1
|
Ramya A, Dhevagi P, Poornima R, Avudainayagam S, Watanabe M, Agathokleous E. Effect of ozone stress on crop productivity: A threat to food security. ENVIRONMENTAL RESEARCH 2023; 236:116816. [PMID: 37543123 DOI: 10.1016/j.envres.2023.116816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Tropospheric ozone (O3), the most important phytotoxic air pollutant, can deteriorate crop quality and productivity. Notably, satellite and ground-level observations-based multimodel simulations demonstrate that the present and future predicted O3 exposures could threaten food security. Hence, the present study aims at reviewing the phytotoxicity caused by O3 pollution, which threatens the food security. The present review encompasses three major aspects; wherein the past and prevailing O3 concentrations in various regions were compiled at first, followed by discussing the physiological, biochemical and yield responses of economically important crop species, and considering the potential of O3 protectants to alleviate O3-induced phytotoxicity. Finally, the empirical data reported in the literature were quantitatively analysed to show that O3 causes detrimental effect on physiological traits, photosynthetic pigments, growth and yield attributes. The review on prevailing O3 concentrations over various regions, where economically important crop are grown, and their negative impact would support policy makers to implement air pollution regulations and the scientific community to develop countermeasures against O3 phytotoxicity for maintaining food security.
Collapse
Affiliation(s)
- Ambikapathi Ramya
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India.
| | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - S Avudainayagam
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
2
|
Singh AK, Mitra S, Kar G. Assessing the impact of current tropospheric ozone on yield loss and antioxidant defense of six cultivars of rice using ethylenediurea in the lower Gangetic Plains of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40146-40156. [PMID: 35119638 DOI: 10.1007/s11356-022-18938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Climate change influences the current tropospheric ozone (O3) budget due to industrialization and urbanization processes. In recent years, the impact of elevated O3 on crop development and yield loss has emerged as one of the most important environmental issues, particularly in rural and suburban areas of the lower Indo-Gangetic Plains of India. The impact of the current tropospheric ozone (O3) on the crop yield, photosynthetic yield, and enzymatic antioxidants of six rice (Oryza sativa L.) cultivars (IR 36, MTU 1010, GB 3, Khitish, IET 4786, and Ganga Kaveri) was investigated with and without the application of ethylenediurea (EDU). The results revealed that O3 stress significantly affected crop yield, photosynthetic yield, and antioxidant enzymes. The findings showed that O3 toxicity induces oxidative stress biomarkers, i.e., malondialdehyde (MDA) content, and was manifested by increasing the enzymatic antioxidants, i.e., superoxidase dismutase (SOD) and catalase (CAT) in four rice cultivars (IR 36, GB 3, IET 4786, and Ganga Kaveri). At the same time, the results also illustrated that the rice cultivars MTU 1010 and Khitish are more tolerant to O3 stress as they had less oxidative damage, greater photosynthetic SPAD value, SOD and CAT activities, and lower MDA activity. The results also elucidated that the application of EDU decreased O3 toxicity in sensitive cultivars of rice by increasing antioxidant defense systems. The current O3 level is likely to show an additional increase in the near future, and the use of tolerant genotypes of rice may reduce the negative impacts of O3 on rice production.
Collapse
Affiliation(s)
- Arvind Kumar Singh
- Crop Production Division, ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700121, West Bengal, India.
| | - Sabyasachi Mitra
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700121, West Bengal, India
| | - Gouranga Kar
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700121, West Bengal, India
| |
Collapse
|
3
|
Liu L, Zhao X, Huang Y, Ke L, Wang R, Qi G. Protecting tobacco plants from O 3 injury by Bacillus velezensis with production of acetoin. PHYSIOLOGIA PLANTARUM 2020; 170:158-171. [PMID: 32386333 DOI: 10.1111/ppl.13120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPRs) confer benefits to crops by producing volatile organic compounds (VOCs) to trigger induced systemic tolerance (IST). Here we show that Bacillus velezensis GJ11, a kind of PGPRs, produce VOCs such as 2,3-butanediol and acetoin to trigger IST and cause stomatal closure against O3 injury in tobacco plants. Compared to 2,3-butanediol, acetoin was more effective on triggering IST against O3 injury. The bdh-knockout strain GJ11Δbdh with a blocked metabolic pathway from acetoin to 2,3-butanediol produced more acetoin triggering stronger IST against O3 injury than GJ11. Both acetoin and GJ11Δbdh effectively enhance the antioxidant enzymes activity (e.g. superoxide dismutase and catalases) that is favorable for scavenging the reactive oxygen species like H2 O2 in leaves after exposure to O3 . Consequently, less H2 O2 accumulation was observed, and reasonably less chlorophylls and proteins were damaged by H2 O2 in the tobacco leaves treated with acetoin or GJ11Δbdh. The field experiment also showed that both acetoin and GJ11Δbdh could protect tobacco plants from O3 injury after application by root-drench. This study provides new insights into the role of rhizobacterial B. velezensis and its volatile component of acetoin in triggering defense responses against stresses such as O3 in plants.
