1
|
Wang L, Du YQ, Deng XQ, Cai JY, Liang WW, Hu XL. Intergenerational toxic effects of 1-methyl-3-octylimidazolium chloride and 1-dodecylpyridinium chloride on the water flea, Moina macrocopa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121501-121512. [PMID: 37953428 DOI: 10.1007/s11356-023-30928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Ionic liquids (ILs) are generally considered eco-friendly alternatives to conventional industrial solvents, but they are hard to degrade and easily accumulate in the environment. Therefore, their long-term toxicities are especially vital to estimate their potential risk. However, the chronic toxicities of ILs over generations lacked intensive investigation. In the present work, acute toxicity and chronic toxicity of 1-methyl-3-octylimidazolium chloride ([Omim]Cl) and 1-dodecylpyridinium chloride ([DPy]Cl) were studied on Moina macrocopa with the first exposed generation (F0) and two successive recovery generation (F1 to F2). The acute results showed that both [Omim]Cl and [DPy]Cl exhibited high toxicity to M. macrocopa. The chronic results indicated that the exposure of [Omim]Cl and [DPy]Cl could inhibit the survivorship, body length, and reproduction of M. macrocopa and exhibited a significant dose-related decrease. Furthermore, these two types of ILs presented intergenerational toxicity in the water flea. And the toxic effects of [Omim]Cl disappeared in the recovery tests of F2 generation, while the [DPy]Cl toxic effects continued. Our research suggested a potential risk for the aquatic ecosystem induced by ILs. And the damage done by these chemicals to the aquatic environment is worthy of attention.
Collapse
Affiliation(s)
- Lu Wang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Ying Qi Du
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xiao Quan Deng
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Jin Yu Cai
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Wen Wang Liang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xue Lei Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China.
| |
Collapse
|
2
|
Sharma L, Kudłak B, Siedlewicz G, Pazdro K. The effects of the IM1-12Br ionic liquid and the oxytetracycline mixture on selected marine and brackish microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165898. [PMID: 37527710 DOI: 10.1016/j.scitotenv.2023.165898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
The number of applications and commercialized processes utilizing ionic liquids has been increasing, and it is anticipated that this trend will persist and even intensify in the future. Ionic liquids possess desirable characteristics, such as low vapor pressure, good water solubility, amphiphilicity, and stability. Nevertheless, these properties can influence their environmental behavior, resulting in resistance to biotic and abiotic degradation and subsequent water contamination with more harmful derivatives. However, there is a notable scarcity of data regarding the impact of mixtures comprising ionic liquids and other micropollutants. Identifying potential potentiation of ionic liquids (Ils) toxicity in the presence of other xenobiotics is a proactive risk assessment measure. Therefore, the study aims to fill an important knowledge gap and identify possible interactions between imidazolium-based ionic liquid (IM1-12Br) and the common antibiotic oxytetracycline (OXTC). During 11-day experiments, selected marine, brackish and freshwater microorganisms (diatom Phaeodactylum tricornutum, cyanobacterium Microcystis aeruginosa and green algae Chlorella vulgaris) were exposed to binary mixtures of target substances. The assessed responses encompassed chlorophyll a kinetic parameters related to photosynthesis efficiency, as well as pigment concentrations, specifically phycobilin content. Additionally, the impact on the luminescent marine bacterium Aliivibrio fischeri has been evaluated. Significant effects on the growth, photosynthetic processes, and pigment content were observed in all the targeted microorganisms. The concentration addition (CA) and independent action (IA) mathematical models followed by the Model Deviation Ratio (MDR) evaluation enabled the identification of mainly synergistic interactions in the studied mixtures. The findings of present study offer valuable insights into the impacts of ionic liquids and other organic micropollutants.
Collapse
Affiliation(s)
- Lilianna Sharma
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland.
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Grzegorz Siedlewicz
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| | - Ksenia Pazdro
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| |
Collapse
|
3
|
Lu Z, Chen M, Jin T, Nian B, Hu Y. Immobilization of Candida antarctica lipase B on ILs modified CNTs with different chain lengths: Regulation of substrate tunnel "Leucine gating". Int J Biol Macromol 2023; 248:125894. [PMID: 37479200 DOI: 10.1016/j.ijbiomac.2023.125894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Ionic liquids (ILs) have been widely used as chemical modifiers to modify the carriers and thus improve the efficiency, activity and stability of the enzymes. However, as thousands of ILs have been found up to date, it's a huge work for screening and designing suitable ILs for immobilization of enzymes. Moreover, the mechanism of improving enzymes catalytic performance is still remain ambiguous. Thus, this study investigated the impact of ILs with different chain lengths on the enzymatic properties of Candida antarctica lipase B (CALB). Molecular dynamics simulations were employed to examine the interaction between ILs modified CNTs and CALB, as well as their effects on CALB's structure. The results revealed that ILs with different chain lengths significantly influenced the absorption orientation of CALB. Tunnel analysis identified a key role for Leu278 in regulating the open or closed state of Tunnel 2 during CALB's catalytic cycle. The weak interaction analysis demonstrated that ILs with suitable chain lengths provided spatial freedom and formed strong interactions with CNTs and ILs (vdW and hbond). This led to a conformational flip of Leu278, stabilizing the open state of Tunnel 2 and improving the activity and stability of immobilized CALB. This study provides novel insights into the design of new green modifiers to modulate carrier performance and obtain immobilized enzymes with better performance, and establishes a theoretical basis for the design and selection of modifiers for ILs in future work.
Collapse
Affiliation(s)
- Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Mei Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Tongtong Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
4
|
Advances of Imidazolium Ionic Liquids for the Extraction of Phytochemicals from Plants. SEPARATIONS 2023. [DOI: 10.3390/separations10030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
In this review, we present the research from 2013 to 2022 about the character of ionic liquids, the categories of phytochemicals, and the reasons for selecting imidazolium ionic liquids for phytochemical extraction. Then we introduce the structural formulae of the imidazolium ionic liquids commonly used in the extraction of phytochemicals, the methods used to prepare imidazolium ionic liquids, and a comprehensive introduction of how imidazolium ionic liquids are applied to extract phytochemicals from plants. Importantly, we discuss the strategies for studying the extraction mechanisms of imidazolium ionic liquids to extract phytochemicals, and the recovery methods regarding imidazolium ionic liquids and their recyclability are analyzed. Then the toxicity in imidazolium ionic liquids is pointed out. Finally, the challenges and prospects of extracting phytochemicals by imidazolium ionic liquids are summarized, and they are expected to provide some references for researchers.
