1
|
Carnevali L, Barbetti M, Statello R, Williams DP, Thayer JF, Sgoifo A. Sex differences in heart rate and heart rate variability in rats: Implications for translational research. Front Physiol 2023; 14:1170320. [PMID: 37035663 PMCID: PMC10080026 DOI: 10.3389/fphys.2023.1170320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
The present study aimed to investigate sex differences in measures of cardiac chronotropy and heart rate variability (HRV) in 132 young adult wild-type Groningen rats (n = 45 females). Electrocardiographic signals were recorded for 48 h in freely moving rats to quantify heart rate (HR) and inter-beat interval (IBI) as measures of cardiac chronotropy, and time- and frequency-domain HRV parameters as physiological readouts of cardiac vagal modulation. Females showed greater vagally-mediated HRV despite having higher HR and shorter IBI than males during undisturbed conditions. Such differences were evident i) at any given level of HRV, and ii) both during the 12-h light/inactive and 12-h dark/active phase of the daily cycle. These findings replicate the paradoxical cardiac chronotropic control reported by human meta-analytic findings, since one would expect greater vagally-mediated HRV to be associated with lower HR and longer IBI. Lastly, the association between some HRV measures and HR was stronger in female than male rats. Overall, the current study in young adult rats provides data illustrating a sex-dependent association between vagally-mediated HRV and indexes of cardiac chronotropy. The current results i) are in line with human findings, ii) suggest to always consider biological sex in the analysis and interpretation of HRV data in rats, and iii) warrant the use of rats for investigating the neuro-hormonal basis and temporal evolution of the impact of sex on the association between vagally-mediated HRV and cardiac chronotropy, which could inform the human condition.
Collapse
Affiliation(s)
- Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- *Correspondence: Luca Carnevali,
| | - Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosario Statello
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - DeWayne P. Williams
- Department of Psychological Science, University of California, Irvine, Irvine, United States
| | - Julian F. Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, United States
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Zhang S, Breitner S, Pickford R, Lanki T, Okokon E, Morawska L, Samoli E, Rodopoulou S, Stafoggia M, Renzi M, Schikowski T, Zhao Q, Schneider A, Peters A. Short-term effects of ultrafine particles on heart rate variability: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120245. [PMID: 36162563 DOI: 10.1016/j.envpol.2022.120245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
An increasing number of epidemiological studies have examined the association between ultrafine particles (UFP) and imbalanced autonomic control of the heart, a potential mechanism linking particulate matter air pollution to cardiovascular disease. This study systematically reviews and meta-analyzes studies on short-term effects of UFP on autonomic function, as assessed by heart rate variability (HRV). We searched PubMed and Web of Science for articles published until June 30, 2022. We extracted quantitative measures of UFP effects on HRV with a maximum lag of 15 days from single-pollutant models. We assessed the risk of bias in the included studies regarding confounding, selection bias, exposure assessment, outcome measurement, missing data, and selective reporting. Random-effects models were applied to synthesize effect estimates on HRV of various time courses. Twelve studies with altogether 1,337 subjects were included in the meta-analysis. For an increase of 10,000 particles/cm3 in UFP assessed by central outdoor measurements, our meta-analysis showed immediate decreases in the standard deviation of the normal-to-normal intervals (SDNN) by 4.0% [95% confidence interval (CI): 7.1%, -0.9%] and root mean square of successive R-R interval differences (RMSSD) by 4.7% (95% CI: 9.1%, 0.0%) within 6 h after exposure. The immediate decreases in SDNN and RMSSD associated with UFP assessed by personal measurements were smaller and borderline significant. Elevated UFP were also associated with decreases in SDNN, low-frequency power, and the ratio of low-frequency to high-frequency power when pooling estimates of lags across hours to days. We did not find associations between HRV and concurrent-day UFP exposure (daily average of at least 18 h) or exposure at lags ≥ one day. Our study indicates that short-term exposure to ambient UFP is associated with decreased HRV, predominantly as an immediate response within hours. This finding highlights that UFP may contribute to the onset of cardiovascular events through autonomic dysregulation.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Regina Pickford
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Timo Lanki
- Finnish Institute for Health and Welfare, Kuopio, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Enembe Okokon
- Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Matteo Renzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Qi Zhao
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany; Partner-Site Munich, German Research Center for Cardiovascular Research (DZHK), Munich, Germany
| |
