1
|
Golbaz S, Zamanzadeh M, Yaghmaeian K, Nabizadeh R, Rastkari N, Esfahani H. Occurrence and removal of psychiatric pharmaceuticals in the Tehran South Municipal Wastewater Treatment Plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27041-27055. [PMID: 36374381 PMCID: PMC9660169 DOI: 10.1007/s11356-022-23667-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Psychiatric drugs released by humans in wastewater have received more attention because of their potential risks for aquatic organisms. In this study, the occurrence of the two most common groups of psychiatric drugs (sedatives-hypnotics-anxiolytics and antidepressants) were evaluated in the Tehran South Municipal Wastewater Treatment Plant. All the target sedatives-hypnotics-anxiolytics (alprazolam, phenobarbital, and thioridazine) and antidepressants (fluoxetine, citalopram, sertraline, and venlafaxine) were observed in influent and secondary clarification (SC) effluent. Thioridazine (164.25 ± 218.74 ng/L) and citalopram (672.53 ± 938.56 ng/L) had the highest mean concentrations in the influent, while alprazolam (5.09 ± 2.33 ng/L) and citalopram (776.97 ± 1088.01 ng/L) had the highest concentrations in the SC effluent. The higher concentrations of the psychiatric drugs, except thioridazine, were detected in the SC effluent compared to the concentrations in the influent. The increased drugs concentrations, with negative removal efficiencies, were more distinctive in the cold season samples. Psychiatric drugs processed in the chlorination unit followed a completely different pattern compared to the drugs in the biological treatment unit. All the drugs' concentrations, except thioridazine, decreased in the chlorination unit, ranging between 27 ± 14% for alprazolam and 75 ± 10% for citalopram. However, the mean concentrations of the detected drugs were as follows: sertraline (11.96 ± 11.62 ng/L) and venlafaxine (184.94 ± 219.74 ng/L) which could cause environmental and ecological concerns.
Collapse
Affiliation(s)
- Somayeh Golbaz
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Solid Waste Management (CSWM), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nushin Rastkari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Esfahani
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
2
|
Simon Á, Tozar T, Smarandache A, Boni M, Stoicu A, Dowson A, van Loon JJWA, Pascu ML. Stability Studies of UV Laser Irradiated Promethazine and Thioridazine after Exposure to Hypergravity Conditions. Molecules 2022; 27:1728. [PMID: 35268828 PMCID: PMC8911845 DOI: 10.3390/molecules27051728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmaceuticals carried into space are subjected to different gravitational conditions. Hypergravity is encountered in the first stage, during spacecraft launching. The stability of medicines represents a critical element of space missions, especially long-duration ones. Therefore, stability studies should be envisaged before the implementation of drugs for future deep space travel, where the available pharmaceuticals would be limited and restocking from Earth would be impossible. Multipurpose drugs should be proposed for this reason, such as phenothiazine derivatives that can be transformed by optical methods into antimicrobial agents. Within this preliminary study, promethazine and thioridazine aqueous solutions were exposed to UV laser radiation that modified their structures and generated a mixture of photoproducts efficient against particular bacteria. Subsequently, they were subjected to 20 g in the European Space Agency's Large Diameter Centrifuge. The aim was to evaluate the impact of hypergravity on the physico-chemical and spectral properties of unirradiated and laser-irradiated medicine solutions through pH assay, UV-Vis/FTIR absorption spectroscopy, and thin-layer chromatography. The results revealed no substantial alterations in centrifuged samples when compared to uncentrifuged ones. Due to their stability after high-g episodes, laser-exposed phenothiazines could be considered for future space missions.
Collapse
Affiliation(s)
- Ágota Simon
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), Laser Department, Atomiștilor 409, 077125 Măgurele, Ilfov, Romania; (T.T.); (A.S.); (M.B.); (A.S.)
