1
|
Zhang S, Zhang X, Tang X, Zhang S. Exploring Sound Frequency Detection in the Golden Rabbitfish, Siganus guttatus: A Behavioral Study. Animals (Basel) 2024; 14:2967. [PMID: 39457897 PMCID: PMC11503853 DOI: 10.3390/ani14202967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the auditory capabilities of Golden Rabbitfish (Siganus guttatus) and the potential efficacy of sound-based deterrent methods for behavior control. Behavioral experiments were conducted on Golden Rabbitfish to assess their responses to sound stimuli. Sinusoidal pulses in the range of 100~800 Hz, based on previous research on auditory evoked potentials (AEPs), were utilized. An analysis of behavioral trajectories, swimming speed, and acceleration changes revealed the fish's reactions to varying frequency sound stimuli. The results indicate that Golden Rabbitfish exhibited increased swimming activity and speed when stimulated by sound and notably moved away from the source under prolonged exposure to low-frequency acoustic signals. Specifically, the fish displayed the most significant response to 200 Hz sinusoidal pulses with a response threshold of 113~126 dB. These findings suggest that Golden Rabbitfish are particularly sensitive to low-frequency noise, aligning with AEP study outcomes. This study concludes that employing sound stimuli to deter Golden Rabbitfish in practical settings holds promise for mitigating economic losses in seaweed farming due to Golden Rabbitfish grazing.
Collapse
Affiliation(s)
- Shenwei Zhang
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (S.Z.)
| | - Xuguang Zhang
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (S.Z.)
| | - Xianming Tang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technology, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Shouyu Zhang
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (S.Z.)
| |
Collapse
|
2
|
Tiddy IC, Cortese D, Munson A, Blewett TA, Killen SS. Impacts of anthropogenic pollutants on social group cohesion and individual sociability in fish: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125017. [PMID: 39341410 DOI: 10.1016/j.envpol.2024.125017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Anthropogenic pollutants are near-ubiquitous in aquatic systems. Aquatic animals such as fishes are subject to physiological stress induced by pollution present in aquatic systems, which can translate to changes in behaviour. Key adaptive behaviours such as shoaling and schooling may be subject to change as a result of physiological or metabolic stress or neurosensory impacts of pollution. This can result in fitness and ecological impacts such as increased predation risk and reduced foraging success. Here, we conducted a systematic metanalysis of the existing literature, comprising 165 studies, on the effects of anthropogenic pollution on sociability and group cohesion in fish species. Both organic (number of studies = 92, posterior mean (PM) = -0.483, p < 0.01) and inorganic (n = 24, PM = -1.453, p < 0.001) chemical pollutants, as well as light exposure (n = 21, PM = -3.038, p < 0.01) were found to reduce sociability. These pollutants did not reduce group cohesion, indicating that effects may be masked in group settings, though fewer studies were carried out on group cohesion and this is a key area for future research. Mixtures of chemical pollutants (n = 16) were found to reduce cohesion (PM = -43.71, p < 0.01), but increase sociability (PM = 44.27, p < 0.01). Evidence was found that fish may behaviourally acclimate to two forms of pollutant, namely mixed chemical pollutants (PM = -0.668, p < 0.01) and noise exposure (n = 22, PM = -4.043, p < 0.01). While aquatic systems are often subject to pollution from multiple sources and of multiple types, very few studies investigated the effects of multiple stressors concurrently. This review identifies trends in the existing literature, and highlights areas where further research is required in order to understand the behavioural and ecological impacts of anthropogenic pollutants in aquatic systems.
Collapse
Affiliation(s)
- Izzy C Tiddy
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Daphne Cortese
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sete, France
| | - Amelia Munson
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2M9
| | - Shaun S Killen
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
3
|
Norman H, Munson A, Cortese D, Koeck B, Killen SS. The interplay between sleep and ecophysiology, behaviour and responses to environmental change in fish. J Exp Biol 2024; 227:jeb247138. [PMID: 38860399 PMCID: PMC11213526 DOI: 10.1242/jeb.247138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Evidence of behavioural sleep has been observed in every animal species studied to date, but current knowledge of the behaviour, neurophysiology and ecophysiology associated with sleep is concentrated on mammals and birds. Fish are a hugely diverse group that can offer novel insights into a variety of sleep-related behaviours across environments, but the ecophysiological relevance of sleep in fish has been largely overlooked. Here, we systematically reviewed the literature to assess the current breadth of knowledge on fish sleep, and surveyed the diverse physiological effects and behaviours associated with sleep. We also discuss possible ways in which unstudied external factors may alter sleep behaviours. For example, predation risk may alter sleep patterns, as has been shown in mammalian, avian and reptilian species. Other environmental factors - such as water temperature and oxygen availability - have the potential to alter sleep patterns in fish differently than for terrestrial endotherms. Understanding the ecological influences on sleep in fish is vital, as sleep deprivation has the potential to affect waking behaviour and fitness owing to cognitive and physiological impairments, possibly affecting ecological phenomena and sensitivity to environmental stressors in ways that have not been considered.
Collapse
Affiliation(s)
- Helena Norman
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amelia Munson
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daphne Cortese
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara Koeck
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shaun S. Killen
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
4
|
Alaasam VJ, Hui C, Lomas J, Ferguson SM, Zhang Y, Yim WC, Ouyang JQ. What happens when the lights are left on? Transcriptomic and phenotypic habituation to light pollution. iScience 2024; 27:108864. [PMID: 38318353 PMCID: PMC10839644 DOI: 10.1016/j.isci.2024.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Artificial light at night (ALAN) is a ubiquitous pollutant worldwide. Exposure can induce immediate behavioral and physiological changes in animals, sometimes leading to severe health consequences. Nevertheless, many organisms persist in light-polluted environments and may have mechanisms of habituating, reducing responses to repeated exposure over time, but this has yet to be tested experimentally. Here, we tested whether zebra finches (Taeniopygia guttata) can habituate to dim (0.3 lux) ALAN, measuring behavior, physiology (oxidative stress and telomere attrition), and gene expression in a repeated measures design, over 6 months. We present evidence of tolerance to chronic exposure, persistent behavioral responses lasting 8 weeks post-exposure, and attenuation of responses to re-exposure. Oxidative stress decreased under chronic ALAN. Changes in the blood transcriptome revealed unique responses to past exposure and re-exposure. Results demonstrate organismal resilience to chronic stressors and shed light on the capacity of birds to persist in an increasingly light-polluted world.