Collapse
Affiliation(s)
- Lidong Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Technology Center, Enshi State Tobacco Cooperation, Hubei Province Tobacco CO., Ltd., Enshi, China
| | - Luxin Ke
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rui Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Technology Center, Enshi State Tobacco Cooperation, Hubei Province Tobacco CO., Ltd., Enshi, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Agathokleous E, Kitao M, Calabrese EJ. Hormetic dose responses induced by lanthanum in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:332-341. [PMID: 30347380 DOI: 10.1016/j.envpol.2018.10.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Rare earth elements (REEs) have recently received particular attention due to their accumulation in the environment. Such heightened recognition prompted our evaluation of the possible occurrence of La-induced plant hormesis in the peer-reviewed literature. This study revealed 703 La-induced hormetic concentration/dose responses in plants, which were quantitatively and qualitatively assessed. The maximum (MAX) biological response to low La concentrations/doses is commonly below 150% of control response, with a geometric mean of 142% at 56 μM (geometric mean). The geometric mean concentration of the no-observed-adverse-effect-level (NOAEL) was 249 μM. The MAX:NOAEL distance was commonly below 5-fold, with a geometric mean of 4.5-fold. Hormetic concentration/dose responses varied as per the growth substrate pH, number of concentrations/doses below the NOAEL, and time window. These results provide a unique insight into the effects of low doses of La on plant growth, as well as offer means for improving experimental designs to assess low dose effects.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
5
|
Feng Z, Jiang L, Calatayud V, Dai L, Paoletti E. Intraspecific variation in sensitivity of winter wheat (Triticum aestivum L.) to ambient ozone in northern China as assessed by ethylenediurea (EDU). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29208-29218. [PMID: 30117025 DOI: 10.1007/s11356-018-2782-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Wheat is a major staple food and its sensitivity to the gas pollutant ozone (O3) depends on the cultivar. However, few chamber-less studies assessed current ambient O3 effects on a large number of wheat cultivars. In this study, we used ethylenediurea (EDU), an O3 protectant whose protection mechanisms are still unclear, to test photosynthetic pigments, gas exchange, antioxidants, and yield of 15 cultivars exposed to 17.4 ppm h AOT40 (accumulated O3 over an hourly concentration threshold of 40 ppb) over the growing season at Beijing suburb, China. EDU significantly increased light-saturated photosynthesis rate (Asat), photosynthetic pigments (i.e., chlorophyll and carotenoid), and total antioxidant capacity, while reduced malondialdehyde and reduced ascorbate contents. In comparison with EDU-treated plants (control), plants treated with water (no protection from ambient O3) significantly decreased yield, weight of 1000 grains, and harvest index by 20.3%, 15.1%, and 14.2%, respectively, across all cultivars. There was a significant interaction between EDU and cultivars in all tested variables with exception of Asat, chlorophyll, and carotenoid. The cultivar-specific sensitivity to O3 was ranked from highly sensitive (> 25% change) to less sensitive (< 10% change) by comparing the difference of the average grain yield of plants applied with and without EDU. Neither stomatal conductance nor antioxidant capacity contributed to the different response of the cultivars to EDU, suggesting that another mechanism contributes to the large variation in response to O3 among cultivars. Generally, the results indicate that present O3 concentration is threatening wheat production in Northern China, highlighting the urgent need for policy-making actions to protect this critical staple food.