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Măgurele, Ilfov, Romania
| | - Tatiana Tozar
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), Laser Department, Atomiștilor 409, 077125 Măgurele, Ilfov, Romania; (T.T.); (A.S.); (M.B.); (A.S.)
| | - Adriana Smarandache
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), Laser Department, Atomiștilor 409, 077125 Măgurele, Ilfov, Romania; (T.T.); (A.S.); (M.B.); (A.S.)
| | - Mihai Boni
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), Laser Department, Atomiștilor 409, 077125 Măgurele, Ilfov, Romania; (T.T.); (A.S.); (M.B.); (A.S.)
| | - Alexandru Stoicu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), Laser Department, Atomiștilor 409, 077125 Măgurele, Ilfov, Romania; (T.T.); (A.S.); (M.B.); (A.S.)
| | - Alan Dowson
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands; (A.D.); (J.J.W.A.v.L.)
| | - Jack J. W. A. van Loon
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands; (A.D.); (J.J.W.A.v.L.)
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Mihail Lucian Pascu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), Laser Department, Atomiștilor 409, 077125 Măgurele, Ilfov, Romania; (T.T.); (A.S.); (M.B.); (A.S.)
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Măgurele, Ilfov, Romania
| |
Collapse
|
3
|
Maculewicz J, Kowalska D, Świacka K, Toński M, Stepnowski P, Białk-Bielińska A, Dołżonek J. Transformation products of pharmaceuticals in the environment: Their fate, (eco)toxicity and bioaccumulation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149916. [PMID: 34525754 DOI: 10.1016/j.scitotenv.2021.149916] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/07/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, a huge scientific attention is being paid to the chemicals of emerging concern, which may pose a significant risk to the human and whole ecosystems. Among them, residues of pharmaceuticals are a widely investigated group of chemicals. In recent years it has been repeatedly demonstrated that pharmaceuticals are present in the environment and that some of them can be toxic to organisms as well as accumulate in their tissues. However, even though the knowledge of the presence, fate and possible threats posed by the parent forms of pharmaceuticals is quite extensive, their transformation products (TPs) have been disregarded for long time. Since last few years, this aspect has gained more scientific attention and recently published papers proved their common presence in the environment. Also the interest in terms of their toxicity, bioconcentration and stability in the environment has increased. Therefore, the aim of our paper was to revise and assess the current state of knowledge on the fate and effects resulting from the presence of the pharmaceuticals' transformation drugs in the environment. This review discusses the metabolites of compounds belonging to six major pharmaceutical groups: SSRIs, anticancer drugs, antibiotics, antihistamines, NSAIDs and opioids, additionally discussing other individual compounds for which literature data exist. The data presented in this paper prove that some TPs may be as harmful as their native forms, however for many groups of drugs this data is still insufficient to assess the risk posed by their presence in the environment.
Collapse
Affiliation(s)
- Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Michał Toński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
4
|
Tozar T, Boni M, Andrei IR, Pascu ML, Staicu A. High performance thin layer chromatography-densitometry method based on picosecond laser-induced fluorescence for the analysis of thioridazine and its photoproducts. J Chromatogr A 2021; 1655:462488. [PMID: 34474191 DOI: 10.1016/j.chroma.2021.462488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
A densitometry method based on steady-state and time-resolved fluorescence assessments for thioridazine and its photoproducts applied on HPTLC plates has been developed. The excitation source was a picosecond diode laser emitting at 375 nm. This method was used for the analysis of the photoproducts resulted from thioridazine irradiation with 266 nm nanosecond-pulsed laser. The validation of the developed method was performed for thioridazine in terms of linearity, precision, limits of detection and quantification. Furthermore, analysis of the photoproducts of irradiated thioridazine was performed by steady-state and time-resolved fluorescence. The fluorescence spectra and fluorescence lifetime of each photoproduct were obtained and the horizontal chromatograms of fluorescence maxima were generated.