Collapse
|
3
|
Martin BL, Thompson LC, Kim YH, King C, Snow S, Schladweiler M, Haykal-Coates N, George I, Gilmour MI, Kodavanti UP, Hazari MS, Farraj AK. Peat smoke inhalation alters blood pressure, baroreflex sensitivity, and cardiac arrhythmia risk in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:748-763. [PMID: 33016233 PMCID: PMC7682804 DOI: 10.1080/15287394.2020.1826375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Wildland fires (WF) are linked to adverse health impacts related to poor air quality. The cardiovascular impacts of emissions from specific biomass sources are however unknown. The purpose of this study was to assess the cardiovascular impacts of a single exposure to peat smoke, a key regional WF air pollution source, and relate these to baroreceptor sensitivity and inflammation. Three-month-old male Wistar-Kyoto rats, implanted with radiotelemeters for continuous monitoring of heart rate (HR), blood pressure (BP), and spontaneous baroreflex sensitivity (BRS), were exposed once, for 1-hr, to filtered air or low (0.38 mg/m3 PM) or high (4.04 mg/m3) concentrations of peat smoke. Systemic markers of inflammation and sensitivity to aconitine-induced cardiac arrhythmias, a measure of latent myocardial vulnerability, were assessed in separate cohorts of rats 24 hr after exposure. PM size (low peat = 0.4-0.5 microns vs. high peat = 0.8-1.2 microns) and proportion of organic carbon (low peat = 77% vs. high peat = 65%) varied with exposure level. Exposure to high peat and to a lesser extent low peat increased systolic and diastolic BP relative to filtered air. In contrast, only exposure to low peat elevated BRS and aconitine-induced arrhythmogenesis relative to filtered air and increased circulating levels of low-density lipoprotein cholesterol, complement components C3 and C4, angiotensin-converting enzyme (ACE), and white blood cells. Taken together, exposure to peat smoke produced overt and latent cardiovascular consequences that were likely influenced by physicochemical characteristics of the smoke and associated adaptive homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | - Yong Ho Kim
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Charly King
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| | - Samantha Snow
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
- ICF International, Durham, NC
| | | | | | - Ingrid George
- Air Methods & Characterization Division, US EPA, RTP, NC
| | - M. Ian Gilmour
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| | | | - Mehdi S. Hazari
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| |
Collapse
|
4
|
Abstract
Air pollutants pose a serious worldwide health hazard, causing respiratory and cardiovascular morbidity and mortality. Pollutants perturb the autonomic nervous system, whose function is critical to cardiopulmonary homeostasis. Recent studies suggest that pollutants can stimulate defensive sensory nerves within the cardiopulmonary system, thus providing a possible mechanism for pollutant-induced autonomic dysfunction. A better understanding of the mechanisms involved would likely improve the management and treatment of pollution-related disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
5
|
Shih CH, Chen JK, Kuo LW, Cho KH, Hsiao TC, Lin ZW, Lin YS, Kang JH, Lo YC, Chuang KJ, Cheng TJ, Chuang HC. Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. Part Fibre Toxicol 2018; 15:44. [PMID: 30413208 PMCID: PMC6234801 DOI: 10.1186/s12989-018-0281-1 10.1186/s12989-018-0281-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Effects of air pollution on neurotoxicity and behavioral alterations have been reported. The objective of this study was to investigate the pathophysiology caused by particulate matter (PM) in the brain. We examined the effects of traffic-related particulate matter with an aerodynamic diameter of < 1 μm (PM1), high-efficiency particulate air (HEPA)-filtered air, and clean air on the brain structure, behavioral changes, brainwaves, and bioreactivity of the brain (cortex, cerebellum, and hippocampus), olfactory bulb, and serum after 3 and 6 months of whole-body exposure in 6-month-old Sprague Dawley rats. RESULTS The rats were exposed to 16.3 ± 8.2 (4.7~ 68.8) μg/m3 of PM1 during the study period. An MRI analysis showed that whole-brain and hippocampal volumes increased with 3 and 6 months of PM1 exposure. A short-term memory deficiency occurred with 3 months of exposure to PM1 as determined by a novel object recognition (NOR) task, but there were no significant changes in motor functions. There were no changes in frequency bands or multiscale entropy of brainwaves. Exposure to 3 months of PM1 increased 8-isoporstance in the cortex, cerebellum, and hippocampus as well as hippocampal inflammation (interleukin (IL)-6), but not in the olfactory bulb. Systemic CCL11 (at 3 and 6 months) and IL-4 (at 6 months) increased after PM1 exposure. Light chain 3 (LC3) expression increased in the hippocampus after 6 months of exposure. Spongiosis and neuronal shrinkage were observed in the cortex, cerebellum, and hippocampus (neuronal shrinkage) after exposure to air pollution. Additionally, microabscesses were observed in the cortex after 6 months of PM1 exposure. CONCLUSIONS Our study first observed cerebral edema and brain impairment in adult rats after chronic exposure to traffic-related air pollution.