Collapse
|
5
|
Yuan H, Xu F, Tian X, Wei H, Zhang R, Ge Y, Xu H. Oxidative stress and inflammation caused by 1-tetradecyl-3-methylimidazolium tetrafluoroborate in rat livers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86680-86691. [PMID: 35799001 DOI: 10.1007/s11356-022-21495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to elucidate the mechanism underlying toxicity in the livers of male and female rats after treatment with 1-tetradecyl-3-methylimidazolium tetrafluoroborate ([C14mim]BF4, 0 [control], 12.5, 25, or 50 mg/kg) for 90 days. The results showed that [C14mim]BF4 exposure led to a high level of ROS and MDA in rat livers and the lower expression of Nrf2 and its downstream related antioxidant proteins. In addition, the expression of NF-κB p65 and the levels of inflammatory cytokines were upregulated in exposure groups rats' liver. After 30 days of cessation of exposure, the liver injury of rats in the 50 mg/kg exposure group was alleviated, and the above indicators were improved to varying degrees. The paper shows that [C14mim]BF4 could damage rat liver through oxidative stress and inflammatory pathway.
Collapse
Affiliation(s)
- Huafei Yuan
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Feng Xu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xingxing Tian
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Haiyan Wei
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Rui Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yueyue Ge
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hongmei Xu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
6
|
Zhang J, Cheng C, Lu C, Li W, Li B, Wang J, Wang J, Du Z, Zhu L. Comparison of the toxic effects of non-task-specific and task-specific ionic liquids on zebrafish. CHEMOSPHERE 2022; 294:133643. [PMID: 35051520 DOI: 10.1016/j.chemosphere.2022.133643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs) are composed of only anions and cations and are liquid solvents at room temperature. Different functional groups were introduced into the ILs, conferring them with specific functions or purposes and thus forming special ILs, namely task-specific ILs (TSILs). Imidazolium-based ILs are the most widely used ILs in industrial production. To date, there have been some studies on the toxic effects of ILs on different organisms. However, the effect of functionalized groups on the toxicity of ILs is still unclear. In the present study, zebrafish were used as model organisms to study the toxic effects of 1-ethyl-3-methylimidazolium nitrate ([C2mim]NO3) and 1-hydroxyethyl-3-methylimidazolium nitrate ([HOC2mim]NO3). The results showed that both promoted an increase in reactive oxygen species (ROS) contents, leading to lipid peroxidation and DNA damage. Furthermore, integrated biological response analysis showed that [HOC2mim]NO3 was less toxic to zebrafish than [C2mim]NO3, which indicated that adding functional groups decreased the toxicity of ILs to organisms. The influence of chemical structure on IL toxicity was also reported. These results could provide a scientific basis for better synthesis and utilization of ILs in the future.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Chao Cheng
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Wenxiu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
7
|
Pan X, Li L, Huang HH, Wu J, Zhou X, Yan X, Jia J, Yue T, Chu YH, Yan B. Biosafety-inspired structural optimization of triazolium ionic liquids based on structure-toxicity relationships. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127521. [PMID: 34736187 DOI: 10.1016/j.jhazmat.2021.127521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Ionic liquids (ILs), owing to their low vapor pressure and excellent solvating ability, are being increasingly applied in various industries to replace highly toxic organic solvents. They mainly pollute aquatic environment and soils, directly endangering eco-environment and human health. Therefore, it is critical to understand and optimize structural motifs of ILs with reduced toxicity. Considering human oral exposure is the major route, our investigations employed a human cell panel (modeling oral exposures) including human stomach (GES-1), intestinal (FHC), liver (HepG2) and kidney (HEK293) cells using a series of experimental and computational approaches to explore the cytotoxicity and molecular mechanism of ILs. We discovered that the cytotoxicity of triazolium and imidazolium ILs was human cell line-dependent with cytotoxicity in an order of FHC > GES-1 > HepG2 > HEK293. For this reason, a toxicity assay using a single cell line was highly inappropriate. Compared to anions (Br-, OTs-, OTMBS-) we tested, the cation of ILs played a major role in causing cytotoxicity. Ionic liquids with cations having longer hydrophobic sidechains (IL09 vs. IL01) readily insert into cell membranes with enhanced membrane and lipidomic perturbations, induce cytotoxicity by triggering cell cycle arrest and apoptosis. Reducing sidechain length and incorporating three nitrogen atoms (triazolium) instead of two (imidazolium) in the cation core alleviated cytotoxicity by reducing cell membrane perturbations and cell function interference. These findings provide important guiding principles for the design of the next-generation of "green" and safe ILs.
Collapse
Affiliation(s)
- Xiujiao Pan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lingzhi Li
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hsin-Heng Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, ROC
| | - Jialong Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, ROC.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
8
|
Qu R, Hou H, Xiao K, Liu B, Liang S, Hu J, Bian S, Yang J. Prediction on the combined toxicities of stimulation-only and inhibition-only contaminants using improved inverse distance weighted interpolation. CHEMOSPHERE 2022; 287:132045. [PMID: 34563772 DOI: 10.1016/j.chemosphere.2021.132045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The evaluation of ecological risks of contaminant mixtures to organisms is very challenging due to the non-linear response of organisms to each component, especially under the co-existence of both stimulators and inhibitors. Whether the stimulatory effect can reduce or even offset the inhibitory effect would be critical to the risk assessment and the treatment measures of mixed pollutants. Here, the combined toxicity of sodium fluoride (NaF), a stimulator with stimulation rate >100%, and six compounds that cannot induce hormesis (four ionic liquids (ILs) and two pesticides) were studied. The time-dependent toxicity of each toxicant on Vibrio qinghaiensis sp.-Q67 was investigated at 0.25, 2, 4, 6, 8, 10 and 12 h. Results showed that four ILs and two pesticides failed to induce hormesis, while NaF induced hormesis from 2 to 6 h and induced stimulation only after 6 h and reached its maximum (650%) at 12 h. All mixture rays with NaF induced hormesis at different times. In the four NaF-IL mixture systems, the absolute value of maximum stimulation demonstrated an upwards and then a downwards trend with the increasing of mixture ratio of IL. In two NaF-pesticide systems, the maximum stimulation effect declined with the increasing of the mixture ratio of pesticide. The toxicities of the mixture were successfully predicted by the improved inverse distance weighted interpolation, which are not able to be predicted by the commonly used concentration addition or independent action models. This paper shed lights on evaluating the hormesis of mixtures and the ecological risk of fluoride.
Collapse
Affiliation(s)
- Rui Qu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China.
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Bingchuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shijie Bian
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
9
|
Wei P, Pan X, Chen CY, Li HY, Yan X, Li C, Chu YH, Yan B. Emerging impacts of ionic liquids on eco-environmental safety and human health. Chem Soc Rev 2021; 50:13609-13627. [PMID: 34812453 DOI: 10.1039/d1cs00946j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Owing to their unique physicochemical properties, ionic liquids (ILs) have been rapidly applied in diverse areas, such as organic synthesis, electrochemistry, analytical chemistry, functional materials, pharmaceutics, and biomedicine. The increase in the production and application of ILs has resulted in their release into aquatic and terrestrial environments. Because of their low vapor pressure, ILs cause very little pollution in the atmosphere compared to organic solvents. However, ILs are highly persistent in aquatic and terrestrial environments due to their stability, and therefore, potentially threaten the safety of eco-environments and human health. Specifically, the environmental translocation and retention of ILs, or their accumulation in organisms, are all related to their physiochemical properties, such as hydrophobicity. Based on results of ecotoxicity, cytotoxicity, and toxicity in mammalian models, the mechanisms involved in IL-induced toxicity include damage of cell membranes and induction of oxidative stress. Recently, artificial intelligence and machine learning techniques have been used in mining and modeling toxicity data to make meaningful predictions. Major future challenges are also discussed. This review will accelerate our understanding of the safety issues of ILs and serve as a guideline for the design of the next generation of ILs.
