1
|
Li X, Wang M, Hou M, Su G, Sun B, Hua Y, Pang J, Meng J, Shi B, Li Q. Current status and strategies for controlling hexachlorobutadiene from multiple perspectives of emission, occurrence, and disposal. ENVIRONMENTAL RESEARCH 2025; 268:120760. [PMID: 39756780 DOI: 10.1016/j.envres.2025.120760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Hexachlorobutadiene (HCBD), as an emerging persistent organic pollutant, poses a pressing global environmental issue concerning its reduction and control. However, the lack of systematic studies on the sources and occurrence of HCBD hinders the development of effective disposal technologies. This study addresses HCBD prevention and treatment from multiple perspectives, including source emissions, environmental contamination distribution, and control technologies. The dominant source of HCBD emissions varied by country, mainly industrial production processes of trichloroethylene, perchloroethylene, and carbon tetrachloride in China and magnesium production in Europe. Further research on the relevant generation mechanisms is necessary to develop targeted source control strategies. HCBD has been detected in various environmental media and biological organisms worldwide. Compared to sludge and soil, the concentration of HCBD in the atmosphere and water were relatively higher, particularly in China and Nigeria, with the concentration reaching up to 179 μg/m3 and 2629 μg/L, respectively. Attention should be focused on the water treatment processes to reduce HCBD levels in sludge and ensure the safety of drinking water. Additionally, studies of HCBD exposure levels in organisms should also focus on diet to further assess health risks to humans. Currently, available disposal technologies primarily focus on the treatment of contaminated environmental media, including physical thermal desorption, chemical reduction dechlorination and oxidative degradation, and biodegradation, while the development and application of source control methods remain insufficient. However, these technologies may not completely degrade HCBD, potentially causing secondary pollution. Future efforts should prioritize the development of green, efficient, and thoroughly destructive thermal catalytic technologies, with an emphasis on the integration of multiple techniques. This work provides critical insights for the development and implementation of comprehensive control strategies for HCBD regarding its source, occurrence, and pollution disposal.
Collapse
Affiliation(s)
- Xin Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China; Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mujie Wang
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing, 100035, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - YuKang Hua
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Pang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Cheng X, Jiang L, Liu W, Song X, Kumpiene J, Luo C. Phytoremediation of trichloroethylene in the soil/groundwater environment: Progress, problems, and potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176566. [PMID: 39362566 DOI: 10.1016/j.scitotenv.2024.176566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Trichloroethylene (TCE) poses a significant environmental threat in groundwater and soil, necessitating effective remediation strategies. Phytoremediation offers a cost-effective and environmentally friendly approach to remediation. However, the mechanisms governing plant uptake, volatilisation, and degradation of TCE remain poorly understood. This review explores the mechanisms of TCE phytoremediation, metabolic pathways, and influencing factors, emphasizing future research directions to improve the understanding of TCE phytoremediation. The results showed that although the proportion of TCE phytovolatilisation is limited, it is important at sites chronically contaminated with TCE. The rhizosphere is a key microzone for pollutant redox reactions that significantly enhance its effectiveness when its characteristics are fully utilised and manipulated through reinforcement. Future research should focus on manipulating microbial communities through methods such as the application of endophytic bacteria and genetic modification. However, practical applications are in their infancy and further investigation is needed. Furthermore, many findings are based on non-uniform parameters or unstandardised methods, making them difficult to compare. Therefore, future studies should provide more standardised experimental parameters and employ accurate and standardised methods to develop suitable prediction models, enhancing data comparability and deepening our understanding of plant detoxification mechanisms.
Collapse
Affiliation(s)
- Xianghui Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wuxing Liu
- CAS Key Laboratory of Soil Environment & Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Song
- CAS Key Laboratory of Soil Environment & Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jurate Kumpiene
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97187, Sweden
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
3
|
Luo Y, Liu G. Chemical mechanisms of hexachlorobutadiene reactions in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124893. [PMID: 39241950 DOI: 10.1016/j.envpol.2024.124893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Hexachloro-1,3-butadiene (HCBD) has received increasing attention because of its adverse effects on human health. Although HCBD is regulated under the Stockholm Convention, it is still widely detected in the environment. However, detailed reports on the chemical mechanisms of HCBD reactions in the environment are lacking. This review comprehensively summarizes HCBD's unintentional industrial sources and formation mechanisms, and chemical reactions and transformations in different media (gas, water, and biological phases). Photochemical reactions in the atmosphere can degrade and transform HCBD and potentially form other toxic compounds, such as phosgene. Aerobic pyrolysis of HCBD can generate complex byproducts. Further research is essential to fully understand the environmental behavior of HCBD.