Collapse
Affiliation(s)
- Tatiana Tozar
- National Institute for Laser, Plasma, and Radiation Physics, Lasers Department, 409 Atomistilor, 077125 Magurele, Ilfov, Romania
| | - Mihai Boni
- National Institute for Laser, Plasma, and Radiation Physics, Lasers Department, 409 Atomistilor, 077125 Magurele, Ilfov, Romania
| | - Ionut R Andrei
- National Institute for Laser, Plasma, and Radiation Physics, Lasers Department, 409 Atomistilor, 077125 Magurele, Ilfov, Romania
| | - Mihail L Pascu
- National Institute for Laser, Plasma, and Radiation Physics, Lasers Department, 409 Atomistilor, 077125 Magurele, Ilfov, Romania
| | - Angela Staicu
- National Institute for Laser, Plasma, and Radiation Physics, Lasers Department, 409 Atomistilor, 077125 Magurele, Ilfov, Romania.
| |
Collapse
|
5
|
Sanabria P, Scunderlick D, Wilde ML, Lüdtke DS, Sirtori C. Solar photo-Fenton treatment of the anti-cancer drug anastrozole in different aqueous matrices at near-neutral pH: Transformation products identification, pathways proposal, and in silico (Q)SAR risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142300. [PMID: 33254902 DOI: 10.1016/j.scitotenv.2020.142300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
Anastrozole (ANZ) is a breast cancer drug that was introduced onto the pharmaceutical market in the 1990s and is still one of the most widely consumed cytotoxic compounds. Due to the persistence of the drug, its continued presence after passing through wastewater treatment plants can lead to harm to aquatic environments. The present study investigates use of the solar photo-Fenton (SPF) process applied for ANZ degradation, considering the fate of ANZ and its transformation products (TPs). The SPF process was performed using different concentrations of ferrous iron (Fe2+) and H2O2 in solutions produced with deionized water (DW) and hospital wastewater (HWW), at pH close to neutrality. When solar irradiation in the SPF process was carried out the best ANZ removal rates were found under the following conditions: (i) for the DW matrix, [ANZ]0 = 50 μg L-1, [Fe2+] = 5 mg L-1, and [H2O2]0 = 25 mg L-1, achieving 95% primary ANZ elimination; (ii) for the HWW matrix, [ANZ]0 = 50 μg L-1, [Fe2+] = 10 mg L-1(multiple additions), and [H2O2]0 = 25 mg L-1, achieving 51% primary ANZ elimination. LC-QTOF MS analysis allowed to identify tentatively five transformation products (TPs) formed during the ANZ degradation process in DW, and two TPs when HWW was used. The main proposed degradation pathways were demethylation and hydroxylation. Different in silico models free available (quantitative) structure-activity relationship ((Q)SAR) software were used to predict the ecotoxicities and environmental fates of ANZ and the TPs. The in silico (Q)SAR predictions indicated that ANZ and the TPs were non-biodegradable compounds. In silico (Q)SAR predictions for mutagenicity and carcinogenicity end-points identified some TPs that require further study. Attention is drawn to the formation of several TPs for which statistical and rule-based positive alerts for mutagenic activities were found, requiring further confirmatory in vitro validation tests.
Collapse
Affiliation(s)
- Pedro Sanabria
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Davi Scunderlick
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Marcelo L Wilde
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Diogo S Lüdtke
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Carla Sirtori
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Della-Flora A, Wilde ML, Pinto IDF, Lima ÉC, Sirtori C. Degradation of the anticancer drug flutamide by solar photo-Fenton treatment at near-neutral pH: Identification of transformation products and in silico (Q)SAR risk assessment. ENVIRONMENTAL RESEARCH 2020; 183:109223. [PMID: 32045729 DOI: 10.1016/j.envres.2020.109223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Flutamide (FLUT) is a non-steroidal drug mainly used in the treatment of prostate cancer and has been detected in the aquatic environment at ng L-1 levels. The environmental fate and effects of FLUT have not yet been studied. Conventional treatment technologies fail to completely remove pharmaceuticals, so the solar photo-Fenton process (SPF) has been proposed as an alternative. In this study, the degradation of FLUT, at two different initial concentrations in ultra-pure water, was carried out by SPF. The initial SPF conditions were pH0 5, [Fe2+]0 = 5 mg L-1, and [H2O2]0 = 50 mg L-1. Preliminary elimination rates of 53.4% and 73.4%. The kinetics of FLUT degradation could be fitted by a pseudo-first order model and the kobs were 6.57 × 10-3 and 9.13 × 10-3 min-1 t30W and the half-life times were 95.62 and 73.10 min t30W were achieved for [FLUT]0 of 5 mg L-1 and 500 μg L-1, respectively. Analysis using LC-QTOF MS identified thirteen transformation products (TPs) during the FLUT degradation process. The main degradation pathways proposed were hydroxylation, hydrogen abstraction, demethylation, NO2 elimination, cleavage, and aromatic ring opening. Different in silico (quantitative) structure-activity relationship ((Q)SAR) freeware models were used to predict the toxicities and environmental fates of FLUT and the TPs. The in silico predictions indicated that these substances were not biodegradable, while some TPs were classified near the threshold point to be considered as PBT compounds. The in silico (Q)SAR predictions gave positive alerts concerning the mutagenicity and carcinogenicity endpoints. Additionally, the (Q)SAR toolbox software provided structural alerts corresponding to the positive alerts obtained with the different mutagenicity and carcinogenicity models, supporting the positive alerts with more proactive information.
