1
|
Xiang H, Yue X, Chu Y, Shu S. Rapid Fabrication of N-, Cu-, and Co-Doped Electrodes with Strong Electronic Coupling by Cold Plasma for Electrocatalytic Reduction of Nitrate to Ammonia. Inorg Chem 2024; 63:19809-19818. [PMID: 39383251 DOI: 10.1021/acs.inorgchem.4c03089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Electrochemical NOx- reduction (NOxRR) is a sustainable technology for ammonia synthesis. The development of a simple, fast, and economical catalytic electrode preparation technique is crucial for large-scale ammonia synthesis. Herein, we propose a plate-to-plate DBD plasma strategy to synthesize the catalytic electrodes M-N/CP (M = Cu, Co, Ni, CuCo, and CuNi), achieving in suit codoping of N and bimetals on carbon paper (CP) at room temperature within 3 h. N-doping improves the metal loading and the NOxRR performance by forming N-M bonds. The electronic coupling and synergistic effect of Cu and Co sites facilitate the relay conversion of NO3- to NO2- to NH3. Notably, the NO3- removal efficiency of CuCo-N/CP reaches 82%, with NH3 yield rate of 346 μg h-1 cm-2, and the faradaic efficiency is as high as 86% at -0.58 V vs RHE, which remains competitive in terms of NOxRR performance. Importantly, wet flue gas denitrification and desulfurization coupled with electrocatalytic reduction can convert NOx and SO2 to (NH4)2SO4, Additionally, the maneuverability of plasma technology offers the potential for batch preparation of CuCo-N/CP electrodes for electrochemically driven wet denitrification wastewater valorization.
Collapse
Affiliation(s)
- Hongyu Xiang
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xufeng Yue
- School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yinghao Chu
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Song Shu
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
2
|
Zhang WX, Yue FJ, Wang Y, Li Y, Lang YC, Li SL. Dynamic N transport and N 2O emission during rainfall events in the coastal river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166206. [PMID: 37567291 DOI: 10.1016/j.scitotenv.2023.166206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The coastal zone exhibited a high population density with highly impacted by anthropogenic activities, such as river impoundment to prevent saline intrusion, which resulted in weak hydrological conditions. Rainfall events can result in dramatic changes in hydrological and nutrient transportation conditions, especially in rivers with weak hydrological conditions. However, how the nitrogen transport and N2O emissions or biogeochemistry responds to the different types of rainfall events in the weak hydrodynamics rivers is poorly understood. In this study, the hydrological, nitrogenous characteristic, as well as N2O dynamics, were studied by high-frequency water sampling during two distinct rainfall events, high-intensity with short duration (E1) and low-intensity with long duration (E2). The results displayed that the hydrologic condition in E1 with a wider range of d-excess values (from -9.50 to 32.1 ‰), were more dynamic than those observed in E2. The N2O concentrations (0.01-3.33 μmol/L) were higher during E1 compared to E2 (0.03-1.11 μmol/L), which indicated that high-intensity rainfall has a greater potential for N2O emission. On the contrary, the concentrations of nitrogen (e.g., TN and NO3--N) were lower during E1 compared to E2. Additionally, hysteresis was observed in both water and nitrogen components, resulting in a prolonged recovery time for pre-rainfall levels during the long-duration event. Moreover, the results showed that the higher average N2O flux (78.3 μmol/m2/h) in the rainfall event period was much larger than that in the non-rainfall period (1.63 μmol/m2/h). The frequency dam regulation resulted in the water level fluctuation, which could enhance wet-dry alternation and simulated N2O emissions. This study highlighted the characteristic of N dynamic and hydrological responses to diverse rainfall events occurrences in the coastal river. Rainfall could increase the N2O emission, especially during high-intensity rainfall events, which cannot be ignored in the context of annual N2O release.
Collapse
Affiliation(s)
- Wen-Xi Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China.
| | - Yong Wang
- Hydrology and Water Resources Management Center of Tianjin, Tianjin 300061, China
| | - Yun Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Yun-Chao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Xiang T, Liang Y, Zeng Y, Deng J, Yuan J, Xiong W, Song B, Zhou C, Yang Y. Transition Metal Single-Atom Catalysts for the Electrocatalytic Nitrate Reduction: Mechanism, Synthesis, Characterization, Application, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303732. [PMID: 37300329 DOI: 10.1002/smll.202303732] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Excessive accumulation of nitrate in the environment will affect human health. To combat nitrate pollution, chemical, biological, and physical technologies have been developed recently. The researcher favors electrocatalytic reduction nitrate reaction (NO3 RR) because of the low post-treatment cost and simple treatment conditions. Single-atom catalysts (SACs) offer great activity, exceptional selectivity, and enhanced stability in the field of NO3 RR because of their high atomic usage and distinctive structural characteristics. Recently, efficient transition metal-based SACs (TM-SACs) have emerged as promising candidates for NO3 RR. However, the real active sites of TM-SACs applied to NO3 RR and the key factors controlling catalytic performance in the reaction process remain ambiguous. Further understanding of the catalytic mechanism of TM-SACs applied to NO3 RR is of practical significance for exploring the design of stable and efficient SACs. In this review, from experimental and theoretical studies, the reaction mechanism, rate-determining steps, and essential variables affecting activity and selectivity are examined. The performance of SACs in terms of NO3 RR, characterization, and synthesis is then discussed. In order to promote and comprehend NO3 RR on TM-SACs, the design of TM-SACs is finally highlighted, together with the current problems, their remedies, and the way forward.