Collapse
Affiliation(s)
- Yuyan Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Wania F, McLachlan MS. The Stockholm Convention at a Crossroads: Questionable Nominations and Inadequate Compliance Threaten Its Acceptance and Utility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13587-13593. [PMID: 39042050 PMCID: PMC11308522 DOI: 10.1021/acs.est.4c06775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Twenty years since coming into force, the Stockholm Convention has become a "living" global agreement that has allowed for the addition of substances that are likely, as a result of their long-range environmental transport (LRET), to lead to significant adverse effects. The recent listing of the phenolic benzotriazole UV-328 in Annex A and a draft nomination of three cyclic volatile methylsiloxanes (cVMS) for Annex B draw attention to the fact that many chemicals are subject to LRET and that this can lead to questionable nominations. The nomination of UV-328 and the draft nomination of cVMS also raise the spectre of regrettable substitutions. At the same time, atmospheric monitoring across the globe reveals that environmental releases of several unintentionally produced POPs listed in Annex C, such as hexachlorobenzene and hexachlorobutadiene, are continuing unabated, highlighting shortcomings in the enforcement of the minimum measures required under Article 5. There is also no evidence of efforts to substitute a chemical whose use has been known for three decades to unintentionally produce polychlorinated biphenyls. These developments need to be rectified to safeguard the long-term viability and acceptance of a global treaty of undeniable importance.
Collapse
Affiliation(s)
- Frank Wania
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Michael S. McLachlan
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Shunthirasingham C, Hoang M, Lei YD, Gawor A, Wania F. A Decade of Global Atmospheric Monitoring Delivers Mixed Report Card on the Stockholm Convention. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:573-579. [PMID: 38882203 PMCID: PMC11172704 DOI: 10.1021/acs.estlett.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024]
Abstract
Time trends in atmospheric concentrations serve to evaluate how effective the Stockholm Convention is in reducing or eliminating environmental releases of persistent organic pollutants (POPs). Twelve years (2005-2016) of continuous monitoring with a global network of 20 sampling sites reveals that concentrations of the pesticide endosulfan began to drop coincident with its listing as POP in 2011. Concentrations of other POPs started to decrease prior to listing and during the sampling period declined very slowly or not at all. Concentrations of some unintentionally produced POPs (hexachlorobenzene, hexachlorobutadiene) increased to become the most abundant and most widely dispersed POPs in the global atmosphere. Their formation processes and release locations need to be identified to facilitate the Convention's goal of curbing releases from unintentional production.
Collapse
Affiliation(s)
- Chubashini Shunthirasingham
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Michelle Hoang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ying Duan Lei
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Anya Gawor
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
6
|
Zhao C, Yang L, Sun Y, Chen C, Huang Z, Yang Q, Yun J, Habib A, Liu G, Zheng M, Jiang G. Atmospheric emissions of hexachlorobutadiene in fine particulate matter from industrial sources. Nat Commun 2024; 15:4737. [PMID: 38834556 DOI: 10.1038/s41467-024-49097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Hexachlorobutadiene (HCBD) is a concerning chemical that is included in the United States Toxic Substances Control Act, and the Stockholm Convention. Knowledge of the sources of HCBD is insufficient and is pivotal for accurate inventory and implementing global action. In this study, unintentional HCBD release and source emission factors of 121 full-scale industrial plants from 12 industries are investigated. Secondary copper smelting, electric arc furnace steelmaking, and hazardous waste incineration show potential for large emission reductions, which are found of high HCBD emission concentrations of > 20 ng/g in fine particulate matter in this study. The highest HCBD emission concentration is observed for the secondary copper smelting industry (average: 1380 ng/g). Source emission factors of HCBD for the 12 industries range from 0.008 kg/t for coal fire power plants to 0.680 kg/t for secondary lead smelting, from which an estimation of approximately 8452.8 g HCBD emissions annually worldwide achieved. The carcinogenic risks caused by HCBD emissions from countries and regions with intensive 12 industrial sources are 1.0-80 times higher than that without these industries. These results will be useful for formulating effective strategies of HCBD control.