Collapse
Affiliation(s)
- Alexandre Della-Flora
- Instituto de Química, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Marcelo L Wilde
- Instituto de Química, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Igor D F Pinto
- Instituto de Química, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Éder C Lima
- Instituto de Química, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Carla Sirtori
- Instituto de Química, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Hensen B, Olsson O, Kümmerer K. The role of irradiation source setups and indirect phototransformation: Kinetic aspects and the formation of transformation products of weakly sunlight-absorbing pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133808. [PMID: 31426002 DOI: 10.1016/j.scitotenv.2019.133808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
In this study, emission spectra of three different commonly used xenon irradiation sources were analyzed and compared for the first time to ascertain the most suitable setup to simulate natural solar radiation. In order to demonstrate setup differences, absolute photon fluxes of irradiation sources were received by actinometry. Verification was done by measuring quantum yields of the model compounds Penconazole, Terbutryn, and Mecoprop in every setup. Differences regarding kinetic aspects and the formation of transformation products (TPs) was evaluated by analyzing direct phototransformation and additionally photolysis in presence of Nitrate as a photosensitizer in one irradiation setup (optical bench). Results showed that a precise setup characterization is needed to estimate whether irradiation sources are suitable to simulate terrestrial sunlight. This was found to be especially important for weakly sunlight-absorbing substances. In comparison with direct photolysis, indirect photolysis led to an enhancement of degradation rate constants for all substances and in case of Mecoprop to different types of TPs that were formed during irradiation. This study underlined that there are big knowledge gaps regarding irradiation sources setups and conditions. It is therefore absolutely necessary to consider those factors while simulating substance degradation and the TP formation under environmental conditions.
Collapse
Affiliation(s)
- B Hensen
- Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - O Olsson
- Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - K Kümmerer
- Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| |
Collapse
|
8
|
Osawa RA, Carvalho AP, Monteiro OC, Oliveira MC, Florêncio MH. Degradation of duloxetine: Identification of transformation products by UHPLC-ESI(+)-HRMS/MS, in silico toxicity and wastewater analysis. J Environ Sci (China) 2019; 82:113-123. [PMID: 31133256 DOI: 10.1016/j.jes.2019.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Duloxetine (DUL), an antidepressant drug, has been detected in surface water and wastewater effluents, however, there is little information on the formation of its transformation products (TPs). In this work, hydrolysis, photodegradation (UV irradiation) and chlorination experiments were performed on spiked distillated water, under controlled experimental conditions to simulate abiotic processes that can occur in the environment and wastewater treatment plants (WWTPs). Eleven TPs, nine from reaction with UV light and two from chlorine contact, were formed and detected by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry, and nine of them had their chemical structures elucidated upon analyses of their fragmentation patterns in MS/MS spectra. The formation and degradation of the TPs were observed. The parent compound was completely degraded after 30 min in photodegradation and after 24 hr in chlorination. Almost all TPs were completely degraded in the experiments. The ecotoxicity and mutagenicity of the TPs were predicted based on several in silico models and it was found that a few of these products presented more ecotoxicity than DUL itself and six TPs showed positive mutagenicity. Finally, wastewater samples were analyzed and DUL and one TP, possibly formed by chlorination process, were detected in the effluent, which showed that WWTP not only did not remove DUL, but also formed a TP.