Collapse
Affiliation(s)
| | - Cassandra Hui
- Department of Biology, University of Nevada-Reno, Reno 89503, NV, USA
| | - Johnathan Lomas
- Department of Biochemistry & Molecular Biology, University of Nevada-Reno, Reno 89503, NV, USA
| | | | - Yong Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Won Cheol Yim
- Department of Biochemistry & Molecular Biology, University of Nevada-Reno, Reno 89503, NV, USA
| | - Jenny Q. Ouyang
- Department of Biology, University of Nevada-Reno, Reno 89503, NV, USA
| |
Collapse
|
5
|
Hubert J, Demuynck JM, Remmelzwaal MR, Muñiz C, Debusschere E, Berges B, Slabbekoorn H. An experimental sound exposure study at sea: No spatial deterrence of free-ranging pelagic fisha). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1151-1161. [PMID: 38341743 DOI: 10.1121/10.0024720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/18/2024] [Indexed: 02/13/2024]
Abstract
Acoustic deterrent devices are used to guide aquatic animals from danger or toward migration paths. At sea, moderate sounds can potentially be used to deter fish to prevent injury or death due to acoustic overexposure. In sound exposure studies, acoustic features can be compared to improve deterrence efficacy. In this study, we played 200-1600 Hz pulse trains from a drifting vessel and investigated changes in pelagic fish abundance and behavior by utilizing echosounders and hydrophones mounted to a transect of bottom-moored frames. We monitored fish presence and tracked individual fish. This revealed no changes in fish abundance or behavior, including swimming speed and direction of individuals, in response to the sound exposure. We did find significant changes in swimming depth of individually tracked fish, but this could not be linked to the sound exposures. Overall, the results clearly show that pelagic fish did not flee from the current sound exposures, and we found no clear changes in behavior due to the sound exposure. We cannot rule out that different sounds at higher levels elicit a deterrence response; however, it may be that pelagic fish are just more likely to respond to sound with (short-lasting) changes in school formation.
Collapse
Affiliation(s)
- Jeroen Hubert
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | | | - Carlota Muñiz
- Marine Observation Centre, Flanders Marine Institute, Oostende, Belgium
| | | | - Benoit Berges
- Wageningen Marine Research, Wageningen University and Research, IJmuiden, The Netherlands
| | - Hans Slabbekoorn
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Blackburn G, Ashton BJ, Thornton A, Woodiss-Field S, Ridley AR. Cognition mediates response to anthropogenic noise in wild Western Australian magpies (Gmynorhina tibicen dorsalis). GLOBAL CHANGE BIOLOGY 2023; 29:6912-6930. [PMID: 37846601 DOI: 10.1111/gcb.16975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
Anthropogenic noise is a pollutant of growing concern, with wide-ranging effects on taxa across ecosystems. Until recently, studies investigating the effects of anthropogenic noise on animals focused primarily on population-level consequences, rather than individual-level impacts. Individual variation in response to anthropogenic noise may result from extrinsic or intrinsic factors. One such intrinsic factor, cognitive performance, varies between individuals and is hypothesised to aid behavioural response to novel stressors. Here, we combine cognitive testing, behavioural focals and playback experiments to investigate how anthropogenic noise affects the behaviour and anti-predator response of Western Australian magpies (Gymnorhina tibicen dorsalis), and to determine whether this response is linked to cognitive performance. We found a significant population-level effect of anthropogenic noise on the foraging effort, foraging efficiency, vigilance, vocalisation rate and anti-predator response of magpies, with birds decreasing their foraging, vocalisation behaviours and anti-predator response, and increasing vigilance when loud anthropogenic noise was present. We also found that individuals varied in their response to playbacks depending on their cognitive performance, with individuals that performed better in an associative learning task maintaining their anti-predator response when an alarm call was played in anthropogenic noise. Our results add to the growing body of literature documenting the adverse effects of anthropogenic noise on wildlife and provide the first evidence for an association between individual cognitive performance and behavioural responses to anthropogenic noise.
Collapse
Affiliation(s)
- Grace Blackburn
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Benjamin J Ashton
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Sarah Woodiss-Field
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Amanda R Ridley
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Pieniazek RH, Beach RK, Dycha GM, Mickle MF, Higgs DM. Navigating noisy waters: A review of field studies examining anthropogenic noise effects on wild fisha). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2828-2842. [PMID: 37930177 DOI: 10.1121/10.0022254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenic noise is globally increasing in aquatic ecosystems, and there is concern that it may have adverse consequences in many fish species, yet the effects of noise in field settings are not well understood. Concern over the applicability of laboratory-conducted bioacoustic experiments has led to a call for, and a recent increase in, field-based studies, but the results have been mixed, perhaps due to the wide variety of techniques used and species studied. Previous reviews have explored the behavioral, physiological, and/or anatomical costs of fish exposed to anthropogenic noise, but few, if any, have focused on the field techniques and sound sources themselves. This review, therefore, aims to summarize, quantify, and interpret field-based literature, highlight novel approaches, and provide recommendations for future research into the effects of noise on fish.
Collapse
Affiliation(s)
- R H Pieniazek
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - R K Beach
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - G M Dycha
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - M F Mickle
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - D M Higgs
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
8
|
Martin M, Gridley T, Elwen S, Charrier I. Inter-site variability in the Cape fur seal's behavioural response to boat noise exposure. MARINE POLLUTION BULLETIN 2023; 196:115589. [PMID: 37776738 DOI: 10.1016/j.marpolbul.2023.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
The impact of man-made noise on wildlife is recognised as a major global concern affecting many taxa in both terrestrial and aquatic ecosystems, with the degree of impact varying among individuals or species. Understanding the factors inducing intra-species differences in response to noise is essential for the development of adapted and effective mitigation measures. This study compares the behavioural response of Cape fur seals to boat noise exposures at two study sites showing differences in their level of exposure to anthropogenic activities, and individual composition. Increased vigilance was found for Lambert's Bay seals exposed to high noise level (70-80 dB) compared to those tested at Cape Town harbour. Comparisons with a similar study performed in Namibia were made. Intrinsic factors such as individuals' age-class, sex or arousal state as well as extrinsic factors such as the ambient noise and the nature/extent of human-seal interactions were suggested to induce such variation.