Collapse
Affiliation(s)
- Chenyan Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Yuxiang Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Changzhi Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zichun Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qiuting Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghui Yun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ahsan Habib
- Department of Chemistry, Dhaka University, Dhaka, Bangladesh
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Li Y, Hou F, Shi R, Li X, Lan J, Zhao Z. Contamination Status, Environmental Factor and Risk Assessment of Polychlorinated Biphenyls and Hexachlorobutadiene in Greenhouse and Open-Field Agricultural Soils across China. TOXICS 2023; 11:941. [PMID: 37999593 PMCID: PMC10675547 DOI: 10.3390/toxics11110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
With the popularization and high-intensity utilization of greenhouse cultivation for crops growth, the pollution of greenhouse soils has been of concern. Therefore, a national-scale survey was conducted to investigate the contamination status, sources, influence factors and the risks of polychlorinated biphenyls (PCBs) and hexachlorobutadiene (HCBD) in greenhouse and nearby open-field soils. Contents of PCBs ranged from 10-6). This study provided a full insight on the contamination status and risks of PCBs and HCBD when guiding greenhouse agriculture activities.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.L.); (Z.Z.)
| | - Fangwei Hou
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China;
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
| | - Xiaohua Li
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China;
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.L.); (Z.Z.)
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.L.); (Z.Z.)
| |
Collapse
|
8
|
Hao S, Li WL, Liu LY, Zhang ZF, Ma WL, Li YF. Spatial distribution and temporal trend of organochlorine pesticides in Chinese surface soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82152-82161. [PMID: 37318734 DOI: 10.1007/s11356-023-28198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Although organochlorine pesticides (OCPs) in the Stockholm Convention List were banned for a period of time, the residue of OCPs in environment was still detected recently. Therefore, the continuous environmental monitoring was necessary and important for the deep understanding on the temporal trend of environmental fate of OCPs. In this study, the national scale surface soil samples in 26 provinces of China in 2012 were collected, and 28 OCPs were analyzed. The mean concentrations (ng/g dw) of Σhexachlorocyclohexanes (HCHs), Σdichlorodiphenyltrichloroethane (DDTs), hexachlorobenzene (HCB), and hexachlorobutadiene (HCBD) were 2.47 ± 5.4, 4.29 ± 8.28, 3.33 ± 7.68, and 0.041 ± 0.097, respectively. The correlations between OCPs concentrations with temperature, latitude, and longitude were conducted for the deep study of the spatial distribution pattern of OCPs. It was found that HCHs, HCB, and HCBD are positively correlated with latitude and longitude; however, the correlations were not significant. HCHs followed the secondary distribution pattern, and DDTs followed both the primary and/or secondary distribution patterns. Except for HCB, other OCPs showed a gradual downward trend from 2005 to 2012, indicating the effectiveness of the phase-out of OCPs. In summary, the results of the study provided new insight into the related studies, which will help us to better understand the long-term environmental fate of OCPs on large scales.
Collapse
Affiliation(s)
- Shuai Hao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China.
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China.