Collapse
Affiliation(s)
- Rodrigo A Osawa
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Ana P Carvalho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Olinda C Monteiro
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - M Helena Florêncio
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
9
|
Osawa RA, Carvalho AP, Monteiro OC, Oliveira MC, Florêncio MH. Transformation products of citalopram: Identification, wastewater analysis and in silico toxicological assessment. CHEMOSPHERE 2019; 217:858-868. [PMID: 30458421 DOI: 10.1016/j.chemosphere.2018.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The objective of this study was to identify transformation products (TPs) of citalopram (CIT), an antidepressant drug, in laboratory experiments. Moreover, toxicity predictions and analyzes in wastewater samples were performed. For the formation of TPs, raw water was used for the processes of hydrolysis; photodegradation under ultraviolet (UV) irradiation and chlorination. The toxicities were predicted by computational toxicity assessment. The TPs were identified by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in broadband collision induced dissociation (bbCID) acquisition mode and product ion scan mode (MS/MS). The probable structures of the TPs under study were established based on accurate mass, fragmentations observed in the MS spectra and prediction tools software. The experiments resulted in seventeen possible identified TPs and their stability and formation was monitored over time in the experiments. Two of these TPs were identified in wastewater samples It was also observed that most of TPs formed were either less toxic then CIT or had a similar toxicity.
Collapse
Affiliation(s)
- Rodrigo A Osawa
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; CAPES Foundation, Ministry of Education of Brazil, 70040-020, Brasília-DF, Brazil.
| | - Ana P Carvalho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Olinda C Monteiro
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - M Helena Florêncio
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
10
|
Wang M, Li J, Shi H, Miao D, Yang Y, Qian L, Gao S. Photolysis of atorvastatin in aquatic environment: Influencing factors, products, and pathways. CHEMOSPHERE 2018; 212:467-475. [PMID: 30153618 DOI: 10.1016/j.chemosphere.2018.08.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Atorvastatin (ATV), a second generation cholesterol-lowering drug, is detected frequently in natural water because of its extensive use and incomplete removal from wastewater. In this study, the photochemical behavior of ATV under simulated solar irradiation was systematically investigated in order to assess the potential of photolysis as its transformation pathway in aquatic environment. The quantum yield of ATV direct photolysis was determined to be 0.0041. Among various water components investigated, including pH, Suwannee River Fulvic Acid (SRFA), Fe3+, HCO3-, SO42- and NO3-, the major factors contributing to the indirect photolysis of ATV were SRFA and NO3-, and the co-existence of SRFA and NO3- showed no interaction in synthetic water containing the above water components. The results were further verified in natural water samples. Singlet oxygen (1O2) played dominant role in the indirect photolysis of ATV, and the contributions of 1O2 and ·OH to the photolysis of ATV in the solution with optimum combination of water components were calculated to be 67.14% and 0.66%, respectively. Nine phototransformation intermediates were identified by liquid chromatography - time-of-flight - mass spectrometry (LC-TOF-MS), and the degradation pathways were speculated as hydroxyl addition, pyrrole-ring open and debenzamide reactions. In addition, the evolution of products in the degradation process showed that the ring-opened product P416 and hydroxylation product P575 still remained at a certain level after two days of photodegradation, which may accumulate and cause additional ecological risks. This study provides significant information for understanding the risk and fate of ATV in aquatic environment.