Collapse
Affiliation(s)
- Mathilde Martin
- Université Paris-Saclay, Institut des Neurosciences Paris-Saclay, CNRS, 91400 Saclay, France; Sea Search Research and Conservation NPC, Muizenberg, Cape Town, South Africa.
| | - Tess Gridley
- Sea Search Research and Conservation NPC, Muizenberg, Cape Town, South Africa; Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Simon Elwen
- Sea Search Research and Conservation NPC, Muizenberg, Cape Town, South Africa; Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Isabelle Charrier
- Université Paris-Saclay, Institut des Neurosciences Paris-Saclay, CNRS, 91400 Saclay, France
| |
Collapse
|
9
|
Rojas E, Gouret M, Agostini S, Fiorini S, Fonseca P, Lacroix G, Médoc V. From behaviour to complex communities: Resilience to anthropogenic noise in a fish-induced trophic cascade. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122371. [PMID: 37580005 DOI: 10.1016/j.envpol.2023.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Sound emissions from human activities represent a pervasive environmental stressor. Individual responses in terms of behaviour, physiology or anatomy are well documented but whether they propagate through nested ecological interactions to alter complex communities needs to be better understood. This is even more relevant for freshwater ecosystems that harbour a disproportionate fraction of biodiversity but receive less attention than marine and terrestrial systems. We conducted a mesocosm investigation to study the effect of chronic exposure to motorboat noise on the dynamics of a freshwater community including phytoplankton, zooplankton, and roach as a planktivorous fish. In addition, we performed a microcosm investigation to test whether roach's feeding behaviour was influenced by the noise condition they experienced in the mesocosms. Indeed, compared to other freshwater fish, the response of roach to motorboat noise apparently does not weaken with repeated exposure, suggesting the absence of habituation. As expected under the trophic cascade hypothesis, predation by roach induced structural changes in the planktonic communities with a decrease in the main grazing zooplankton that slightly benefited green algae. Surprisingly, although the microcosm investigation revealed persistent alterations in the feeding behaviour of the roach exposed to chronic noise, the dynamics of the roach-dominated planktonic communities did not differ between the noisy and noiseless mesocosms. It might be that roach's individual response to noise was not strong enough to cascade or that the biological cues coming from the conspecifics and the many planktonic organisms have diverted each fish's attention from noise. Our work suggests that the top-down structuring influence of roach on planktonic communities might be resilient to noise and highlights how extrapolating impacts from individual responses to complex communities can be tricky.
Collapse
Affiliation(s)
- Emilie Rojas
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France.
| | - Mélanie Gouret
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France.
| | - Simon Agostini
- Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP Ecotron Ile De France), Ecole Normale Supérieure, CNRS-UAR 3194, PSL Research University, Saint-Pierre-lès-Nemours, France.
| | - Sarah Fiorini
- Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP Ecotron Ile De France), Ecole Normale Supérieure, CNRS-UAR 3194, PSL Research University, Saint-Pierre-lès-Nemours, France.
| | - Paulo Fonseca
- Departamento de Biologia Animal, Faculdade de Ciencias, CE3c-Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Lisbon, Portugal.
| | - Gérard Lacroix
- Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP Ecotron Ile De France), Ecole Normale Supérieure, CNRS-UAR 3194, PSL Research University, Saint-Pierre-lès-Nemours, France.
| | - Vincent Médoc
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France.
| |
Collapse
|
10
|
Maurer N, Baltzer J, Schaffeld T, Ruser A, Schnitzler JG, Siebert U. Effects of amplitude and duration of noise exposure on the hearing and anti-predator behaviour of common roach (Rutilus rutilus) and sand goby (Pomatoschistus minutus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:671-681. [PMID: 37550238 DOI: 10.1121/10.0020535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
This study investigates whether an exposure to two different received sound pressure levels at equal cumulative energy affects anti-predator behaviour and auditory detection thresholds of common roach (Rutilus rutilus) and sand goby (Pomatoschistus minutus) differently. This was examined in regard to a vessel slowdown as a management strategy to decrease vessel noise impact on fishes. Using continuous broadband noise, we found significant temporary threshold shifts (TTS) in roach, with 11.9 and 13.4 dB at 250 and 1000 Hz respectively, for the louder exposure. In contrast, gobies exhibited a non-significant shift of 6.6 dB at 125 Hz. Group cohesion increased in roach exposed to an artificial predator in the control group, but not during noise exposures. Gobies showed an initial freezing reaction towards the predator stimulus remaining motionless regardless of treatment. Our results show that a reduction in vessel speed with a corresponding reduction in source level could mitigate the effects on the auditory senses of sensitive fish, but does not appear to have any mitigating effect on their noise-induced behavioural changes. Further studies should investigate the effects of multiple vessel passages, but also the ecological consequences of the described effects on hearing and behaviour at individual and population level.
Collapse
Affiliation(s)
- Nina Maurer
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Germany
| | - Johannes Baltzer
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Germany
| | - Tobias Schaffeld
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Germany
| | - Andreas Ruser
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Germany
| | - Joseph G Schnitzler
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Germany
| |
Collapse
|
11
|
Rojas E, Prosnier L, Pradeau A, Boyer N, Médoc V. Anthropogenic noise does not strengthen multiple-predator effects in a freshwater invasive fish. JOURNAL OF FISH BIOLOGY 2023; 102:1470-1480. [PMID: 37029524 DOI: 10.1111/jfb.15397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/09/2023]
Abstract
Anthropogenic noise has the potential to alter community dynamics by modifying the strength of nested ecological interactions such as predation. Direct effects of noise on per capita predation rates have received much attention but the context in which predation occurs is often oversimplified. For instance, many animals interact with conspecifics while foraging and these nontrophic interactions can positively or negatively influence per capita predation rates. These effects are often referred to as multiple-predator effects (MPEs). The extent to which noise can modulate MPEs and thereby indirectly alter per capita predation remains unknown. To address this question, we derived the relationship between per capita predation rate and prey density, namely the functional response (FR), of single and pairs of the invasive topmouth gudgeon Pseudorasbora parva when feeding on water fleas under two noise conditions: control ambient noise estimated at 95 dB re 1 μPa and ambient noise supplemented with motorboat sounds whose relative importance over ambient noise ranged from 4.81 to 27 dB. In addition, we used video recordings to track fish movements. To detect MPEs, we compared the observed group-level FRs to predicted group-level FRs inferred from the individual FRs and based on additive effects only. Regardless of the number of fish and the noise condition, the FR was always of type II, showing predation rate in a decelerating rise to an upper asymptote. Compared to the noiseless condition, the predation rate of single fish exposed to noise did not differ at high prey densities but was significantly lower at low prey densities, resulting in an FR with the same asymptote but a less steep initial slope. Noise also reduced fish mobility, which might explain the decrease in predation rate at low prey densities. Conspecific presence suppressed the individual response to noise, the FRs of two fish (observed group-level FRs) being perfectly similar between the two noise conditions. Although observed and predicted group-level FRs did not differ significantly, observed group-level FRs tended to fall in the low range of predicted group-level FRs, suggesting antagonism and a negative effect of nontrophic interactions on individual foraging performance. Interestingly, the difference between predicted and observed group-level FRs was not greater with noise, which means that noise did not strengthen MPEs. Our results show that when considering the social context of foraging, here through the presence of a conspecific, anthropogenic noise does not compromise foraging in the invasive P. parva.