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| |
Collapse
|
9
|
Yang M, Mao H, Li H, Yang F, Cao F. Quantifying Concentrations and Emissions of Hexachlorobutadiene - A New Atmospheric Persistent Organic Pollutant in northern China. ENVIRONMENTAL RESEARCH 2023; 216:114139. [PMID: 36084678 DOI: 10.1016/j.envres.2022.114139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Hexachlorobutadiene (HCBD) was listed as a new persistent organic pollutant for global regulation under Stockholm Convention in 2015, and there has been scarce information on its atmospheric concentrations, distributions, and emission sources. HCBD air samples were collected and analyzed to characterize concentrations and distributions at high elevation and urban sites as well as emission source locations in Northern China. We found ambient concentrations of HCBD in Northern China averaged at 34 ± 16 and 36 ± 28 pptv at urban sites in Jinan and Tai'an, respectively, and 31 ± 21 pptv at a high-elevation site Mount Tai. HCBD concentrations at the high elevation and urban sites were found to be affected by long-range transport under the influence of the East Asian monsoon climate. Over potential sources areas, we found concentrations of 76 ± 33 pptv in a mixed factory park, 59 ± 21 pptv in a rubber plant and 74 ± 8 pptv in a municipal solid waste (MSW) landfill area, which were all several times higher than in urban sites. The large concentration gradient across the various environments revealed strong emission sources of HCBD, especially over MSW landfill and Cl-compound production and application areas. An emission rate of 9.2 × 104 kg/yr and an oxidation rate of 32.9 kg/yr for HCBD were estimated for the mixed factory park. OH and Cl are much more active in reaction with HCBD than other oxidants in the atmosphere. Dry deposition and oxidation removed about 5.3% and 0.04%, respectively, of the emitted, suggesting that ∼95% of the emitted HCBD remaining in the atmosphere and could be transported for redistribution. Our findings revealed significant emission sources of HCBD in northern China, which was in turn affected by major sources in East-central China. The regional influence of HCBD pollution warrants serious concerns and points to the need to develop mitigation strategies.
Collapse
Affiliation(s)
- Minmin Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Huiting Mao
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Hongli Li
- Environmental Monitoring Central Station of Shandong Province, Jinan, 250101, China
| | - Fengchun Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Fangfang Cao
- Environmental Monitoring Central Station of Shandong Province, Jinan, 250101, China
| |
Collapse
|
10
|
Lu Y, Chen ZF, Chen YJ, Xu YZ, Chen Y, Dai X, Yao L, Qi Z, Cai Z. Distribution and risk assessment of hexachlorobutadiene, pentachloroanisole, and chlorobenzenes in sediment and wild fish from a region affected by industrial and agricultural activities in South China. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126002. [PMID: 33992918 DOI: 10.1016/j.jhazmat.2021.126002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Hexachlorobutadiene, pentachloroanisole, and chlorobenzenes are regulated to control their release into the environment. There is little information regarding the distribution and risks of these pollutants in Chinese rivers. Therefore, we selected a prosperous agricultural and industrial region in South China as our study area and investigated the contamination profiles and risks of these pollutants in sediment and fish tissue samples. The results showed that, when compared with their levels in sediment, these lipophilic pollutants tended to accumulate in fish tissues in the following order: liver > brain > muscle. Some trichlorobenzene was found to be the result of reductive dechlorination of higher chlorinated benzenes. Hexachlorobutadiene and hexachlorobenzene could pose medium risks at certain sampling sites, but in general, almost no risk was found to the ecosystem. When the estimated daily human intakes of analytes through fish consumption were calculated for different age groups, the results suggested the analytes were unlikely to be a serious health concern for human. Our results could be used to update the existing data on the occurrence of these pollutants in the aquatic environment and to provide information for further pollution control by the local government.