Collapse
Affiliation(s)
- Mengjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huanhuan Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Dong Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Yun Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Li Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
11
|
Pereira SAP, Costa SPF, Cunha E, Passos MLC, Araújo ARST, Saraiva MLMFS. Manual or automated measuring of antipsychotics' chemical oxygen demand. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:55-60. [PMID: 29407782 DOI: 10.1016/j.ecoenv.2018.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Antipsychotic (AP) drugs are becoming accumulated in terrestrial and aqueous resources due to their actual consumption. Thus, the search of methods for assessing the contamination load of these drugs is mandatory. The COD is a key parameter used for monitoring water quality upon the assessment of the effect of polluting agents on the oxygen level. Thus, the present work aims to assess the chemical oxygen demand (COD) levels of several typical and atypical antipsychotic drugs in order to obtain structure-activity relationships. It was implemented the titrimetric method with potassium dichromate as oxidant and a digestion step of 2h, followed by the measurement of remained unreduced dichromate by titration. After that, an automated sequential injection analysis (SIA) method was, also, used aiming to overcome some drawbacks of the titrimetric method. The results obtained showed a relationship between the chemical structures of antipsychotic drugs and their COD values, where the presence of aromatic rings and oxidable groups give higher COD values. It was obtained a good compliance between the results of the reference batch procedure and the SIA system, and the APs were clustered in two groups, with the values ratio between the methodologies, of 2 or 4, in the case of lower or higher COD values, respectively. The SIA methodology is capable of operating as a screening method, in any stage of a synthetic process, being also more environmentally friendly, and cost-effective. Besides, the studies presented open promising perspectives for the improvement of the effectiveness of pharmaceutical removal from the waste effluents, by assessing COD values.
Collapse
Affiliation(s)
- Sarah A P Pereira
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Susana P F Costa
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Edite Cunha
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Marieta L C Passos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - André R S T Araújo
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Av. Dr. Francisco de Sá Carneiro, n° 50, 6300-559 Guarda, Portugal.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
12
|
Wilde ML, Menz J, Leder C, Kümmerer K. Combination of experimental and in silico methods for the assessment of the phototransformation products of the antipsychotic drug/metabolite Mesoridazine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:697-711. [PMID: 29055596 DOI: 10.1016/j.scitotenv.2017.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The lack of studies on the fate and effects of drug metabolites in the environment is of concern. As their parent compounds, metabolites enter the aquatic environment and are subject to biotic and abiotic process. In this regard, photolysis plays an important role. This study combined experimental and in silico quantitative structure-activity relationship (QSAR) methods to assess the fate and effects of Mesoridazine (MESO), a pharmacologically active human drug and metabolite of the antipsychotic agent Thioridazine, and its transformation products (TPs) formed through a Xenon lamp irradiation. After 256min, the photodegradation of MESO⋅besylate (50mgL-1) achieved 90.4% and 6.9% of primary elimination and mineralization, respectively. The photon flux emitted by the lamp (200-600nm) was 169.55Jcm-2. Sixteen TPs were detected by means of liquid chromatography-high resolution mass spectrometry (LC-HRMS), and the structures were proposed based on MSn fragmentation patterns. The main transformation reactions were sulfoxidation, hydroxylation, dehydrogenation, and sulfoxide elimination. A back-transformation of MESO to Thioridazine was evidenced. Aerobic biodegradation tests (OECD 301 D and 301F) were applied to MESO and the mixture of TPs present after 256min of photolysis. Most of TPs were not biodegraded, demonstrating their tendency to persist in aquatic environments. The ecotoxicity towards Vibrio fischeri showed a decrease in toxicity during the photolysis process. The in silico QSAR tools QSARINS and US-EPA PBT profiler were applied for the screening of TPs with character of persistence, bioaccumulation, and toxicity (PBT). They have revealed the carbazole derivatives TP 355 and TP 337 as PBT/vPvB (very persistent and very bioaccumulative) compounds. In silico QSAR predictions for mutagenicity and genotoxicity provided by CASE Ultra and Leadscope® indicated positive alerts for mutagenicity on TP 355 and TP 337. Further studies regarding the carbazole derivative TPs should be considered to confirm their hazardous character.
Collapse
Affiliation(s)
- Marcelo L Wilde
- Formerly: Sustainable Chemistry and Material Resources, Institute of Sustainable Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| | - Jakob Menz
- Sustainable Chemistry and Material Resources, Institute of Sustainable Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| | - Christoph Leder
- Sustainable Chemistry and Material Resources, Institute of Sustainable Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| |
Collapse
|
13
|
Improved Model for Biodegradability of Organic Compounds: The Correlation Contributions of Rings. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7425-2_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Pereira SAP, Costa SPF, Cunha E, Passos MLC, Araújo ARST, Saraiva MLMFS. Biodegradability of several antipsychotic drugs: manual and automatic assessment. NEW J CHEM 2018. [DOI: 10.1039/c8nj01636d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, the biodegradability values were determined for several antipsychotic drugs.