Collapse
Affiliation(s)
- Emilie Rojas
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France
| | - Loïc Prosnier
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France
| | - Aurélie Pradeau
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France
| | - Nicolas Boyer
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France
| | - Vincent Médoc
- Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
12
|
Wilson L, Constantine R, Pine MK, Farcas A, Radford CA. Impact of small boat sound on the listening space of Pempheris adspersa, Forsterygion lapillum, Alpheus richardsoni and Ovalipes catharus. Sci Rep 2023; 13:7007. [PMID: 37117196 PMCID: PMC10147705 DOI: 10.1038/s41598-023-33684-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Anthropogenic stressors, such as plastics and fishing, are putting coastal habitats under immense pressure. However, sound pollution from small boats has received little attention given the importance of sound in the various life history strategies of many marine animals. By combining passive acoustic monitoring, propagation modelling, and hearing threshold data, the impact of small-boat sound on the listening spaces of four coastal species was determined. Listening space reductions (LSR) were greater for fishes compared to crustaceans, for which LSR varied by day and night, due to their greater hearing abilities. Listening space also varied by sound modality for the two fish species, highlighting the importance of considering both sound pressure and particle motion. The theoretical results demonstrate that boat sound hinders the ability of fishes to perceive acoustic cues, advocating for future field-based research on acoustic cues, and highlighting the need for effective mitigation and management of small-boat sound within coastal areas worldwide.
Collapse
Affiliation(s)
- Louise Wilson
- Leigh Marine Laboratory, Institute of Marine Science, Waipapa Taumata Rau The University of Auckland, 160 Goat Island Road, Leigh, 0985, New Zealand.
| | - Rochelle Constantine
- Leigh Marine Laboratory, Institute of Marine Science, Waipapa Taumata Rau The University of Auckland, 160 Goat Island Road, Leigh, 0985, New Zealand
- School of Biological Sciences, Waipapa Taumata Rau The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Matthew K Pine
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Adrian Farcas
- Centre for Environment, Fisheries & Aquaculture Science (CEFAS), Lowestoft, Suffolk, UK
| | - Craig A Radford
- Leigh Marine Laboratory, Institute of Marine Science, Waipapa Taumata Rau The University of Auckland, 160 Goat Island Road, Leigh, 0985, New Zealand
| |
Collapse
|
13
|
Collins AC, Vickers TW, Shilling FM. Behavioral responses to anthropogenic noise at highways vary across temporal scales. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.891595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Anthropogenic noise is pervasive across the landscape and can be present at two temporal scales: acute (occurring sporadically and stochastically over the shortest time scales, e.g., milliseconds), and chronic (more persistent than instantaneous and occurring over longer timescales, e.g., minutes, days). Acute and chronic anthropogenic noise may induce a behavioral fear-mediated response in wildlife that is analogous to a prey response to predators. Understanding wildlife responses to anthropogenic noise is especially important in the case of wildlife crossing structures that provide wildlife with access to resources across busy roadways. Focusing on two species common at wildlife crossing structures, mule deer (Odocoileus hemionus) and coyotes (Canis latrans), we addressed the hypotheses that (1) acute traffic noise causes flight behavior; and (2) chronic traffic noise causes changes in a range of behaviors associated with the vigilance–foraging trade-off (vigilance, running, and foraging). We placed camera traps at entrances to ten crossing structures for a period of ∼ 2 months each throughout California, USA. Mule deer and coyotes demonstrated a flight response to acute traffic noise at entrances to crossing structures. Both species demonstrated shifts in behavioral response to chronic traffic noise within and among structures. Coyote behavior was indicative of fear, demonstrating increased vigilance at louder times within crossing structures, and switching from vigilance to running activity at louder crossings. Mule deer responded positively, increasing foraging at both spatial scales, and demonstrating decreased vigilance at louder structures, potentially using crossing structures as a Human Shield. Our results are the first to demonstrate that anthropogenic noise at crossing structures could alter wildlife passage, and that variations in fear response to anthropogenic noise exist across temporal, spatial, and amplitude scales. This dynamic response could alter natural predator-prey interactions and scale up to ecosystem-level consequences such as trophic cascades in areas with roads.
Collapse
|
14
|
Booth CG, Brannan N, Dunlop R, Friedlander A, Isojunno S, Miller P, Quick N, Southall B, Pirotta E. A sampling, exposure and receptor framework for identifying factors that modulate behavioural responses to disturbance in cetaceans. J Anim Ecol 2022; 91:1948-1960. [PMID: 35895847 PMCID: PMC9804311 DOI: 10.1111/1365-2656.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/26/2022] [Indexed: 01/05/2023]
Abstract
The assessment of behavioural disturbance in cetacean species (e.g. resulting from exposure to anthropogenic sources such as military sonar, seismic surveys, or pile driving) is important for effective conservation and management. Disturbance effects can be informed by Behavioural Response Studies (BRSs), involving either controlled exposure experiments (CEEs) where noise exposure conditions are presented deliberately to meet experimental objectives or in opportunistic contexts where ongoing activities are monitored in a strategic manner. In either context, animal-borne sensors or in situ observations can provide information on individual exposure and disturbance responses. The past 15 years of research have greatly expanded our understanding of behavioural responses to noise, including hundreds of experiments in nearly a dozen cetacean species. Many papers note limited sample sizes, required knowledge of baseline behaviour prior to exposure and the importance of contextual factors modulating behavioural responses, all of which in combination can lead to sampling biases, even for well-designed research programs. It is critical to understand these biases to robustly identify responses. This ensures outcomes of BRSs help inform predictions of how anthropogenic disturbance impacts individuals and populations. Our approach leverages concepts from the animal behaviour literature focused on helping to avoid sampling bias by considering what shapes an animal's response. These factors include social, experience, genetic and natural changes in responsiveness. We developed and applied a modified version of this framework to synthesise current knowledge on cetacean response in the context of effects observed across marine and terrestrial taxa. This new 'Sampling, Exposure, Receptor' framework (SERF) identifies 43 modulating factors, highlights potential biases, and assesses how these vary across selected focal species. In contrast to studies that identified variation in 'Exposure' factors as a key concern, our analysis indicated that factors relating to 'Sampling' (e.g. deploying tags on less evasive individuals, which biases selection of subjects), and 'Receptor' (e.g. health status or coping style) have the greatest potential for weakening the desired broad representativeness of BRSs. Our assessment also highlights how potential biases could be addressed with existing datasets or future developments.