Collapse
Affiliation(s)
- Yan Lu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| | - Yi-Jie Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying-Zao Xu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanyan Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaoxin Dai
- Ministry of Agriculture Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Aquatic Product (Guangzhou), Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Li Yao
- Guangdong Institute of Analysis (China National Analytical Center), Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
11
|
WANG Y, ZHANG H, SHI J, JIANG G. [Research progress on analytical methods for the determination of hexachlorobutadiene]. Se Pu 2021; 39:46-56. [PMID: 34227358 PMCID: PMC9274838 DOI: 10.3724/sp.j.1123.2020.05019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 11/25/2022] Open
Abstract
Hexachlorobutadiene (HCBD) is one of persistent organic pollutants (POPs) listed in Annex A and Annex C of the Stockholm Convention in 2015 and 2017, respectively. Research on the sources, environmental occurrences, and biological effects of HCBD has a great significance in controlling this newly added POPs. Sensitive and credible methods for the determination of HCBD are preconditions and form the basis for related research work. In recent years, many researchers have included HCBD as one of the analytes in monitoring or methodological studies. Based on the results of these studies, this paper reviews the research progress on analytical methods for the determination of HCBD and focuses on sample pretreatment methods for the analysis of HCBD in various matrices such as air, water, soil, sewage sludge, and biological tissues. The advantages and disadvantages of the methods are also compared to provide reference for further research in this field.For air samples, HCBD was usually collected by passing air through sorbent cartridges. Materials such as Tenax-TA, Carbosieve, Carbopack, Carboxen 1000, or their mixtures were used as the sorbent. HCBD was thermally desorbed and re-concentrated in a trap and finally transferred for instrumental analysis. Limits of detection (LODs) for HCBD in these methods were at the ng/m3 scale. Compared to sampling using pumps, passive air samplers (PAS) such as polyurethane foam PAS (PUF-PAS) do not require external power supply and are more convenient for sampling POPs in air at a large scale. The LOD of the sorbent-impregnated PUF PAS (SIP-PAS) method was much lower (0.03 pg/m3) than that of the PUF-PAS method (20 pg/m3). However, the sampling volumes in the SIP-PAS and PUF-PAS methods (-6 m3) calculated from the log KOA value of HCBD have significant uncertainty, and this must be confirmed in the future.For water samples, HCl or copper sulfate was added to the sample immediately after sampling to prevent any biological activities. HCBD can be extracted from water using methods such as the purge and trap method, liquid-liquid extraction (LLE) method, and solid phase extraction (SPE) method. Among these methods, SPE enabled the simultaneous extraction, purification, and concentration of trace HCBD in a single step. Recoveries of HCBD on Strata-X and Envi-Carb SPE cartridges (63%-64%) were higher than those on Envi-disk, Oasis HLB, and Strata-C18 cartridges (31%-46%). Drying is another key step for obtaining high recoveries of HCBD. Disk SPE involving the combination of a high-vacuum pump and a low-humidity atmosphere is an effective way to eliminate the residual water. In addition, a micro SPE method using functionalized polysulfone membranes as sorbents and employing ultrasonic desorption was developed for extracting HCBD from drinking water. The recovery of HCBD reached 102%, with a relative standard deviation (RSD) of 3.5%.For solid samples such as dust, soil, sediment, sewage sludge, fly ash, and biota tissue, multiple pretreatment methods were used in combination, owing to the more complex matrix. Freeze or air drying, grinding, and sieving of samples were commonly carried out before the extraction. Soxhlet extraction is a typical extraction method for HCBD; however, it requires many organic reagents and is time consuming. The accelerated solvent extraction (ASE) method requires a small amount of organic reagent, and the extraction can be performed rapidly. It was recently applied for the extraction of HCBD from solid samples under 10.34 MPa and at 100 ℃. Purification could be achieved simultaneously by mixing florisil materials with samples in the ASE pool. Nevertheless, employing the ASE methods widely is difficult because of their high costs. Ultrasonic-assisted extraction (UAE) has the same extraction efficiency for HCBD, with much lower costs compared to ASE, and is therefore adopted by most researchers. The type of extraction solvent, solid-to-liquid ratio, ultrasonic temperature, and power affect the extraction efficiency. Ultrasonic extraction at 30 ℃ and 200 W using 30 mL dichloromethane as the extraction solvent resulted in acceptable recoveries (64.0%-69.4%) of HCBD in 2 g fly ash. After extraction, a clean-up step is necessary for the extracts of solid samples. Column chromatography is frequently used for purification. The combined use of several columns or a multilayer column filled with florisil, silica gel, acid silica gel, or alumina can improve the elimination efficiency of interfering substances.Instrumental analysis for HCBD is mainly performed with a gas chromatograph equipped with a mass spectrometer operating in selected ion monitoring mode. DB-5MS, HP-5MS, HP-1, ZB-5MS, and BP-5 can be used as the chromatographic columns. Qualification ions and quantification ions include m/z 225, 223, 260, 227, 190, and 188. GC-MS using an electron ionization (EI) source was more sensitive to HCBD than GC-MS using a positive chemical ionization source (PCI) and atmospheric pressure chemical ionization source (APCI). Gas chromatography-tandem mass spectrometry (GC-MS/MS), gas chromatography-high-resolution mass spectrometry (GC-HRMS), and high-resolution gas chromatography-high-resolution mass spectrometry (HRGC-HRMS) have recently been used for the separation and determination of HCBD and various other organic pollutants. Instrumental detection limits for HCBD in GC-MS/MS, GC-HRMS, and HRGC-HRMS were more than ten times lower than that in GC-MS, indicating the remarkable application potential of these high-performance instruments in HCBD analysis.