Collapse
Affiliation(s)
- Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, Italy.
| | - Lijun Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, 46980, Paterna, Valencia, Spain
| | - Lulu Dai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Agathokleous E, Paoletti E, Manning WJ, Kitao M, Saitanis CJ, Koike T. High doses of ethylenediurea (EDU) as soil drenches did not increase leaf N content or cause phytotoxicity in willow grown in fertile soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:574-584. [PMID: 28923722 DOI: 10.1016/j.ecoenv.2017.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/23/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Ground-level ozone (O3) levels are nowadays elevated in wide regions of the Earth, causing significant effects on plants that finally lead to suppressed productivity and yield losses. Ethylenediurea (EDU) is a chemical compound which is widely used in research projects as phytoprotectant against O3 injury. The EDU mode of action remains still unclear, while there are indications that EDU may contribute to plants with nitrogen (N) when the soil is poor in N and the plants have relatively small leaf area. To reveal whether the N content of EDU acts as a fertilizer to plants when the soil is not poor in N and the plants have relatively large total plant leaf area, willow plants (Salix sachalinensis Fr. Schm) were exposed to low ambient O3 levels and treated ten times (9-day interval) with 200mL soil drench containing 0, 800 or 1600mg EDU L-1. Fertilizer was added to a nutrient-poor soil, and the plants had an average plant leaf area of 9.1m2 at the beginning of EDU treatments. Indications for EDU-induced hormesis in maximum electron transport rate (Jmax) and ratio of intercellular to ambient CO2 concentration (Ci:Ca) were observed at the end of the experiment. No other EDU-induced effects on leaf greenness and N content, maximum quantum yield of photosystem II (Fv/Fm), gas exchange, growth and matter production suggest that EDU did not act as N fertilizer and did not cause toxicity under these experimental conditions.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Silviculture & Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan; Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan.
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - William J Manning
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan.
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Takayoshi Koike
- Silviculture & Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
7
|
Agathokleous E. Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O 3 phytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:530-537. [PMID: 28478379 DOI: 10.1016/j.ecoenv.2017.04.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 05/22/2023]
Abstract
Ethylenediurea (EDU) has been widely studied for its effectiveness to protect plants against injuries caused by surface ozone (O3), however its mode of action remains unclear. So far, there is not a unified methodological approach and thus the methodology is quite arbitrary, thereby making it more difficult to generalize findings and understand the EDU mode of action. This review examines the question of whether potential N addition to plants by EDU is a fundamental underlying mechanism in protecting against O3 phytotoxicity. Yet, this review proposes an evidence-based hypothesis that EDU may protect plants against O3 deleterious effects upon generation of EDU-induced hormesis, i.e. by activating plant defense at low doses. This hypothesis challenges the future research directions. Revealing a hormesis-based EDU mode of action in protecting plants against O3 toxicity would have further implications to ecotoxicology and environmental safety. Furthermore, this review discusses the need for further studies on plant metabolism under EDU treatment through relevant experimental approach, and attempts to set the bases for approaching a unified methodology that will contribute in revealing the EDU mode of action. In this framework, focus is given to the main EDU application methods.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), National Research and Development Agency, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
8
|
Tiwari S. Ethylenediurea as a potential tool in evaluating ozone phytotoxicity: a review study on physiological, biochemical and morphological responses of plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14019-14039. [PMID: 28409426 DOI: 10.1007/s11356-017-8859-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/17/2017] [Indexed: 05/22/2023]
Abstract
Present-day climate change scenario has intensified the problem of continuously increasing ground-level ozone (O3), which is responsible for causing deleterious effects on growth and development of plants. Studies involving use of ethylenediurea (EDU), a chemical with antiozonant properties, have given some promising results in evaluating O3 injury in plants. The use of EDU is especially advantageous in developing countries which face a more severe problem of ground-level O3, and technical O3-induced yield loss assessment techniques like open-top chambers cannot be used. Recent studies have detected a hormetic response of EDU on plants; i.e. treatment with higher EDU concentrations may or may not show any adverse effect on plants depending upon the experimental conditions. Although the mode of action of EDU is still debated, it is confirmed that EDU remains confined in the apoplastic regions. Certain studies indicate that EDU significantly affects the electron transport chain and has positive impact on the antioxidant defence machinery of the plants. However, the mechanism of protecting the yield of plants without significantly affecting photosynthesis is still questionable. This review discusses in details the probable mode of action of EDU on the basis of available data along with the impact of EDU on physiological, biochemical, growth and yield response of plants under O3 stress. Data regarding the effect of EDU on plant 'omics' is highly insufficient and can form an important aspect of future EDU research.