Collapse
Affiliation(s)
- Cormac G. Booth
- SMRU Consulting, Scottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Naomi Brannan
- Southeast Asia Marine Mammal ResearchHong KongHong Kong
| | - Rebecca Dunlop
- Cetacean Ecology and Acoustics LaboratoryMoreton Bay Research Station and School of Biological SciencesUniversity of QueenslandBrisbaneAustralia
| | - Ari Friedlander
- Southall Environmental Associates, Inc.AptosCaliforniaUSA,University of California, Institute of Marine ScienceSanta CruzCaliforniaUSA
| | - Saana Isojunno
- Sea Mammal Research Unit, Scottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Patrick Miller
- Sea Mammal Research Unit, Scottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Nicola Quick
- School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK,Nicholas School of the EnvironmentDuke UniversityBeaufortNorth CarolinaUSA
| | - Brandon Southall
- Southall Environmental Associates, Inc.AptosCaliforniaUSA,University of California, Institute of Marine ScienceSanta CruzCaliforniaUSA
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental ModellingUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
15
|
Georgopoulou DG, Fanouraki E, Voskakis D, Mitrizakis N, Papandroulakis N. European seabass show variable responses in their group swimming features after tag implantation. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.997948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The usefulness of acoustic telemetry on the study of movements, interactions, and behaviors has been revealed by many field and laboratory studies. The process of attaching acoustic tags on fish can, however, impact their physiological, behavioral, and growth performance traits. The potential negative effects are still unknown for several species and behavioral attributes. Previous studies have attempted to shed light on the effects of tag implantation on fish, focusing mainly on fish growth and physiological parameters, and one or two behavioral properties mainly on the individual level. However, the effect of this procedure could also be expressed at the group level. This study investigated the short-term effects of dummy and active body-implanted acoustic tags on the group-level swimming performance of adult European seabass (Dicentrarchus labrax) using optical flow analysis. We studied four main swimming performance properties—group speed, alignment (polarization), cohesion, and exploratory behavior. To help in the interpretation of any detected differences, physiological stress-related parameters were also extracted. The results show that the tag implantation procedure has variable effects on the different swimming performance attributes of fish. Group cohesion, polarization, and the group’s exploratory tendency were significantly impacted initially, and the effect persisted but to a lesser extent two weeks after surgery. In contrast, group speed was not affected initially but showed a significant decrease in comparison with the control group two weeks post-surgery. In addition, the physiological parameters tested did not show any significant difference between the control and the treated group 14 days after the onset of the experiment. The findings suggest that the effect of tagging is non-trivial, leading to responses and response times that could affect behavioral studies carried out using acoustic telemetry.
Collapse
|
16
|
van der Knaap I, Slabbekoorn H, Moens T, Van den Eynde D, Reubens J. Effects of pile driving sound on local movement of free-ranging Atlantic cod in the Belgian North Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118913. [PMID: 35114303 DOI: 10.1016/j.envpol.2022.118913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Offshore energy acquisition through the construction of wind farms is rapidly becoming one of the major sources of green energy all over the world. The construction of offshore wind farms contributes to the ocean soundscape as steel monopile foundations are commonly hammered into the seabed to anchor wind turbines. This pile driving activity causes repeated, impulsive, low-frequency sounds, reaching far into the environment, which may have an impact on the surrounding marine life. In this study, we investigated the effect of the construction of 50 wind turbine foundations, over a time span of four months, on the presence and movement behaviour of free-swimming, individually tagged Atlantic cod. The turbine foundations were constructed at a distance ranging between 2.3 and 7.1 km from the cod, which resided in a nearby, existing wind farm in the southern North Sea. Our results indicated that local fish remained in the exposed area during and in-between pile-driving activities, but showed some modest changes in movement patterns. The tagged cod did not increase their net movement activity, but moved closer to the scour-bed (i.e. hard substrate), surrounding their nearest turbine, during and after each piling event. Additionally, fish moved further away from the sound source, which was mainly due to the fact that they were positioned closer to a piling event before its start. We found no effect of the time since the last piling event. Long-term changes in movement behaviour can result in energy budget changes, and thereby in individual growth and maturation, eventually determining growth rate of populations. Consequently, although behavioural changes to pile driving in the current study seem modest, we believe that the potential for cumulative effects, and species-specific variation in impact, warrant more tagging studies in the future, with an emphasis on quantification of energy budgets.
Collapse
Affiliation(s)
- Inge van der Knaap
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands; Marine Biology Lab, Biology Department, Ghent University, Gent, 9000, Belgium.
| | - Hans Slabbekoorn
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Tom Moens
- Marine Biology Lab, Biology Department, Ghent University, Gent, 9000, Belgium
| | | | - Jan Reubens
- Flanders Marine Institute, Ostend, 8400, Belgium
| |
Collapse
|
17
|
Ainslie MA, Martin SB, Trounce KB, Hannay DE, Eickmeier JM, Deveau TJ, Lucke K, MacGillivray AO, Nolet V, Borys P. International harmonization of procedures for measuring and analyzing of vessel underwater radiated noise. MARINE POLLUTION BULLETIN 2022; 174:113124. [PMID: 34915419 DOI: 10.1016/j.marpolbul.2021.113124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
The habitat of the endangered southern resident killer whale (SRKW) overlaps major international shipping lanes near the Port of Vancouver, British Columbia. Shipping is a dominant source of underwater noise, which can hinder SRKW key life functions. To reduce environmental pressure on the SRKWs, Vancouver Fraser Port Authority offers incentives for quieter ships. However, the absence of a widely accepted underwater radiated noise (URN) measurement procedure hinders the determination of relative quietness. We review URN measurement procedures, summarizing results to date from two Canadian-led projects aimed at improving harmonization of shallow-water URN measurement procedures: One supports the International Organization for Standardization (ISO) in the development of a URN measurement standard; the other supports the alignment of URN measurement procedures developed by ship classification societies. Weaknesses in conventional shallow-water URN metrics are identified, and two alternative metrics proposed. Optimal shallow-water measurement geometry is identified.