Collapse
Affiliation(s)
- Penghao Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Xiujiao Pan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chien-Yuan Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China.
| | - Hsin-Yi Li
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China.
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China.
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. .,Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Khan MI, Mubashir M, Zaini D, Mahnashi MH, Alyami BA, Alqarni AO, Show PL. Cumulative impact assessment of hazardous ionic liquids towards aquatic species using risk assessment methods. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125364. [PMID: 33740721 DOI: 10.1016/j.jhazmat.2021.125364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
In the present research work, a comprehensive tool for cumulative ecotoxicological impact assessment of ionic liquids (ILs) to aquatic life has been constructed. Using the probabilistic tool, impact of individual ILs to a group of aquatic species is assessed by chemical toxicity distributions (CTDs). The impact of group of ILs to individual aquatic species is assessed by species sensitivity distributions (SSDs). Acute toxicity data of imidazolium ILs with chloride (Cl-), bromide (Br-), tetrafluoroborate (BF4-), and hexafluorophosphate (PF6-) anions are used in CTD and SSD. Allowable concentrations for a group of Imidazolium ILs with the same mode of action (SMOA) to five aquatic species; Daphnia magna, Vibrio fischeri, Algae, Zebrafish, and Escherichia coli are estimated by CTDs. It has been concluded that 1-Butyl-3-methylimidazolium chloride (BMIMCl) possess the lowest risk at an acceptable risk value of 750 × 10-5 mmol/L which is 12% less than that of OMIMCl. Furthermore, the sensitivities towards the aquatic species reveal that from the studied ILs, BMIMBF4 with an acceptable risk value of 3200 × 10-5 mmol/L is the most suitable IL towards the selected aquatic species. Hence, current work provides cumulative allowable concentrations and acceptable risk values for ILs which release to aquatic compartment of ecosystem.
Collapse
Affiliation(s)
- Muhammad Ishaq Khan
- Centre of Advanced Process Safety (CAPS), Department of Chemical Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak, Malaysia
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000 Kuala Lumpur, Malaysia
| | - Dzulkarnain Zaini
- Centre of Advanced Process Safety (CAPS), Department of Chemical Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak, Malaysia
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
11
|
Buzmakov SA, Andreev DN, Nazarov AV, Dzyuba EA, Shestakov IE, Kuyukina MS, El’kin AA, Egorova DO, Khotyanovskaya YV. Responses of Different Test Objects to Experimental Soil Contamination with Crude Oil. RUSS J ECOL+ 2021. [DOI: 10.1134/s1067413621040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Gonçalves AR, Paredes X, Cristino AF, Santos FJ, Queirós CS. Ionic Liquids-A Review of Their Toxicity to Living Organisms. Int J Mol Sci 2021; 22:5612. [PMID: 34070636 PMCID: PMC8198260 DOI: 10.3390/ijms22115612] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Ionic liquids (ILs) were initially hailed as a green alternative to traditional solvents because of their almost non-existent vapor pressure as ecological replacement of most common volatile solvents in industrial processes for their damaging effects on the environment. It is common knowledge that they are not as green as desired, and more thought must be put into the biological consequences of their industrial use. Still, compared to the amount of research studying their physicochemical properties and potential applications in different areas, there is a scarcity of scientific papers regarding how these substances interact with different organisms. The intent of this review was to compile the information published in this area since 2015 to allow the reader to better understand how, for example, bacteria, plants, fish, etc., react to the presence of this family of liquids. In general, lipophilicity is one of the main drivers of toxicity and thus the type of cation. The anion tends to play a minor (but not negligible) role, but more research is needed since, owing to the very nature of ILs, except for the most common ones (imidazolium and ammonium-based), many of them are subject to only one or two articles.
Collapse
Affiliation(s)
| | | | | | | | - Carla S.G.P. Queirós
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.R.P.G.); (X.P.); (A.F.C.); (F.J.V.S.)
| |
Collapse
|
13
|
Jeremias G, Jesus F, Ventura SPM, Gonçalves FJM, Asselman J, Pereira JL. New insights on the effects of ionic liquid structural changes at the gene expression level: Molecular mechanisms of toxicity in Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124517. [PMID: 33199138 DOI: 10.1016/j.jhazmat.2020.124517] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Knowledge on the molecular basis of ionic liquids' (ILs) ecotoxicity is critical for the development of these designer solvents as their structure can be engineered to simultaneously meet functionality performance and environmental safety. The molecular effects of ILs were investigated by using RNA-sequencing following Daphnia magna exposure to imidazolium- and cholinium-based ILs: 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-dodecyl-3-methylimidazolium chloride ([C12mim]Cl) and cholinium chloride ([Chol]Cl)-; the selection allowing to compare different families and cation alkyl chains. ILs shared mechanisms of toxicity focusing e.g. cellular membrane and cytoskeleton, oxidative stress, energy production, protein biosynthesis, DNA damage, disease initiation. [C2mim]Cl and [C12mim]Cl were the least and the most toxic ILs at the transcriptional level, denoting the role of the alkyl chain as a driver of ILs toxicity. Also, it was reinforced that [Chol]Cl is not devoid of environmental hazardous potential regardless of its argued biological compatibility. Unique gene expression signatures could also be identified for each IL, enlightening specific mechanisms of toxicity.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Fátima Jesus
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Sónia P M Ventura
- Department of Chemistry & CICECO - Aveiro Institute of Materials, University of Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Joana L Pereira
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| |
Collapse
|
14
|
Zhu Y, Zhong X, Wang Y, Zhao Q, Huang H. Growth Performance and Antioxidative Response of Chlorella pyrenoidesa, Dunaliella salina, and Anabaena cylindrica to Four Kinds of Ionic Liquids. Appl Biochem Biotechnol 2021; 193:1945-1966. [PMID: 33528747 DOI: 10.1007/s12010-021-03515-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2021] [Indexed: 01/15/2023]
Abstract
Ionic liquids are widely used for lipid and pigment extractions from microalgae. It is possible that ionic liquids are discharged into environments. The evaluation of growth performance and antioxidative response of ionic liquids to microalgae is helpful to explore the stress regulation mechanism and investigate possible environmental risk. Ionic liquids induce production of reactive oxygen species (ROS) to microalgae. These oxidative stresses are possible from cations, anions, and salinity. In this study, the growth inhibitions of [BMIM]Br, [BMIM]Cl, [EMIM]Cl, and [EMIM]EtOSO3 to Anabaena cylindrica, Chlorella pyrenoidesa, and Dunaliella salina were evaluated. It was interesting that Br- and two kinds of cations, [BMIM] and [EMIM], had significant effects on growth inhibitions of these microalgae. IC50 values of these ionic liquids for A. cylindrica, C. pyrenoidesa, and D. salina were also estimated based on the results of growth inhibitions. It was proved that [EMIM]Cl is relatively harmless to C. pyrenoidesa and D. salina, and [EMIM]EtOSO3 is relatively or practically harmless to C. pyrenoidesa. [BMIM]Br and [BMIM]Cl are practically harmless to A. cylindrica and C. pyrenoidesa, and relatively harmless to D. salina. More than 0.8 g/L [EMIM]EtOSO3 led to bleaching of both A. cylindrica and D. salina at 48 h which was shown that the anion, EtOSO3-, had higher inhibition to A. cylindrica and D. salina than Cl-. In addition, high concentration of ionic liquids led to reductions of chlorophyll content in these three kinds of microalgae, increase of ROS levels and malondialdehyde contents for most of the cases. High concentration of ionic liquids also increased the activities of superoxide dismutase in three kinds of microalgae. There were positive correlations between ROS levels or MDA content, and inhibitions ratios of these ionic liquids to microalgae except [EMIM]Cl to A. cylindrica. These antioxidant enzymes were beneficial for reducing the ROS induced by ionic liquids.