Collapse
Affiliation(s)
- Chi-Hsiang Shih
- 0000 0000 9337 0481grid.412896.0School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Kun Chen
- 0000000406229172grid.59784.37Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Wei Kuo
- 0000000406229172grid.59784.37Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuan-Hung Cho
- 0000000406229172grid.59784.37Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ta-Chih Hsiao
- 0000 0004 0546 0241grid.19188.39Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhe-Wei Lin
- 0000 0000 9337 0481grid.412896.0School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Syuan Lin
- 0000 0000 9337 0481grid.412896.0School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiunn-Horng Kang
- 0000 0004 0639 0994grid.412897.1Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan ,0000 0000 9337 0481grid.412896.0Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- 0000 0000 9337 0481grid.412896.0The Ph.D Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- 0000 0000 9337 0481grid.412896.0School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan ,0000 0000 9337 0481grid.412896.0Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- 0000 0004 0546 0241grid.19188.39Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- 0000 0000 9337 0481grid.412896.0School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan ,0000 0000 9337 0481grid.412896.0School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan ,0000 0000 9337 0481grid.412896.0Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
6
|
Shih CH, Chen JK, Kuo LW, Cho KH, Hsiao TC, Lin ZW, Lin YS, Kang JH, Lo YC, Chuang KJ, Cheng TJ, Chuang HC. Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. Part Fibre Toxicol 2018; 15:44. [PMID: 30413208 PMCID: PMC6234801 DOI: 10.1186/s12989-018-0281-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022] Open
Abstract
Background Effects of air pollution on neurotoxicity and behavioral alterations have been reported. The objective of this study was to investigate the pathophysiology caused by particulate matter (PM) in the brain. We examined the effects of traffic-related particulate matter with an aerodynamic diameter of < 1 μm (PM1), high-efficiency particulate air (HEPA)-filtered air, and clean air on the brain structure, behavioral changes, brainwaves, and bioreactivity of the brain (cortex, cerebellum, and hippocampus), olfactory bulb, and serum after 3 and 6 months of whole-body exposure in 6-month-old Sprague Dawley rats. Results The rats were exposed to 16.3 ± 8.2 (4.7~ 68.8) μg/m3 of PM1 during the study period. An MRI analysis showed that whole-brain and hippocampal volumes increased with 3 and 6 months of PM1 exposure. A short-term memory deficiency occurred with 3 months of exposure to PM1 as determined by a novel object recognition (NOR) task, but there were no significant changes in motor functions. There were no changes in frequency bands or multiscale entropy of brainwaves. Exposure to 3 months of PM1 increased 8-isoporstance in the cortex, cerebellum, and hippocampus as well as hippocampal inflammation (interleukin (IL)-6), but not in the olfactory bulb. Systemic CCL11 (at 3 and 6 months) and IL-4 (at 6 months) increased after PM1 exposure. Light chain 3 (LC3) expression increased in the hippocampus after 6 months of exposure. Spongiosis and neuronal shrinkage were observed in the cortex, cerebellum, and hippocampus (neuronal shrinkage) after exposure to air pollution. Additionally, microabscesses were observed in the cortex after 6 months of PM1 exposure. Conclusions Our study first observed cerebral edema and brain impairment in adult rats after chronic exposure to traffic-related air pollution. Electronic supplementary material The online version of this article (10.1186/s12989-018-0281-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chi-Hsiang Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuan-Hung Cho
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhe-Wei Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Syuan Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiunn-Horng Kang
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.,Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan. .,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
7
|