Collapse
Affiliation(s)
- Michael A Ainslie
- JASCO Applied Sciences (Deutschland) GmbH, Mergenthaler Allee 15-21, 65760 Eschborn, Hesse, Germany.
| | - S Bruce Martin
- JASCO Applied Sciences (Canada) Ltd, 202-32 Troop Avenue, Dartmouth, NS B3B 1Z1, Canada
| | - Krista B Trounce
- Vancouver Fraser Port Authority, 100 The Pointe, 999 Canada Place, Vancouver, BC V6C 3T4, Canada
| | - David E Hannay
- JASCO Applied Sciences (Canada) Ltd, 2305-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Justin M Eickmeier
- SLR Consulting (Canada) Ltd., 100 Stone Road West, Suite 201, Guelph, BC N1G 5L3, Canada
| | - Terry J Deveau
- JASCO Applied Sciences (Canada) Ltd, 202-32 Troop Avenue, Dartmouth, NS B3B 1Z1, Canada
| | - Klaus Lucke
- JASCO Applied Sciences (Australia) Pty Ltd, 1/14 Hook Street, Capalaba, Queensland 4157, Australia
| | | | - Veronique Nolet
- Transport Canada, Innovation Centre, 330 Sparks Street, Ottawa, ON K1A 0N5, Canada
| | - Pablo Borys
- JASCO Applied Sciences (Canada) Ltd, 202-32 Troop Avenue, Dartmouth, NS B3B 1Z1, Canada
| |
Collapse
|
18
|
Currie HAL, White PR, Leighton TG, Kemp PS. Collective behaviour of the European minnow (Phoxinus phoxinus) is influenced by signals of differing acoustic complexity. Behav Processes 2021; 189:104416. [PMID: 33971249 DOI: 10.1016/j.beproc.2021.104416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/01/2023]
Abstract
Collective behaviour, such as shoaling in fish, benefits individuals through a variety of activities such as social information exchange and anti-predator defence. Human driven disturbance (e.g. anthropogenic noise) is known to affect the behaviour and physiology of individual animals, but the disruption of social aggregations of fish remains poorly understood. Anthropogenic noise originates from a variety of activities and differs in acoustic structure, dominant frequencies, and spectral complexity. The response of groups of fish may differ greatly, depending on the type of noise, and how it is perceived (e.g. threatening or attractive). In a controlled laboratory study, high resolution video tracking in combination with fine scale acoustic mapping was used to investigate the response of groups of European minnows (Phoxinus phoxinus) to signals of differing acoustic complexity (sinewave tones vs octave band noise) under low (150 Hz) and high (2200 Hz) frequencies. Fish startled and decreased their mean group swimming speed under all four treatments, with low frequency sinewave tones having the greatest influence on group behaviour. The shoals exhibited spatial avoidance during both low frequency treatments, with more time spent in areas of lower acoustic intensity than expected. This study illustrates how noise can influence the spatial distribution and social dynamics within groups of fish, and owing to the high potential for freshwater aquatic environments to be influenced by anthropogenic activity, wider consequences for populations should be further investigated.
Collapse
Affiliation(s)
- Helen A L Currie
- International Centre for Ecohydraulics Research (ICER), University of Southampton, Boldrewood Innovation Campus, Southampton, SO16 7QF, UK.
| | - Paul R White
- Institute of Sound and Vibration Research, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Timothy G Leighton
- Institute of Sound and Vibration Research, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Paul S Kemp
- International Centre for Ecohydraulics Research (ICER), University of Southampton, Boldrewood Innovation Campus, Southampton, SO16 7QF, UK
| |
Collapse
|
19
|
Mortensen LO, Chudzinska ME, Slabbekoorn H, Thomsen F. Agent‐based models to investigate sound impact on marine animals: bridging the gap between effects on individual behaviour and population level consequences. OIKOS 2021. [DOI: 10.1111/oik.08078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Hans Slabbekoorn
- Inst. of Biology Leiden, Leiden Univ. Leiden Zuid‐Holland the Netherlands
| | | |
Collapse
|
20
|
Aircraft events correspond with vocal behavior in a passerine. Sci Rep 2021; 11:1197. [PMID: 33441920 PMCID: PMC7806583 DOI: 10.1038/s41598-020-80380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Airports can affect birds by hindering acoustic communication. Here, we investigated the impacts of aircraft events on vocal behavior in wood thrush (Hylocichla mustelina) breeding one mile from an airport in Ithaca, NY, USA. We identified the number of wood thrush songs between 0500 and 0800 h at various distances from the airport and on days with various morning flight schedules. We also analyzed the number of sites from which birds sang during the peak of aircraft events (proxy of number of wood thrush). We found that birds sang more from 0600 to 0640 h when there were aircraft events during this period. This increased vocal behavior is likely explained by increased song output per individual wood thrush, rather than more wood thrush vocalizing. Increased song rate may negatively affect wood thrush fitness through increased energetic demands and/or time tradeoffs with other important behaviors, such as foraging. Identifying the noise thresholds associated with fitness costs (if any) and how different behavioral strategies (i.e. changing the pattern of vocalizations) may allow individuals to evade these costs would be useful for establishing conservation policy in breeding habitats used by passerines, such as the wood thrush.
Collapse
|
21
|
Behavioral responses of rural and urban greater white-toothed shrews (Crocidura russula) to sound disturbance. Urban Ecosyst 2021. [DOI: 10.1007/s11252-020-01079-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Hubert J, Campbell JA, Slabbekoorn H. Effects of seismic airgun playbacks on swimming patterns and behavioural states of Atlantic cod in a net pen. MARINE POLLUTION BULLETIN 2020; 160:111680. [PMID: 33181953 DOI: 10.1016/j.marpolbul.2020.111680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic sound can affect fish behaviour and physiology which may affect their well-being. However, it remains a major challenge to translate such effects to consequences for fitness at an individual and population level. For this, energy budget models have been developed, but suitable data to parametrize these models are lacking. A first step towards such parametrization concerns the objective quantification of behavioural states at high resolution. We experimentally exposed individual Atlantic cod (Gadus morhua) in a net pen to the playback of seismic airgun sounds. We demonstrated that individual cod in the net pen did not change their swimming patterns immediately at the onset of the sound exposure. However, several individuals changed their time spent in three different behavioural states during the 1 h exposure. This may be translated to changes in energy expenditure and provide suitable input for energy budget models that allow predictions about fitness and population consequences.
Collapse
Affiliation(s)
- Jeroen Hubert
- Institute of Biology Leiden, Leiden University, the Netherlands.
| | | | | |
Collapse
|
23
|
|
24
|
Vessel noise affects routine swimming and escape response of a coral reef fish. PLoS One 2020; 15:e0235742. [PMID: 32702032 PMCID: PMC7377389 DOI: 10.1371/journal.pone.0235742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/23/2020] [Indexed: 12/02/2022] Open
Abstract
An increasing number of studies have shown that anthropogenic noise can negatively affect aspects of the anti-predator behaviour of reef fishes, potentially affecting fitness and survival. However, it has been suggested that effects could differ among noise sources. The present study compared two common sources of anthropogenic noise and investigated its effects on behavioural traits critical for fish survival. In a tank-based experiment we examined the effects of noise from 4-stroke motorboats and ships (bulk carriers > 50,000 tonnes) on the routine swimming and escape response of a coral reef fish, the whitetail damselfish (Pomacentrus chrysurus). Both 4-stroke boat and ship noise playbacks affected the fast-start response and routine swimming of whitetail damselfish, however the magnitude of the effects differed. Fish exposed to ship noise moved shorter distances and responded more slowly (higher response latency) to the startle stimulus compared to individuals under the 4-stroke noise treatment. Our study suggests that 4-stroke and ship noise can affect activity and escape response of individuals to a simulated predation threat, potentially compromising their anti-predator behaviour.