Collapse
Affiliation(s)
- Sarah A. P. Pereira
- LAQV, REQUIMTE
- Department of Chemical Sciences
- Laboratory of Applied Chemistry
- Faculty of Pharmacy
- Porto University
| | - Susana P. F. Costa
- LAQV, REQUIMTE
- Department of Chemical Sciences
- Laboratory of Applied Chemistry
- Faculty of Pharmacy
- Porto University
| | - Edite Cunha
- LAQV, REQUIMTE
- Department of Chemical Sciences
- Laboratory of Applied Chemistry
- Faculty of Pharmacy
- Porto University
| | - Marieta L. C. Passos
- LAQV, REQUIMTE
- Department of Chemical Sciences
- Laboratory of Applied Chemistry
- Faculty of Pharmacy
- Porto University
| | - André R. S. T. Araújo
- LAQV, REQUIMTE
- Department of Chemical Sciences
- Laboratory of Applied Chemistry
- Faculty of Pharmacy
- Porto University
| | - M. Lúcia M. F. S. Saraiva
- LAQV, REQUIMTE
- Department of Chemical Sciences
- Laboratory of Applied Chemistry
- Faculty of Pharmacy
- Porto University
| |
Collapse
|
15
|
Wilde ML, Schneider M, Kümmerer K. Fenton process on single and mixture components of phenothiazine pharmaceuticals: Assessment of intermediaries, fate, and preliminary ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:36-52. [PMID: 28126283 DOI: 10.1016/j.scitotenv.2016.12.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceuticals do not occur isolated in the environment but in multi-component mixtures and may exhibit antagonist, synergistic or additive behavior. Knowledge on this is still scarce. The situation is even more complicated if effluents or potable water is treated by oxidative processes or such transformations occur in the environment. Thus, determining the fate and effects of parent compounds, metabolites and transformation products (TPs) formed by transformation and degradation processes in the environment is needed. This study investigated the fate and preliminary ecotoxicity of the phenothiazine pharmaceuticals, Promazine (PRO), Promethazine (PRM), Chlorpromazine (CPR), and Thioridazine (THI) as single and as components of the resulting mixtures obtained from their treatment by Fenton process. The Fenton process was carried out at pH7 and by using 0.5-2mgL-1 of [Fe2+]0 and 1-12.5mgL-1 of [H2O2]0 at the fixed ratio [Fe2+]0:[H2O2]0 of 1:10 (w:w). No complete mineralization was achieved. Constitutional isomers and some metabolite-like TPs formed were suggested based on their UHPLC-HRMSn data. A degradation pathway was proposed considering interconnected mechanisms such as sulfoxidation, hydroxylation, N-dealkylation, and dechlorination steps. Aerobic biodegradation tests (OECD 301 D and OECD 301 F) were applied to the parent compounds separately, to the mixture of parent compounds, and for the cocktail of TPs present after the treatment by Fenton process. The samples were not readily biodegradable. However, LC-MS analysis revealed that abiotic transformations, such hydrolysis, and autocatalytic transformations occurred. The initial ecotoxicity tested towards Vibrio fischeri as individual compounds featured a reduction in toxicity of PRM and CPR by the treatment process, whereas PRO showed an increase in acute luminescence inhibition and THI a stable luminescence inhibition. Concerning effects of the mixture components, reduction in toxicity by the Fenton process was predicted by concentration addition and independent action models.