Collapse
Affiliation(s)
- Yali Zhu
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Xueqing Zhong
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Yujiao Wang
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Quanyu Zhao
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, People's Republic of China.
| | - He Huang
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing, People's Republic of China. .,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009, People's Republic of China. .,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
15
|
Hu LX, Xiong Q, Shi WJ, Huang GY, Liu YS, Ying GG. New insight into the negative impact of imidazolium-based ionic liquid [C 10mim]Cl on Hela cells: From membrane damage to biochemical alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111629. [PMID: 33396149 DOI: 10.1016/j.ecoenv.2020.111629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 05/08/2023]
Abstract
As an alternative to volatile organic solvents, ionic liquids (ILs) are known as "green solvents", and widely used in industrial applications. However, due to their high solubility and stability, ILs have tendency to persist in the water environment, thus having potential negative impacts on the aquatic ecosystem. For assessing the environmental risks of ILs, a fundamental understanding of the toxic effects and mechanisms of ILs is needed. Here we evaluated the cytotoxicity of 1-methyl-3-decylimidazolium chloride ([C10mim]Cl) and elucidated the main toxic mechanism of [C10mim]Cl in human cervical carcinoma (Hela) cells. Microstructural analysis revealed that [C10mim]Cl exposure caused the cell membrane breakage, swollen and vacuolated mitochondria, and spherical cytoskeletal structure. Cytotoxicity assays found that [C10mim]Cl exposure increased ROS production, decreased mitochondrial membrane potential, induced cell apoptosis and cell cycle arrest. These results indicated that [C10mim]Cl could induce damage to cellular membrane structure, affect the integrity of cell ultrastructure, cause the oxidative damage and ultimately lead to the inhibition of cell proliferation. Moreover, alterations of biochemical information including the increased ratios of unsaturated fatty acid and carbonyl groups to lipid, and lipid to protein, and the decreased ratios of Amide I to Amide II, and α-helix to β-sheet were observed in [C10mim]Cl treated cells, suggesting that [C10mim]Cl could affect the structure of membrane lipid alkyl chain and cell membrane fluidity, promote the lipid peroxidation and alter the protein secondary structure. The findings from this work demonstrated that membrane structure is the key target, and membrane damage is involved in [C10mim]Cl induced cytotoxicity.
Collapse
Affiliation(s)
- Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian Xiong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
16
|
Wang H, Fan H, Liu H, Jin M, Du S, Li D, Zhang P, Ruan S, Qiu J. Oxidative stress response mechanism of Scenedesmus obliquus to ionic liquids with different number of methyl-substituents. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122847. [PMID: 32531673 DOI: 10.1016/j.jhazmat.2020.122847] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Ionic liquids (ILs) have become persistent contaminants in water because of their good solubility and low biodegradability. The oxidative stress responses of Scenedesmus obliquus to three imidazole ILs with different number of methyl-substituents, i.e., 1-decyl-imidazolium chloride ([C10IM]Cl), 1-decyl-3-methylimidazolium chloride ([C10MIM]Cl), and 1-decyl-2,3-dimethylimidazolium chloride ([C10DMIM]Cl), were studied. There was a positive correlation between ROS level and IL concentration. The activities of antioxidant enzymes, i.e., superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione peroxidase, and the content of antioxidants, i.e., ascorbic acid and glutathione, changed in IL treatment with a concentration-dependent effect. Proline accumulation increased with increasing IL concentration. Integrated biomarker response (IBR) index analysis, based on the eight oxidative stress response indicators, revealed that the toxicity order was: [C10IM]Cl < [C10DMIM]Cl < [C10MIM]Cl. Proteomic analysis showed that IL affect the type and distribution of proteins in S. obliquus. Chloroplast and photosystem II were affected as cellular component, and the proteins related to oxidative stress are annotated in GO categories. IBR index and proteomic analysis indicate that oxidative stress response is one of the main biomarkers of IL stress.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huiyang Fan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Dexiao Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Songlin Ruan
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jieren Qiu
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| |
Collapse
|
17
|
Flieger J, Flieger M. Ionic Liquids Toxicity-Benefits and Threats. Int J Mol Sci 2020; 21:E6267. [PMID: 32872533 PMCID: PMC7504185 DOI: 10.3390/ijms21176267] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ionic liquids (ILs) are solvents with salt structures. Typically, they contain organic cations (ammonium, imidazolium, pyridinium, piperidinium or pyrrolidinium), and halogen, fluorinated or organic anions. While ILs are considered to be environmentally-friendly compounds, only a few reasons support this claim. This is because of high thermal stability, and negligible pressure at room temperature which makes them non-volatile, therefore preventing the release of ILs into the atmosphere. The expansion of the range of applications of ILs in many chemical industry fields has led to a growing threat of contamination of the aquatic and terrestrial environments by these compounds. As the possibility of the release of ILs into the environment s grow systematically, there is an increasing and urgent obligation to determine their toxic and antimicrobial influence on the environment. Many bioassays were carried out to evaluate the (eco)toxicity and biodegradability of ILs. Most of them have questioned their "green" features as ILs turned out to be toxic towards organisms from varied trophic levels. Therefore, there is a need for a new biodegradable, less toxic "greener" ILs. This review presents the potential risks to the environment linked to the application of ILs. These are the following: cytotoxicity evaluated by the use of human cells, toxicity manifesting in aqueous and terrestrial environments. The studies proving the relation between structures versus toxicity for ILs with special emphasis on directions suitable for designing safer ILs synthesized from renewable sources are also presented. The representants of a new generation of easily biodegradable ILs derivatives of amino acids, sugars, choline, and bicyclic monoterpene moiety are collected. Some benefits of using ILs in medicine, agriculture, and the bio-processing industry are also presented.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Michał Flieger
- Medical University of Lublin, Faculty of Medicine, Aleje Racławickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
18
|
Chen B, Dong J, Li B, Xue C, Tetteh PA, Li D, Gao K, Deng X. Using a freshwater green alga Chlorella pyrenoidosa to evaluate the biotoxicity of ionic liquids with different cations and anions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110604. [PMID: 32339924 DOI: 10.1016/j.ecoenv.2020.110604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 05/28/2023]
Abstract
With the extensive use of ionic liquids (ILs) in various industrial fields, their potential toxicity to aquatic ecosystem has attracted considerable attention. In this work, biotoxicity of ILs with different cations and anions was evaluated by using a freshwater green alga Chlorella pyrenoidosa. Results showed that 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-octyl-3-methylimidazolium chloride ([C8mim]Cl), 1-octyl-3-methylimidazolium nitrate ([C8mim]NO3), 1-octyl-3-methylimidazolium tetrafluoroborate ([C8mim]BF4), and 1-dodecyl-3-methylimidazolium chloride ([C12mim]Cl) had a significant inhibition on the algal growth with EC50 values of 23.48, 4.72, 3.80, 4.44, and 0.10 mg L-1 at the 72 h of exposure, respectively. These data suggested that the toxicity of ILs increased with the increase of side alkyl chain length, while anions had little influences on their toxicity to this alga. Moreover, changes in chlorophyll a content and chlorophyll fluorescence parameters (Fv/Fm and ΦPSII) indicated that the five ILs could damage the photosynthetic system of this alga resulting in the decrease of photosynthetic efficiency. The increased soluble protein content and antioxidase activity could be considered as an active response mechanism of this alga against the exposure of ILs. Content of malondialdehyde (MDA) in this alga increased significantly when it was exposed to ILs, suggesting that reactive oxygen species (ROS) were accumulated in the algal cells, which would cause injury of the algal biofilm and chloroplast. Therefore, results obtained in this work would help to explain the possible underlying toxic mechanisms of ILs to C. pyrenoidosa, and provide a significant theoretical support for assessing the toxicity of ILs to aquatic organisms.