Collapse
|
25
|
Mauro M, Pérez-Arjona I, Perez EJB, Ceraulo M, Bou-Cabo M, Benson T, Espinosa V, Beltrame F, Mazzola S, Vazzana M, Buscaino G. The effect of low frequency noise on the behaviour of juvenile Sparus aurata. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3795. [PMID: 32611157 DOI: 10.1121/10.0001255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic activities are causing increased noise levels in the marine environment. To date, few studies have been undertaken to investigate the effects of different noise frequencies on the behaviour of juvenile fish. In this study, the behavioural changes of juvenile gilthead seabream (Sparus aurata) are evaluated when exposed to white noise filtered in third-octave bands centred at 63, 125, 500, and 1000 Hz (sound pressure level, 140-150 dB re 1 μΡa) for 7 h. The group dispersion, motility, and swimming height of the fish were analysed before and during the acoustic emission. Dispersion of the fish was found to reduce immediately upon application of low frequency sound (63 and 125 Hz) with a return to control condition after 2 h (indicative of habituation), whereas at 1 kHz, dispersion increased after 2 h without any habituation. The motility decreased significantly at 63 Hz throughout the 7 h of sound exposure. The swimming height decreased significantly for all frequencies other than 125 Hz. The results of this study highlight significant variations in the behavioural responses of juvenile fish that could have consequences on their fitness and survival.
Collapse
Affiliation(s)
- Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, Palermo, 90123, Italy
| | - Isabel Pérez-Arjona
- Universitat Politècnica de València, Campus de Gandia, C/Paranimf, 1-46730, Spain
| | | | - Maria Ceraulo
- BioacousticsLab, National Research Council UOS of Capo Granitola, Via del mare, Torretta Granitola, 3-91021, Italy
| | - Manuel Bou-Cabo
- Instituto Español de Oceanografía (IEO), C. O. Murcia, San Pedro del Pinatar (Murcia), 1-30740, Spain
| | - Thomas Benson
- HR Wallingford, Howbery Park, Wallingford, OX10 8BA, United Kingdom
| | - Victor Espinosa
- Universitat Politècnica de València, Campus de Gandia, C/Paranimf, 1-46730, Spain
| | - Francesco Beltrame
- ENR, The Italian Institution for Research and Promotion of Standardization, Via Francesco Crispi, Palermo, 248-90139, Italy
| | - Salvatore Mazzola
- BioacousticsLab, National Research Council UOS of Capo Granitola, Via del mare, Torretta Granitola, 3-91021, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, Palermo, 90123, Italy
| | - Giuseppa Buscaino
- BioacousticsLab, National Research Council UOS of Capo Granitola, Via del mare, Torretta Granitola, 3-91021, Italy
| |
Collapse
|
26
|
Currie HAL, White PR, Leighton TG, Kemp PS. Group behavior and tolerance of Eurasian minnow (Phoxinus phoxinus) in response to tones of differing pulse repetition rate. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:1709. [PMID: 32237844 DOI: 10.1121/10.0000910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Behavioral guidance systems are commonly used in freshwater fish conservation. The biological relevance of sound to fish and recorded responses to human-generated noise supports the viability of the use of acoustics as an effective stimulus in such technologies. Relatively little information exists on the long-term responses and recovery of fish to repeated acoustic exposures. In a controlled laboratory study, the response and tolerance of Eurasian minnow (Phoxinus phoxinus) shoals to tonal signals (150 Hz of 1 s pulse duration) differing only in temporal characteristics ("continuous," "slow," "intermediate," or "fast" pulse repetition rate) were investigated. In comparison to independent control groups, fish increased their mean group swimming speed, decreased inter-individual distance, and became more aligned in response to the onset of all four acoustic treatments. The magnitude of response, and time taken to develop a tolerance to a treatment differed according to pulse repetition rate. Groups were found to have the greatest and longest lasting response to tone sequences tested in this study when they were pulsed at an intermediate rate of 0.2 s-1. This study illustrates the importance of understanding the response of fish to acoustic signals, and will assist toward the development of longer-term effective acoustic guidance systems.
Collapse
Affiliation(s)
- Helen A L Currie
- International Centre for Ecohydraulics Research (ICER), Boldrewood Innovation Campus, University of Southampton, Southampton, SO16 7QF, United Kingdom
| | - Paul R White
- Institute of Sound and Vibration Research (ISVR), Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Timothy G Leighton
- Institute of Sound and Vibration Research (ISVR), Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Paul S Kemp
- International Centre for Ecohydraulics Research (ICER), Boldrewood Innovation Campus, University of Southampton, Southampton, SO16 7QF, United Kingdom
| |
Collapse
|
27
|
Hubert J, Neo YY, Winter HV, Slabbekoorn H. The role of ambient sound levels, signal-to-noise ratio, and stimulus pulse rate on behavioural disturbance of seabass in a net pen. Behav Processes 2019; 170:103992. [PMID: 31704307 DOI: 10.1016/j.beproc.2019.103992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/26/2019] [Accepted: 10/25/2019] [Indexed: 11/29/2022]
Abstract
Anthropogenic sources increasingly contribute to the underwater soundscape and this may negatively impact aquatic life, including fish. Anthropogenic sound may mask relevant sound, alter behaviour, physiology, and may lead to physical injury. Behavioural effect studies are often seen as critical to evaluate individual and population-level impact. However, behavioural responsiveness likely depends on context and characteristics of sound stimuli. We pose that ambient sound levels, signal-to-noise ratio (SNR), and pulse rate interval (PRI), could affect the behavioural response of fish. To study this, we experimentally exposed groups of tagged European seabass (Dicentrarchus labrax) to different impulsive sound treatments that varied in pulse level, elevated background level, SNR, and PRI. Upon sound exposure, the seabass increased their swimming depth. The variation in the increase in swimming depth could not be attributed to pulse level, background level, SNR or PRI. It may be that the current range of sound levels or PRIs was too narrow to find such effects.
