environments most commonly face multiple stress, where natural and anthropogenic stressors often act jointly. Their interactions are most easily assessed using short cycle organisms such as periphytic diatoms. In this experiment, we analyzed the combined effects of copper exposure and warming on diatom successions over 6 weeks. Natural biofilm collected in winter was left to grow in mesocosms exposed or unexposed to realistic Cu concentrations at four different temperatures. Separate and joint impacts of the two stressors were determined through structural and functional endpoints. Both temperature and copper influenced the biological responses; their interaction, when significant, was always antagonistic. Diatom communities gradually changed with rising temperature. Under copper exposure, the dominant Planothidium lanceolatum was superseded by Achnanthidium exiguum, which accounted for about 70% relative abundance in the warmest conditions (18-23°C). Tolerance to copper was derived from dose-response curves based on photosynthesis inhibition. Cu-induced community tolerance was always found, but it decreased with warming and time. Biodiversity loss associated with lower Cu tolerance under combined Cu exposure and increasing temperatures evidences the major influence of cumulative stressors on aquatic health. These results highlight the crucial interplay between environmental stressors, which are expected to intensify with climate change.
Collapse
Affiliation(s)
- Soizic Morin
- Irstea, UR EABX, 50 avenue de Verdun, 33612 Cestas Cedex, France.
| | - Anne Sophie Lambert
- Irstea, UR MALY, 5 rue de la Doua, CS 70077, 69626 Villeurbanne Cedex, France
| | | | - Aymeric Dabrin
- Irstea, UR MALY, 5 rue de la Doua, CS 70077, 69626 Villeurbanne Cedex, France
| | - Marina Coquery
- Irstea, UR MALY, 5 rue de la Doua, CS 70077, 69626 Villeurbanne Cedex, France
| | - Stephane Pesce
- Irstea, UR MALY, 5 rue de la Doua, CS 70077, 69626 Villeurbanne Cedex, France
| |
Collapse
|
16
|
McElroy DJ, Doblin MA, Murphy RJ, Hochuli DF, Coleman RA. A limited legacy effect of copper in marine biofilms. MARINE POLLUTION BULLETIN 2016; 109:117-127. [PMID: 27297593 DOI: 10.1016/j.marpolbul.2016.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/28/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
The effects of confounding by temporal factors remains understudied in pollution ecology. For example, there is little understanding of how disturbance history affects the development of assemblages. To begin addressing this gap in knowledge, marine biofilms were subjected to temporally-variable regimes of copper exposure and depuration. It was expected that the physical and biological structure of the biofilms would vary in response to copper regime. Biofilms were examined by inductively coupled plasma optical emission spectrometry, chlorophyll-a fluorescence and field spectrometry and it was found that (1) concentrations of copper were higher in those biofilms exposed to copper, (2) concentrations of copper remain high in biofilms after the source of copper is removed, and (3) exposure to and depuration from copper might have comparable effects on the photosynthetic microbial assemblages in biofilms. The persistence of copper in biofilms after depuration reinforces the need for consideration of temporal factors in ecology.
Collapse
Affiliation(s)
- David J McElroy
- Coastal & Marine Ecosystems Group, Marine Ecology Laboratories (A11), School of Life & Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| | - Martina A Doblin
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| | - Richard J Murphy
- Australian Centre for Field Robotics, Dept. of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, NSW 2006, Australia.
| | - Dieter F Hochuli
- Integrative Ecology Group, Heydon-Laurence Building (A08), School of Life & Environmental Sciences, The University of Sydney NSW 2006, Australia.
| | - Ross A Coleman
- Coastal & Marine Ecosystems Group, Marine Ecology Laboratories (A11), School of Life & Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|