Collapse
Affiliation(s)
- Biao Chen
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Jingwei Dong
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Bin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Chunye Xue
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Pius Abraham Tetteh
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Da Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Kun Gao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Xiangyuan Deng
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China.
| |
Collapse
|
19
|
Yu M, Liu C, Zhao H, Yang Y, Sun J. The effects of 1-hexyl-3-methylimidazolium bromide on embryonic development and reproduction in Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110137. [PMID: 31901815 DOI: 10.1016/j.ecoenv.2019.110137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Ionic liquids (ILs) are acknowledged as green chemicals and favorable substitutes for volatile organic solvents, which are currently used. However, previous studies have shown that these compounds had toxicological impacts on aquatic organisms. To investigate the effects of 1-hexyl-3- methylimidazolium bromide ionic liquid ([C6mim]Br) on embryonic development and reproduction in water flea (Daphnia magna), a series of exposure experiments were conducted, including acute toxicity, maternal exposure, and chronic exposure tests. In acute toxicity experiment, D. magna neonates exhibited developmental abnormalities in the shell spine and the second antennae in a concentration-dependent manner after exposure to [C6mim]Br. The results in maternal exposure test also revealed a certain embryo-toxicity in response to [C6mim]Br in D. magna. However, the toxicity was lower than that conveyed by direct acute exposure, this indicated that the IL could act directly on organism. During the 21 days chronic exposure, the 1.6 mg/L exposure caused marked drop in the survival, molts and the number of the first brood of D. magna. Meanwhile, the total number of offspring was significantly declined in 1.6 mg/L concentration treatment groups, whereas increased in 0.2 mg/L groups. Generally, abnormalities in the offspring were significantly increased across all of the treatment groups in contrast to the control. No effect on sex differentiation was found during the experiments. These findings suggested that [C6mim]Br could affect embryonic development and reproduction in D. magna, and provided references for further study on the mechanisms underlying toxicological effects of ILs and the assessment of their potential environmental risks.
Collapse
Affiliation(s)
- Miao Yu
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chuanhu Liu
- Teacher Development Center, Xinxiang University, Xinxiang, Henan, 453003, China
| | - Honghao Zhao
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yanjing Yang
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jinhui Sun
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
20
|
Turek M, Pawłowska B, Różycka-Sokołowska E, Biczak R, Skalik J, Owsianik K, Marciniak B, Bałczewski P. Ecotoxicity of ammonium chlorophenoxyacetate derivatives towards aquatic organisms: Unexpected enhanced toxicity upon oxygen by sulfur replacement. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121086. [PMID: 31465943 DOI: 10.1016/j.jhazmat.2019.121086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 05/09/2023]
Abstract
Phenoxyacetate herbicides, such as 2,4-D and MCPA, having a high toxicity to non-target organisms are commonly used for controlling broadleaf weeds in agriculture. However, novel and environmentally friendly analogs are constantly sought after. For this purpose, various substituents at the phenyl group have been tested to find the optimal balance between the potent herbicidal activity and safety for non-target species. In this work, we investigated the influence of the oxygen by sulfur replacement in the phenoxy moiety of ammonium chlorophenoxyacetates on the toxicity towards aquatic organisms, such as bacteria (Vibrio fischeri), water flea (Daphnia magna) and freshwater fish (Pimephales promelas) by determining experimental (Microtox® test - V. fischeri) and predicted (ACD Lab Percepta software - D. magna, P. promelas) EC50/LC50 values. The achieved results showed that in contrary to the literature observations, where O-compounds were more toxic than their S-analogs (urea/thiourea), the O/S replacement in chlorophenoxyacetate significantly increased ecotoxicity of the S-analogs (up to 11 times). Moreover, one- and two-substituted phenoxyacetates in the form of ammonium salts were less toxic to V. fischeri than the commercially available phenoxy herbicides in the acid form. The logP/logD values were also calculated to understand hydro/lipophilic nature of the investigated compounds and differences in their toxicity.
Collapse
Affiliation(s)
- Marika Turek
- Institute of Chemistry, Health and Food Sciences, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa, 42-201, Poland
| | - Barbara Pawłowska
- Institute of Chemistry, Health and Food Sciences, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa, 42-201, Poland
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Health and Food Sciences, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa, 42-201, Poland
| | - Robert Biczak
- Institute of Chemistry, Health and Food Sciences, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa, 42-201, Poland
| | - Joanna Skalik
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź, 90-363, Poland
| | - Krzysztof Owsianik
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź, 90-363, Poland
| | - Bernard Marciniak
- Institute of Chemistry, Health and Food Sciences, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa, 42-201, Poland
| | - Piotr Bałczewski
- Institute of Chemistry, Health and Food Sciences, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa, 42-201, Poland; Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź, 90-363, Poland.
| |
Collapse
|
21
|
Cheng C, Ma J, Wang J, Du Z, Li B, Wang J, Gao C, Zhu L. Toxicity comparison of three imidazolium bromide ionic liquids to soil microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113321. [PMID: 31610515 DOI: 10.1016/j.envpol.2019.113321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Ionic liquids (ILs) are extensively used in several chemistry fields. And research about the effects of ILs on soil microbes is needed. In this study, brown soil was exposed to 1-butyl-3-methylimidazolium bromide ([C4mim]Br), 1-hexyl-3-methylimidazolium bromide ([C6mim]Br) and 1-decyl-3-methylimidazolium bromide ([C10mim]Br). The toxicities of the three ILs are evaluated by measuring the soil culturable microbial number, enzyme activity, microbial diversity and, abundance of the ammonia monooxygenase (amoA) genes of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Results showed that all tested ILs caused a decrease in culturable microbial abundance. Tested ILs exposure inhibit urease activity and promote acid phosphatase and β-glucosidase activities. Tested ILs reduced soil microbial diversity and the abundances of AOB-amoA and AOA-amoA genes significantly. After a comparison of the integrated biomarker response (IBR) index, the toxicities of tested ILs to soil microorganisms were as follows: [C10mim]Br > [C6mim]Br > [C4mim]Br. Among all collected biomarkers, the abundance of the AOA-amoA gene was the most sensitive one and was easily affected after ILs exposure.