Collapse
|
12
|
Farzana S, Ruan Y, Wang Q, Wu R, Kai Z, Meng Y, Leung KMY, Lam PKS. Developing interim water quality criteria for emerging chemicals of concern for protecting marine life in the Greater Bay Area of South China. MARINE POLLUTION BULLETIN 2020; 161:111792. [PMID: 33197792 DOI: 10.1016/j.marpolbul.2020.111792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to establish marine water quality criteria (MWQC) for emerging chemicals of concern (ECCs) for protecting aquatic life in the Greater Bay Area (GBA) of South China. Despite the frequent occurrence and elevated concentrations of these ECCs in the GBA, there is a lack of regional MWQC for these contaminants. We screened 21 common ECCs that were classified into the following six groups: (1) new persistent organic contaminants; (2) brominated flame retardants; (3) perfluoroalkyl and polyfluoroalkyl substances; (4) pharmaceutically active compounds (PhACs); (5) plasticizers; and (6) personal care products. Globally, MWQC for PhACs remain largely unavailable despite their increasing occurrence in marine environments. Using an integrative scientific approach, we derived interim MWQC for the GBA with specific protection goals. The approach described herein can be applied for the derivation of MWQC for ECCs and the establishment of guidelines for ecological risk assessment in the GBA and other regions.
Collapse
Affiliation(s)
- Shazia Farzana
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhang Kai
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yan Meng
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
13
|
Kong Q, Lei X, Zhang X, Cheng S, Xu C, Yang B, Yang X. The role of chlorine oxide radical (ClO •) in the degradation of polychoro-1,3-butadienes in UV/chlorine treatment: kinetics and mechanisms. WATER RESEARCH 2020; 183:116056. [PMID: 32736270 DOI: 10.1016/j.watres.2020.116056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Polychoro-1,3-butadienes (CBDs) were widely found in aqueous environment and resistant to conventional water treatment. In this study, the abatement of CBDs during UV/chlorine treatment was investigated. In comparison to UV irradiation alone, free chlorine addition brought benefits for the reduction of tetra-CBDs (TCBDs), but to lesser extent for penta-CBDs (PCBDs), and virtually no benefit for hexa-CBD (HCBD). At a UV dose of 128 mJ cm-2 and a chlorine dose of 10 mg L-1, about 71.7-97.8% CBDs were degraded by UV/chlorine treatment within 10 min. UV irradiation contributed 32.8%-97.6%, HO• contributed 2.6%-14.4%, and reactive chlorine species (RCS) contributed less than 0.5%-42.3% to CBDs degradation. The percentages of RCS contribution generally followed the order of TCBDs (except (Z,Z)-1,2,3,4-TCBD) > PCBDs > HCBD. The chlorine oxide radical (ClO•) was the dominant RCS contributing to the degradation of CBDs. The second-order reaction rate constants of ClO• with CBDs ( [Formula: see text] ) were at ∼ 107 M-1s-1 except (Z,Z)-1,2,3,4-TCBD and HCBD (<106 M-1s-1). [Formula: see text] generally decreased with increasing numbers of chlorine atoms and was also affected by the positions of chlorine atoms in CBDs. A distinct reaction pathway of ClO•, with (Z)-1,1,2,3,4-PCBD as a representative CBD, was proposed. Photoisomers of CBDs from Z or E configuration were observed at lower concentrations in UV/chlorine treatment than under UV irradiation alone due to the radical-involved oxidation, but more organic acids including oxalic acid were observed. In a natural water sample, UV/chlorine treatment also exhibited a good performance in abatement of TCBDs and PCBDs, but not in abatement of HCBD.