Collapse
Affiliation(s)
- Supriya Tiwari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
9
|
Xin Y, Yuan X, Shang B, Manning WJ, Yang A, Wang Y, Feng Z. Moderate drought did not affect the effectiveness of ethylenediurea (EDU) in protecting Populus cathayana from ambient ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1536-1544. [PMID: 27424114 DOI: 10.1016/j.scitotenv.2016.06.247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
A field study was conducted to evaluate the effects of ambient ozone (O3) on an O3-sensitive poplar (Populus cathayana) by using ethylenediurea (EDU) as a chemical protectant under two soil water treatments (well-watered (WW) and moderate drought (MD, 50-60% of WW in volumetric soil water content). EDU was applied as foliar spray at 0, 300, 450, and 600ppm. Photosynthetic parameters, pigment contents, leaf nitrogen, antioxidant capacity, growth, and biomass were measured. The 8h (9:00-17:00) average ambient O3 concentration was 71.7ppb, and AOT40 was 29.2ppmh during the experimental period (9 June to 21 September), which was high enough to cause plant injury. MD had significantly negative effects on P. cathayana, as indicated by reduced photosynthesis, growth, and biomass, and higher MDA contents. On the other hand, EDU significantly increased photosynthesis rate, chlorophyll a fluorescence, Vcmax and Jmax, photosynthetic pigments, total antioxidant capacity, tree growth and biomass accumulation, and reduced lipid peroxidation, but there was no significant interaction between EDU and drought for most parameters, indicating that EDU can efficiently protect Populus cathayana against ambient O3 and the protection was not affected by soil water contents when soil water reached moderate drought level. Among all doses, EDU at 450ppm provided maximum protection. Comparison of EDU-treated and non-treated P. cathayana could be used as a biomarker system in risk assessment of the effects of ambient O3 on forest health.
Collapse
Affiliation(s)
- Yue Xin
- State key laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture P. R. China, Beijing University of Agriculture, Beijing 102206, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Xiangyang Yuan
- State key laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Bo Shang
- State key laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - William J Manning
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003-9320, USA
| | - Aizhen Yang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture P. R. China, Beijing University of Agriculture, Beijing 102206, China
| | - Younian Wang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture P. R. China, Beijing University of Agriculture, Beijing 102206, China.
| | - Zhaozhong Feng
- State key laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture P. R. China, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
10
|
Agathokleous E, Paoletti E, Saitanis CJ, Manning WJ, Shi C, Koike T. High doses of ethylene diurea (EDU) are not toxic to willow and act as nitrogen fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:841-850. [PMID: 27259037 DOI: 10.1016/j.scitotenv.2016.05.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
UNLABELLED Ethylene diurea (EDU) is synthetic chemical which protects plants against damage caused by ground level O3 and is used experimentally as a biomonitoring tool at doses usually ranging from 200 to 400mgL(-1) a.i. Although several studies have investigated the protective action of EDU, this mechanism remains unclear. Important uncertainties in EDU action are whether EDU acts as a source of nitrogen (N) to plants and whether high doses are phytotoxic. In order to answer these questions, we conducted an open-field experiment where potted willow (Salix sachalinensis Fr. Schm) plants were exposed to ambient O3 conditions and treated with 0, 800 or 1600mgL(-1) EDU as a soil drench, every nine days, for about 2.5months. We examined approximately 50 response variables. Based on N content in different plant organs, we found that (a) all EDU was transferred to the leaves and (b) high doses of EDU increased the leaf N content. However, EDU did not affect the C content and distribution within the plant body. Still, even at the highest dose, EDU was not toxic to this fast-growing species (however such a high dose should not be applied in uncontrolled environments); and there was no EDU persistence in the soil, as indicated by soil N content. Notably, our soil was free from organic matter and N-poor. KEY MESSAGE EDU per se does not cause toxicity to willow plants when applied as drench to a soil with no organic matter, rather, high EDU doses may act as nitrogen fertilizer in a nitrogen-poor soil.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Silviculture & Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - William J Manning
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Cong Shi
- Silviculture & Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Takayoshi Koike
- Silviculture & Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|