Collapse
Affiliation(s)
- Chao Cheng
- College of Resources and Environment, Key Laboratory of Agriculture Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Junchao Ma
- College of Resources and Environment, Key Laboratory of Agriculture Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agriculture Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agriculture Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agriculture Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agriculture Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Chong Gao
- College of Resources and Environment, Key Laboratory of Agriculture Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agriculture Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| |
Collapse
|
22
|
Fan H, Jin M, Wang H, Xu Q, Xu L, Wang C, Du S, Liu H. Effect of differently methyl-substituted ionic liquids on Scenedesmus obliquus growth, photosynthesis, respiration, and ultrastructure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:155-165. [PMID: 30995569 DOI: 10.1016/j.envpol.2019.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Concerns have been raised regarding the ecotoxicity of ionic liquids (ILs) owing to their wide usage in numerous fields. Three imidazolium chloride ILs with different numbers of methyl substituents, 1-decyl-imidazolium chloride ([C10IM]Cl), 1-decyl-3-methylimidazolium chloride ([C10MIM]Cl), and 1-decyl-2,3-dimethylimidazolium chloride ([C10DMIM]Cl), were examined to assess their effects on growth, photosynthesis pigments content, chlorophyll fluorescence, photosynthetic and respiration rate, and cellular ultrastructure of Scenedesmus obliquus. The results showed that algal growth was significantly inhibited by ILs treatments. The observed IC50,48h doses were 0.10 mg/L [C10IM]Cl, 0.01 mg/L [C10MIM]Cl, and 0.02 mg/L [C10DMIM]Cl. The chlorophyll a, chlorophyll b, and total chlorophyll content declined, and the chlorophyll fluorescence parameters, minimal fluorescence yield (F0), maximal fluorescence yield (Fm), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII [Y(II)], non-photochemical quenching (NPQ) and non-photosynthetic losses yield [Y(NO)] were notably affected by ILs in a dose-dependent manner. ILs affected the primary photosynthetic reaction, impaired heat dissipation capability, and diminished photosynthetic efficiency, indicating negative effects on photosystem II. The photosynthetic and respiration rates of algal cells were also reduced due to the ILs treatments. The adverse effects of ILs on plasmolysis and chloroplast deformation were examined using ultrastructural analyses; chloroplast swelling and lamellar structure almost disappeared after the [C10MIM]Cl treatment, and an increased number of starch grains and vacuoles was observed after all ILs treatments. The results indicated that one-methyl-substituted ILs were more toxic than non-methyl-substituted ILs, which were also more toxic than di-methyl-substituted ILs. The toxicity of the examined ILs showed the following order: [C10IM]Cl < [C10DMIM]Cl ≤ [C10MIM]Cl.
Collapse
Affiliation(s)
- Huiyang Fan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Qianru Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Lei Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Chenxuanzi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
23
|
Fan H, Liu H, Dong Y, Chen C, Wang Z, Guo J, Du S. Growth inhibition and oxidative stress caused by four ionic liquids in Scenedesmus obliquus: Role of cations and anions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:570-579. [PMID: 30245413 DOI: 10.1016/j.scitotenv.2018.09.106] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 05/19/2023]
Abstract
Ionic liquids (ILs) are widely used in various industrial applications. However, they are considered potential toxins in aquatic environments because of their physical stability and solubility. The growth inhibition and oxidative stress induced by four ionic liquids with different cations and anions on the green algae Scenedesmus obliquus was investigated in this study. The order of growth inhibition was 1‑hexyl‑3‑methylimidazolium nitrate ([HMIM]NO3) > 1‑hexyl‑3‑methylimidazolium chloride ([HMIM]Cl) > N‑hexyl‑3‑metylpyridinium bromide ([HMPy]Br) > N‑hexyl‑3‑metylpyridinium chloride ([HMPy]Cl). Imidazolium IL had a higher growth inhibition effect than pyridinium IL, nitrate IL and bromide IL had a higher effect than chloride IL. Reactive oxygen species (ROS) level in S. obliquus increased with increasing IL concentrations. Green fluorescence in [HMIM]Cl treated algae showed increased brightness compared to the [HMPy]Cl treatment, and [HMIM]NO3 treatment produced increased brightness compared to the [HMPy]Br treatment, suggesting that higher ROS levels were induced by [HMIM]Cl and [HMIM]NO3. Soluble protein, catalase (CAT), and superoxide dismutase (SOD) activities were stimulated at lower concentrations but were inhibited at higher concentrations. Regression analysis suggested that ROS level is the main index responsible for oxidative stress induced by the four ILs. The ILs induced oxidative damage on S. obliquus, and ROS in high concentration treatments could not be effectively removed by the antioxidant system, leading to oxidative damage and ultimately resulting in growth inhibition and cell death.
Collapse
Affiliation(s)
- Huiyang Fan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ying Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Chonglei Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Zongwei Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jiayun Guo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
24
|
Qu R, Liu SS, Li T, Liu HL. Using an interpolation-based method (IDV equ) to predict the combined toxicities of hormetic ionic liquids. CHEMOSPHERE 2019; 217:669-679. [PMID: 30447614 DOI: 10.1016/j.chemosphere.2018.10.200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/17/2018] [Accepted: 10/29/2018] [Indexed: 05/24/2023]
Abstract
In the field of computational toxicology, predicting toxicological interaction or hormesis effect of a mixture from individuals is still a challenge. The two most frequently used model concentration addition (CA) and independent action (IA) also cannot solve these challenges perfectly. In this paper, we used IDVequ (an interpolation method based on the Delaunay triangulation and Voronoi tessellation as well as the training set of direct equipartition ray design (EquRay) mixtures) to predict the toxicities of binary mixtures composed of hormetic ionic liquids (ILs). One of the purposes is to verify the predictive ability of IDVequ. The other one is to improve the risk assessment of ILs mixtures especial hormetic ILs, because the toxicity reports of ILs mixtures are rarely reported in particular the toxicity of the hormetic ILs mixtures. Hence, we determined time-dependent toxicities of four ILs and their binary mixtures (designed by EquRay) to Vibrio qinghaiensis sp.-Q67 at first. Then, mixture toxicities were predicted and compared using the IDVequ and CA. The results show that, the accuracy of IDVequ is higher than the accuracy of CA. And, more important, to some mixtures out of the CA application, IDVequ also can predict the mixture effects accurately. It showed that IDVequ can be applied to predict the toxicity of any binary mixture regardless of the type of concentration-response curve of the components. These toxicity data provided useful information for researching the prediction of hormesis or toxicological interaction of the mixture and toxicities of ILs mixtures.