Collapse
Affiliation(s)
- Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chao Xu
- Ministry of Education Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Bin Yang
- Ministry of Education Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
14
|
Chen YJ, Zhang Y, Chen Y, Lu Y, Li R, Dong C, Qi Z, Liu G, Chen ZF, Cai Z. GC-MS/MS analysis for source identification of emerging POPs in PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110368. [PMID: 32114245 DOI: 10.1016/j.ecoenv.2020.110368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Emerging POPs have received increasing attention due to their potential persistence and toxicity, but thus far the report regarding the occurrence and distribution of these POPs in PM2.5 is limited. In this study, an extremely sensitive and reliable method, using ultrasonic solvent extraction and silica gel purification followed by gas chromatography coupled with electron ionization triple quadrupole mass spectrometry, was developed and used for the trace analysis of hexachlorobutadiene (HCBD), pentachloroanisole (PCA) and its analogs chlorobenzenes (CBs) in PM2.5 from Taiyuan within a whole year. The limits of detection and limits of quantitation of analytes were 1.14 × 10-4‒2.74 × 10-4 pg m-3 and 3.80 × 10-4‒9.14 × 10-4 pg m-3. HCBD and PCA were detected at the mean concentrations of 3.69 and 1.84 pg m-3 in PM2.5, which is reported for the first time. Based on the results of statistical analysis, HCBD may come from the unintentional emission of manufacture or incineration of chlorinate-contained products but not coal combustion, while O3-induced photoreaction was the potential source of PCA in PM2.5. The temporal distributions of CBs in PM2.5 were closely related to coal-driven or agricultural activities. Accordingly, our study reveals the contamination profiles of emerging POPs in PM2.5 from Taiyuan.
Collapse
Affiliation(s)
- Yi-Jie Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yanyan Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yan Lu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
15
|
Kong Q, Wang Y, Yang X. A Review on Hexachloro-1,3-butadiene (HCBD): Sources, Occurrence, Toxicity and Transformation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:1-7. [PMID: 31745598 DOI: 10.1007/s00128-019-02744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Hexachloro-1,3-butadiene (HCBD) is a persistent organic pollutant listed in Annex A and C of the Stockholm Convention. This review summarized the sources, occurrence, toxicity, and transformation of HCBD in the environment. HCBD had no natural sources, and anthropogenic sources made it frequently detected in environmental medium, generally at µg L- 1 and µg kg- 1 in water and soil (or organism) samples, respectively. HCBD posed reproductive, genetic, and potentially carcinogenic toxicity to organisms, threatening human health and the ecosystem. Upon biodegradation, photodegradation and physicochemical degradation processes, HCBD can be degraded to a different extent. Nevertheless, further studies should be focused on the potential emission sources and the impact of HCBD on human health and the environment. Additionally, exploring removal technologies based on advanced oxidation and reduction are recommended.
Collapse
Affiliation(s)
- Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
16
|
Zhang H, Shen Y, Liu W, He Z, Fu J, Cai Z, Jiang G. A review of sources, environmental occurrences and human exposure risks of hexachlorobutadiene and its association with some other chlorinated organics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:831-840. [PMID: 31344544 DOI: 10.1016/j.envpol.2019.07.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Research on hexachlorobutadiene (HCBD) has increased since its listing in the Stockholm Convention on Persistent Organic Pollutants in 2011. However, thorough reports on recent data regarding this topic are lacking. Moreover, potential associations between HCBD and some chlorinated organics have usually been ignored in previous research. In this review, possible formation pathways and sources, current environmental occurrences and human exposure risks of HCBD are discussed, as well as the association with several organochlorine compounds. The results reveal that unintentional production and emission from industrial activities and waste treatments are the main sources of HCBD. Similar precursors are found for HCBD and chlorobenzenes, indicating the presence of common sources. Although recent data indicates that levels of HCBD in the environment are generally low, risks from human exposure to HCBD, together with other pollutants, may be high. More attention in the future needs to be paid to the mixed contamination of HCBD and other pollutants from common sources.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanting Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wencong Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhiqiao He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|