Collapse
Affiliation(s)
- J Hubert
- Institute of Biology Leiden, Leiden University, the Netherlands.
| | - Y Y Neo
- Wageningen Marine Research, Wageningen UR, the Netherlands
| | - H V Winter
- Wageningen Marine Research, Wageningen UR, the Netherlands
| | - H Slabbekoorn
- Institute of Biology Leiden, Leiden University, the Netherlands
| |
Collapse
|
28
|
|
29
|
Sertlek HÖ, Slabbekoorn H, Ten Cate C, Ainslie MA. Source specific sound mapping: Spatial, temporal and spectral distribution of sound in the Dutch North Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:1143-1157. [PMID: 30823343 DOI: 10.1016/j.envpol.2019.01.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Effective measures for protecting and preserving the marine environment require an understanding of the potential impact of anthropogenic sound on marine life. A crucial component is a proper assessment of the anthropogenic soundscape: which sounds are present where, when and how strong? We provide an extensive case study modelling the spatial, temporal and spectral distribution of sound radiated by several anthropogenic sources (ships, seismic airguns, explosives) and a naturally occurring one (wind) in the Dutch North Sea. We present the results as a series of sound maps covering the whole of the Dutch North Sea, showing the spatial and temporal distribution of the energy from these sources. Averaged over a two year period, shipping is responsible for the largest amount of acoustic energy (∼1800 J), followed by seismic surveys (∼300 J), explosions (∼20 J) and wind (∼20 J) in the frequency band between 100 Hz and 100 kHz. Our study shows that anthropogenic sources are responsible for 100 times more acoustic energy (averaged over 2 years) in the Dutch North Sea than naturally occurring sound from wind. The potential impact of these sounds on aquatic animals depends not only on these temporally averaged and spatially integrated broadband energies, but also on the source-specific spatial, spectral and temporal variation. Shipping is dominant in the southern part and along the coast in the north, throughout the years and across the spectrum. Seismic surveys are relatively local and spatially and temporally dependent on exploration activities in any particular year, and spectrally shifted to low frequencies relative to the other sources. Explosions in the southern part contribute wide-extent high energy bursts across the spectrum. Relating modelled sound fields to the temporal and spatial distribution of animal species may provide a powerful tool for understanding the potential impact of anthropogenic sound on marine life.
Collapse
Affiliation(s)
- Hüseyin Özkan Sertlek
- Behavioural Biology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands; Gebze Technical University, Electronics Engineering Department, P.O. Box 141, 41400, Gebze, Turkey.
| | - Hans Slabbekoorn
- Behavioural Biology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Carel Ten Cate
- Behavioural Biology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands
| | | |
Collapse
|
30
|
Davidsen JG, Dong H, Linné M, Andersson MH, Piper A, Prystay TS, Hvam EB, Thorstad EB, Whoriskey F, Cooke SJ, Sjursen AD, Rønning L, Netland TC, Hawkins AD. Effects of sound exposure from a seismic airgun on heart rate, acceleration and depth use in free-swimming Atlantic cod and saithe. CONSERVATION PHYSIOLOGY 2019; 7:coz020. [PMID: 31110769 PMCID: PMC6521782 DOI: 10.1093/conphys/coz020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/07/2019] [Accepted: 04/09/2019] [Indexed: 05/20/2023]
Abstract
Airguns used for offshore seismic exploration by the oil and gas industry contribute to globally increasing anthropogenic noise levels in the marine environment. There is concern that the omnidirectional, high intensity sound pulses created by airguns may alter fish physiology and behaviour. A controlled short-term field experiment was performed to investigate the effects of sound exposure from a seismic airgun on the physiology and behaviour of two socioeconomically and ecologically important marine fishes: the Atlantic cod (Gadus morhua) and saithe (Pollachius virens). Biologgers recording heart rate and body temperature and acoustic transmitters recording locomotory activity (i.e. acceleration) and depth were used to monitor free-swimming individuals during experimental sound exposures (18-60 dB above ambient). Fish were held in a large sea cage (50 m diameter; 25 m depth) and exposed to sound exposure trials over a 3-day period. Concurrently, the behaviour of untagged cod and saithe was monitored using video recording. The cod exhibited reduced heart rate (bradycardia) in response to the particle motion component of the sound from the airgun, indicative of an initial flight response. No behavioural startle response to the airgun was observed; both cod and saithe changed both swimming depth and horizontal position more frequently during sound production. The saithe became more dispersed in response to the elevated sound levels. The fish seemed to habituate both physiologically and behaviourally with repeated exposure. In conclusion, the sound exposures induced over the time frames used in this study appear unlikely to be associated with long-term alterations in physiology or behaviour. However, additional research is needed to fully understand the ecological consequences of airgun use in marine ecosystems.
Collapse
Affiliation(s)
- Jan G Davidsen
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
- Corresponding author: NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway. Tel: +47 9246 4314.
| | - Hefeng Dong
- Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
| | - Markus Linné
- FOI, Swedish Defence Research Agency, Stockholm, Sweden
| | | | - Adam Piper
- Institute of Zoology, Zoological Society of London, United Kingdom
| | - Tanya S Prystay
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Canada
| | | | - Eva B Thorstad
- Norwegian Institute for Nature Research, Trondheim, Norway
| | | | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Canada
| | - Aslak D Sjursen
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Rønning
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tim C Netland
- Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
31
|
Hubert J, Campbell J, van der Beek JG, den Haan MF, Verhave R, Verkade LS, Slabbekoorn H. Effects of broadband sound exposure on the interaction between foraging crab and shrimp - A field study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1923-1929. [PMID: 30408881 DOI: 10.1016/j.envpol.2018.09.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/23/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
Aquatic animals live in an acoustic world in which they often rely on sound detection and recognition for various aspects of life that may affect survival and reproduction. Human exploitation of marine resources leads to increasing amounts of anthropogenic sound underwater, which may affect marine life negatively. Marine mammals and fishes are known to use sounds and to be affected by anthropogenic noise, but relatively little is known about invertebrates such as decapod crustaceans. We conducted experimental trials in the natural conditions of a quiet cove. We attracted shore crabs (Carcinus maenas) and common shrimps (Crangon crangon) with an experimentally fixed food item and compared trials in which we started playback of a broadband artificial sound to trials without exposure. During trials with sound exposure, the cumulative count of crabs that aggregated at the food item was lower, while variation in cumulative shrimp count could be explained by a negative correlation with crabs. These results suggest that crabs may be negatively affected by artificially elevated noise levels, but that shrimps may indirectly benefit by competitive release. Eating activity for the animals present was not affected by the sound treatment in either species. Our results show that moderate changes in acoustic conditions due to human activities can affect foraging interactions at the base of the marine food chain.
Collapse
Affiliation(s)
- Jeroen Hubert
- Institute of Biology Leiden, Leiden University, the Netherlands.
| | - James Campbell
- Institute of Biology Leiden, Leiden University, the Netherlands
| | | | | | - Rik Verhave
- Institute of Biology Leiden, Leiden University, the Netherlands
| | - Laura S Verkade
- Institute of Biology Leiden, Leiden University, the Netherlands
| | | |
Collapse
|