Collapse
Affiliation(s)
- Rui Qu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Tong Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hai-Ling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
25
|
Zhang C, Du Z, Li B, Sun X, Wang J, Wang J, Zhu L. Evaluating toxicity of 1-octyl-3-methylimidazolium hexafluorophosphate to microorganisms in soil. CHEMOSPHERE 2018; 210:762-768. [PMID: 30036824 DOI: 10.1016/j.chemosphere.2018.07.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Ionic liquids (ILs) were widely applied because of their excellent properties. The present investigation studied the toxicity of the IL 1-octyl-3-methylimidazolium hexafluorophosphate ([Omim]PF6) to the soil microbial population and community diversity with dose (1.0, 2.0, 4.0, 6.0, and 8.0 mg kg-1) and exposure time (7, 10, and 13 d). The results show the IL was stable during the entire experimental period. The Biolog-ECO plate results indicated that the average well color development (AWCD) in the 6.0 and 8.0 mg kg-1 treatments was lower than these in the other treatments. The diversity indices of the Biolog analysis were significantly reduced. The abundance of the ammonia-oxidizing archaea (AOA-) and the ammonia-oxidizing bacteria (AOB-) ammonia monooxygenase (amoA) genes was measured by the real-time polymerase chain reaction (RT-PCR). In the treatments of 4.0, 6.0 and 8.0 mg kg-1, the abundance of amoA genes of the AOA- and AOB- were inhibited by IL [Omim]PF6.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, China.
| | - Xi Sun
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian, 271018, China.
| |
Collapse
|
26
|
Xia X, Wan R, Wang P, Huo W, Dong H, Du Q. Toxicity of imidazoles ionic liquid [C 16mim]Cl to Hela cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:408-414. [PMID: 30015186 DOI: 10.1016/j.ecoenv.2018.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/24/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Our study aimed to evaluate the toxicity of 1-hexadecyl-3-methylimidazolium chloride ([C16min]Cl) on the human cervical carcinoma (Hela) cells. We evaluated toxicity, cell viability, genotoxicity, oxidative stress, apoptosis, and apoptosis-related gene expression in Hela cells following exposure to [C16min]Cl. The results indicated that [C16min]Cl inhibited the growth of Hela cells, decreased cell viability, induced DNA damage and apoptosis, inhibited superoxide dismutase, decreased glutathione content, as well as increased the cellular malondialdehyde level of Hela cells. Moreover, [C16min]Cl induced changes in the transcription of p53, Bax and Bcl-2, suggesting that the p53 and Bcl-2 family might have been involved in the cytotoxicity and apoptosis induced by [C16min]Cl in Hela cells. Taken together, these results revealed that [C16min]Cl imparts oxidative stress, genotoxicity, and induces apoptosis in Hela cells; hence, it is not a green solvent.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Peijin Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Hui Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|
27
|
Peng Y, Tong ZH, Chong HJ, Shao XY. Toxic effects of prolonged exposure to [C 14mim]Br on Caenorhabditis elegans. CHEMOSPHERE 2018; 208:226-232. [PMID: 29879555 DOI: 10.1016/j.chemosphere.2018.05.176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/19/2018] [Accepted: 05/28/2018] [Indexed: 05/19/2023]
Abstract
Ionic liquids (ILs) are gradually concerned due to their potential environmental and health risks. In this work, the chronic effects of imidazolium-based ILs, using [C14mim]Br as a representative, were evaluated using model animal Caenorhabditis elegans. Our results show that prolonged exposure (72 h) of ILs to the nematodes at concentrations of 5 and 10 mg/L induced adverse effects on the growth, locomotive behaviors and development. To explore the toxicity mechanism, lipofuscin content, ROS level and the expressions of five superoxide dismutase (SOD) genes were determined after the prolonged exposure. The lipofuscin content, ROS level and expressions of SOD genes did not show significant changes except that the expression of sod-5 was reduced by 2.7-fold following the treatment of 10 mg/L of [C14mim]Br. These results suggest that oxidative stress may not be responsible for the adverse physiological effects induced by relatively low concentrations of imidazolium-based ILs. We further determined the gene expressions of phase I detoxification enzyme cytochrome P450 (CYP), phase II detoxification enzyme UDP-glucuronosyltransferase (UGT) and ATP-binding cassette (ABC) transporter P-glycoprotein (PGP). The results demonstrate that CYP, UGT and PGP may be involved in the detoxification of ILs. Our findings will aid in understanding the mechanisms of both toxicity and detoxification of imidazolium-based ILs in animals.
Collapse
Affiliation(s)
- Yong Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Zhong-Hua Tong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science & Technology of China, Hefei, 230026, China.
| | - Han-Juan Chong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Xin-Yue Shao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| |
Collapse
|
28
|
Zhang C, Du Z, Wang J, Wang J, Zhou T, Li B, Zhu L, Li W, Hou K. Exposed zebrafish (Danio rerio) to imidazolium-based ionic liquids with different anions and alkyl-chain lengths. CHEMOSPHERE 2018; 203:381-386. [PMID: 29627604 DOI: 10.1016/j.chemosphere.2018.03.178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Ionic liquids (ILs) were considered new "green solvents" in consideration of the low volatility. Since their inception, ionic liquids (ILs) have attracted widespread attention. However, ILs were not safe enough as what we thought. The toxicity of 1-ethyl-3-methylimidazolium ILs ([C2mim]R, R = Cl-, Br-, BF4-) and 1-alkyl-3-methylimidazolium bromine ([Cnmim]Br, n = 2, 4, 8, 10, 12) using 50% lethal concentration (LC50) were studied in the present study to enrich the toxicological information. Besides the LC50 values, the sensitivity test using potassium dichromate (K2Cr2O7) and residue determinations of the tested ILs were also performed. The sensitivity and dynamic changes of IL doses both catered for the stipulation that declared the accuracy of the toxicological test results, which illustrated that the alkyl-chain lengths contributed more than anions to the toxicity of the ILs described above to zebrafish. Additionally, the present study also enriched the toxicological information on imidazolium-based ILs to aquatic systems.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, PR China.
| | - Tongtong Zhou
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, PR China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, PR China.
| | - Wenxiu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, PR China.
| | - Kaixuan Hou
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, PR China.