Zhou W, Tian D, He J, Yan X, Zhao J, Yuan X, Peng S. Prolonged exposure to carbon nanoparticles induced methylome remodeling and gene expression in zebrafish heart. J Appl Toxicol 2018; 39:322-332. [PMID: 30289172 DOI: 10.1002/jat.3721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 01/15/2023]
Abstract
Growing black carbon (BC) emission has become one of the major urgent environmental issues facing human beings. Usually, BC or BC-containing carbon nanoparticles (CNPs) were recognized as non-directly toxic components of atmospheric particulate matter. However, epidemiology studies have provided much evidence of the associations of exposure of particulate-containing carbon particles with cardiovascular diseases. There are still no related studies to support the epidemiological conclusions. Hence, in this article we exposed adult zebrafish to CNPs for 60 days, and then explored the heart location and potential adverse effects on cardiac tissues of these nanosized carbon particles. Our results first showed direct visualization of cardiac endothelial uptake and heart deposition of CNPs in zebrafish. In addition, CNPs caused significant ultrastructural alterations in myocardial tissue and induced the expression of inflammatory cytokines in a dose-dependent manner, resulting in sub-endocardial inflammation and cell apoptosis. Moreover, our data demonstrated the perturbations caused by CNPs on DNA methylation, suggesting that DNA methylome remodeling might play a critical role in CNP-induced cardiotoxicity in zebrafish heart. Therefore, this study not only proved a laboratory link between CNP exposure and cardiotoxicity in vivo, but also indicated a possible toxicity mechanism involved.
Collapse
Affiliation(s)
- Wei Zhou
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Academy of Military Medical Sciences, Beijing, 100850, China
| | - Dongdong Tian
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Department of Pharmacy, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Jun He
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiabei Yan
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jun Zhao
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiaoyan Yuan
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Academy of Military Medical Sciences, Beijing, 100850, China
| |
Collapse
|
8
|
Liu JY, Hsiao TC, Lee KY, Chuang HC, Cheng TJ, Chuang KJ. Association of ultrafine particles with cardiopulmonary health among adult subjects in the urban areas of northern Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:211-215. [PMID: 29426143 DOI: 10.1016/j.scitotenv.2018.01.218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/14/2018] [Accepted: 01/22/2018] [Indexed: 05/07/2023]
Abstract
The association between short-term exposure to particulate air pollution, especially fine particles, and cardiopulmonary health has been well-established in previous studies. However, previous findings regarding the effect of ultrafine particles (UFPs) on cardiopulmonary health are inconsistent. We repeatedly measured the mass concentrations of UFPs using a Micro-Orifice Uniform Deposit Impactor (MOUDI) in the apartments of 100 adult participants and collected the participants' health data from the pulmonary outpatient unit of Shuang-Ho Hospital to investigate the association between short-term exposure to UFPs and cardiopulmonary health using mixed-effects models from January 1, 2014 to August 31, 2017. We also collected ambient air pollution monitoring data from the Taiwan Environmental Protection Administration for data analysis. We observed that an interquartile range increase in the 24-hour mean UFPs (0.97 μg/m3) was associated with a 6.3% [95% confidence interval (CI) = 2.9, 9.7], 5.6% (95% CI = 4.1, 7.1) and 8.5% (95% CI = 3.9, 13.1) increase in systolic blood pressure, diastolic blood pressure and high sensitivity-C-reactive protein, respectively. We also observed the association of particulate matter less than or equal to 2.5 μm in diameter and nitrogen dioxide with increased blood pressure and ozone with decreased lung function. A negative trend between UFPs and forced expiratory volume in the first second was observed. We concluded that short-term exposure to UFPs was associated with cardiovascular health in adult subjects in the urban areas of northern Taiwan.
Collapse
Affiliation(s)
- Jun-Yu Liu
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan County, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|