Collapse
Affiliation(s)
- Marcelo L Wilde
- Formerly: Sustainable Chemistry and Material Resources, Institute of Sustainable Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| | - Mandy Schneider
- Sustainable Chemistry and Material Resources, Institute of Sustainable Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| |
Collapse
|
16
|
Menz J, Toolaram AP, Rastogi T, Leder C, Olsson O, Kümmerer K, Schneider M. Transformation products in the water cycle and the unsolved problem of their proactive assessment: A combined in vitro/in silico approach. ENVIRONMENT INTERNATIONAL 2017; 98:171-180. [PMID: 27855972 DOI: 10.1016/j.envint.2016.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Transformation products (TPs) emerging from incomplete degradation of micropollutants in aquatic systems can retain the biological activity of the parent compound, or may even possess new unexpected toxic properties. The chemical identities of these substances remain largely unknown, and consequently, the risks caused by their presence in the water cycle cannot be assessed thoroughly. In this study, a combined approach for the proactive identification of hazardous elements in the chemical structures of TPs, comprising analytical, bioanalytical and computational methods, was assessed by the example of the pharmaceutically active micropollutant propranolol (PPL). PPL was photo-transformed using ultraviolet (UV) irradiation and 115 newly formed TPs were monitored in the reaction mixtures by LC-MS analysis. The reaction mixtures were screened for emerging effects using a battery of in vitro bioassays and the occurrence of cytotoxic and mutagenic activities in bacteria was found to be significantly correlated with the occurrence of specific TPs during the treatment process. The follow-up analysis of structure-activity-relationships further illustrated that only small chemical transformations, such as the hydroxylation or the oxidative opening of an aromatic ring system, could substantially alter the biological effects of micropollutants in aquatic systems. In conclusion, more efforts should be made to prevent the occurrence and transformation of micropollutants in the water cycle and to identify the principal degradation pathways leading to their toxicological activation. With regard to the latter, the judicious combination of bioanalytical and computational tools represents an appealing approach that should be developed further.
Collapse
Affiliation(s)
- Jakob Menz
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststr. 1/C13, DE-21335 Lüneburg, Germany.
| | - Anju Priya Toolaram
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststr. 1/C13, DE-21335 Lüneburg, Germany.
| | - Tushar Rastogi
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststr. 1/C13, DE-21335 Lüneburg, Germany.
| | - Christoph Leder
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststr. 1/C13, DE-21335 Lüneburg, Germany.
| | - Oliver Olsson
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststr. 1/C13, DE-21335 Lüneburg, Germany.
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststr. 1/C13, DE-21335 Lüneburg, Germany.
| | - Mandy Schneider
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststr. 1/C13, DE-21335 Lüneburg, Germany.
| |
Collapse
|
17
|
Trawiński J, Skibiński R. Studies on photodegradation process of psychotropic drugs: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1152-1199. [PMID: 27696160 PMCID: PMC5306312 DOI: 10.1007/s11356-016-7727-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/15/2016] [Indexed: 05/10/2023]
Abstract
Consumption of psychotropic drugs is still increasing, especially in high-income countries. One of the most crucial consequences of this fact is significant release of them to the environment. Considerable amounts of atypical antipsychotics, benzodiazepines, antidepressants, and their metabolites were detected in river, lake, and sea water, as well as in tissues of aquatic organisms. Their ecotoxicity was proved by numerous studies. It should be noticed that interaction between psychotropic pharmaceuticals and radiation may lead to formation of potentially more toxic intermediates. On the other hand, photo-assisted wastewater treatment methods can be used as an efficient way to eliminate them from the environment. Many methods based on photolysis and photocatalysis were proposed and developed recently; nevertheless, the problem is still unsolved. However, according to recent studies, photocatalysis could be considered as the most promising and far more effective than regular photolysis. An overview on photolytic as well as homogenous and heterogeneous photocatalytic degradation methods with the use of various catalysts is presented. The photostability and phototoxicity of pharmaceuticals were also discussed. Various analytical methods were used for the photodegradation research, and this issue was also compared and summarized. Use of high-resolution multistage mass spectrometry (Q-TOF, ion trap, Orbitrap) was suggested. The combined techniques such as LC-MS, GC-MS, and LC-NMR, which enable qualitative and quantitative analyses in one run, proved to be the most valuable in this case. Assembling of MS/MS spectra libraries of drug molecules and their phototransformation products was identified as the future challenge.
Collapse
Affiliation(s)
- Jakub Trawiński
- Department of Medicinal, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland.
| | - Robert Skibiński
- Department of Medicinal, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| |
Collapse
|