| |
Collapse
|
29
|
Wan R, Xia X, Wang P, Huo W, Dong H, Chang Z. Toxicity of imidazoles ionic liquid [C 16mim]Cl to HepG2 cells. Toxicol In Vitro 2018; 52:1-7. [PMID: 29842889 DOI: 10.1016/j.tiv.2018.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023]
Abstract
Ionic liquids have garnered increasing attention due to their capacity for low vapor pressure, lack of flammability, designability, good stability, and as a asubstitute for conventional organic solvents. However, their toxicity to various organisms has caused growing concern in recent years. Our study aims to evaluate the toxicity of 1-hexadecyl-3-methylimidazolium chloride ([C16min]Cl) to human hepatocellular carcinoma (HepG2) cells, including cell viability, genotoxicity, oxidative stress, apoptosis, cell cycle, and apoptosis-related gene expression. Our results with HepG2 cells suggested that [C16min]Cl inhibited cellular growth, decreased cell viability, induced DNA damage and apoptosis, inhibited superoxide dismutase, decreased glutathione content, increased cellular malondialdehyde levels as well as altering the cell cycle. Moreover, the induction of [C16min]Cl altered the transcription of p53, Bax and Bcl-2, which are critical for controlling cell cycles progression and death, which suggests its involvement with cytotoxicity and apoptosis induced by [C16min]Cl in HepG2 cells. Taken together, these results revealed that [C16min]Cl exerted genotoxicity, oxidative stress and induced apoptosis in HepG2 cells; hence, it is not a healthy solvent.
Collapse
Affiliation(s)
- Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Peijin Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Hui Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| |
Collapse
|
30
|
Zhang C, Wang J, Zhu L, Du Z, Wang J, Sun X, Zhou T. Effects of 1-octyl-3-methylimidazolium nitrate on the microbes in brown soil. J Environ Sci (China) 2018; 67:249-259. [PMID: 29778159 DOI: 10.1016/j.jes.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 06/08/2023]
Abstract
The toxicity of ionic liquids (ILs) on soil organisms has aroused wide attention due to their high-solubility. The present investigation focused on the toxicity of 1-octyl-3-methylimidazolium nitrate ([C8mim]NO3) on the microbial populations (bacteria, fungi, and actinomycetes), soil enzyme (urease, dehydrogenase, acid phosphatase, and β-glucosidase) activities, microbial community diversity using terminal restriction fragment length polymorphism (T-RFLP), and abundance of the ammonia monooxygenase (amoA) genes of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) using quantitative real-time polymerase chain reaction (q-PCR) in brown soil at each trial with doses of 0, 1.0, 5.0, and 10.0mg/kg on days 10, 20, 30, and 40. The contents of [C8mim]NO3 in soil were measured using high performance liquid chromatography with recoveries of 84.3% to 85.2%, and changed less than 10% during the experimental period. A significant decrease was observed from the bacteria, fungi and actinomycetes populations at 10.0mg/kg, at which the urease activity was inhibited and the β-glucosidase activity was stimulated on days 20, 30, and 40. In addition, [C8mim]NO3 inhibited the dehydrogenase activity at 10mg/kg on days 30 and 40 and the acid phosphatase activity on day 20. The diversity of the soil microbial community and the gene abundance of AOA- and AOB- amoA were also inhibited. Furthermore, the present investigation provided more scientific information for the toxicity evaluation of ILs in soil.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Agriculture Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Jun Wang
- Key Laboratory of Agriculture Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Lusheng Zhu
- Key Laboratory of Agriculture Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Zhongkun Du
- Key Laboratory of Agriculture Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jinhua Wang
- Key Laboratory of Agriculture Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Xi Sun
- Key Laboratory of Agriculture Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Tongtong Zhou
- Key Laboratory of Agriculture Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
31
|
Zhou T, Wang J, Ma Z, Du Z, Zhang C, Zhu L, Wang J. Effects of 1-Alkyl-3-Methylimidazolium Nitrate on Soil Physical and Chemical Properties and Microbial Biomass. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 74:577-586. [PMID: 29478185 DOI: 10.1007/s00244-017-0497-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
Ionic liquids (ILs), also called room temperature ILs, are widely applied in many fields on the basis of their unique physical and chemical properties. However, numerous ILs may be released into and gradually accumulate in the environment due to their extensive use and absolute solubility. The effects of 1-alkyl-3-methylimidazolium nitrate ([Cnmim]NO3, n = 4, 6, 8) on soil pH, conductivity, cation exchange capacity, microbial biomass carbon, and microbial biomass nitrogen were examined at the doses of 1, 10, and 100 mg/kg on days 10, 20, 30, and 40. The results demonstrated that the soil pH decreased and the conductivity increased with increasing IL doses. No significant differences were observed in the soil cation-exchange capacity. All three of the tested ILs decreased the soil microbial biomass carbon and nitrogen. Additionally, there were few differences among the ILs with different alkyl chain lengths on the tested indicators except for the microbial biomass nitrogen. The present study addressed a gap in the literature regarding the effects of the aforementioned ILs with different alkyl side chains on the physicochemical properties of soil, and the results could provide the basic data for future studies on their toxicity to soil organisms, such as earthworms and soil microbes.
Collapse
Affiliation(s)
- Tongtong Zhou
- College of Resources and Environment, Key Lab of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jun Wang
- College of Resources and Environment, Key Lab of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Zhiqiang Ma
- College of Resources and Environment, Key Lab of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Zhongkun Du
- College of Resources and Environment, Key Lab of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China.
| | - Cheng Zhang
- College of Resources and Environment, Key Lab of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Lusheng Zhu
- College of Resources and Environment, Key Lab of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China.
| | - Jinhua Wang
- College of Resources and Environment, Key Lab of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| |
Collapse
|
32
|
Zhang C, Wang J, Dong M, Wang J, Du Z, Li B, Zhu L. Effect of 1-methyl-3-hexylimidazolium bromide on zebrafish (Danio rerio). CHEMOSPHERE 2018; 192:348-353. [PMID: 29121564 DOI: 10.1016/j.chemosphere.2017.10.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Room-temperature ionic liquids, generally referred to ionic liquids (ILs), are "green solvents". Antioxidant responses and DNA damage in zebrafish livers exposed to 1-methyl-3-hexylimidazolium bromide ([C6mim]Br) were evaluated at various doses (5-40 mg/L) for a 28-day IL-exposure. A significant decrease of superoxide dismutase (SOD) activity was exhibited, and catalase (CAT) was inhibited at the highest dose (40 mg/L). Reactive oxygen species (ROS) levels were significantly promoted at most exposure interval times except for the dose of 5 mg/L on day 21 in male and days 21 and 28 in female. Malonaldehyde (MDA) contents remarkable increased exposed to [C6mim]Br. Besides, a notable increase was exhibited, which indicated an inducement of DNA damage with respect to control groups. Thus, we believed that [C6mim]Br causes oxidative stress and DNA damage in zebrafish. Gender differences were insignificant in almost all the tested biomarkers, thus, male and female zebrafish could be mixed at a ratio of 1:1 in the future evaluation. The present study may also provide basic toxicology information for IL evaluation to aquatic organisms.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, Taian, 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, Taian, 271018, PR China
| | - Miao Dong
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, Taian, 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, Taian, 271018, PR China
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, Taian, 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, Taian, 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, Taian, 271018, PR China.
| |
Collapse
|