Collapse
Affiliation(s)
- Tianyi Xiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuntao Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuxi Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jie Deng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jili Yuan
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
- Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, Jiangxi Province, 330013, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
4
|
Laicher D, Benkendorff K, White S, Conrad S, Woodrow RL, Butcherine P, Sanders CJ. Pesticide occurrence in an agriculturally intensive and ecologically important coastal aquatic system in Australia. MARINE POLLUTION BULLETIN 2022; 180:113675. [PMID: 35642798 DOI: 10.1016/j.marpolbul.2022.113675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Coastal agricultural practices are often located in catchments upstream of ecologically important aquatic systems. Here, we investigate the occurrence of pesticides in a coastal creek flowing into a habitat-protected area within the Solitary Islands Marine Park, Australia. Water samples were collected from six sites along a creek transect during three sampling periods. Samples were analysed for 171 pesticide analytes, including organochlorines, organophosphates, herbicides, and fungicides. Five insecticides, two herbicides, and two fungicides were detected. The neonicotinoid imidacloprid was detected at 5 out of 6 sites, with concentrations reaching 294 μg L-1, the highest yet detected in Australian waterways. The organophosphate insecticide dimethoate was detected at 4 sites, which occurred at the 2nd highest detected concentration in the study (12.8 μg L-1). The presence of these pesticides in the aquatic environment downstream of horticulture in this and other regions may have serious implications for stream biota and ecologically important marine ecosystems.
Collapse
Affiliation(s)
- Dylan Laicher
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia.
| | - Kirsten Benkendorff
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Shane White
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Steve Conrad
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Rebecca L Woodrow
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Peter Butcherine
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Christian J Sanders
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| |
Collapse
|
5
|
Xu H, Ma Y, Chen J, Zhang WX, Yang J. Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle. Chem Soc Rev 2022; 51:2710-2758. [PMID: 35274646 DOI: 10.1039/d1cs00857a] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitrate enrichment, which is mainly caused by the over-utilization of fertilisers and industrial sewage discharge, is a major global engineering challenge because of its negative influence on the environment and human health. To solve this serious problem, many technologies, such as the activated sludge method, reverse osmosis, ion exchange, adsorption, and electrodialysis, have been developed to reduce the nitrate levels in water bodies. However, the applications of these traditional techniques are limited by several drawbacks, such as a long sludge retention time, slow kinetics, and undesirable by-products. From an environmental perspective, the most promising nitrate reduction technology is enabled to convert nitrate into benign N2, and features low cost, high efficiency, and environmental friendliness. Recently, electrocatalytic nitrate reduction has been proven by satisfactory research achievements to be one of the most promising methods among these technologies. This review provides a comprehensive account of nitrate reduction using electrocatalysis methods. The fundamentals of electrocatalytic nitrate reduction, including the reaction mechanisms, reactor design principles, product detection methods, and performance evaluation methods, have been systematically summarised. A detailed introduction to electrocatalytic nitrate reduction on transition metals, especially noble metals and alloys, Cu-based electrocatalysts, and Fe-based electrocatalysts is provided, as they are essential for the accurate reporting of experimental results. The current challenges and potential opportunities in this field, including the innovation of material design systems, value-added product yields, and challenges for products beyond N2 and large-scale sewage treatment, are highlighted.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Wei-Xian Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Spatial and Seasonal Dynamics of Inorganic Nitrogen and Phosphorous Compounds in an Orchard-Dominated Catchment with Anthropogenic Impacts. SUSTAINABILITY 2021. [DOI: 10.3390/su132011337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The influence of various types of agricultural activities on the dynamics of biogenic compounds of flowing water was broadly recognized in many spatial and temporal scales. However, relatively minor attention was paid to the hydrochemical functioning of horticultural catchments despite their importance and dominance in some regions of Europe. Thus, the current study investigated spatial and seasonal variations in inorganic nitrogen and phosphorous compounds in stream water in the Mogielanka River catchment, with 72% covered by apple orchards. Water samples were collected from fifteen sites distributed across the catchment in the monthly timescale from March 2020 to February 2021. Concentrations of NO3−, NO2−, NH4+, and PO43− were determined photometrically, while in situ water temperature, oxygen saturation, electrical conductivity, and pH, were measured with the use of portable devices. The impact of horticulture was mainly documented in the higher concentration of NO3− during the winter months; however, maximum values did not exceed 15 mg·dm−3 and were relatively low in comparison to catchments dominated by arable lands. The authors also found a clear impact of unstratified reservoirs and inflows from wastewater treatment plants on the dynamics of biogenic compounds. The correlations of PO43− with the sums of precipitation suggested, in turn, that increased PO43− concentration mainly results from poor sewage management. The results provided preliminary but unique and spatially extensive insight into the functioning of an orchard-dominated lowland catchment and allowed the researchers to point out the main recommendations for improving water quality in similar regions.
Collapse
|
7
|
Conrad SR, White SA, Santos IR, Sanders CJ. Assessing pesticide, trace metal, and arsenic contamination in soils and dam sediments in a rapidly expanding horticultural area in Australia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3189-3211. [PMID: 33534097 DOI: 10.1007/s10653-020-00803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Industrial horticulture can release pesticides and trace metals/metalloids to terrestrial and aquatic environments. To assess long-term and more recent land contamination from an expanding horticultural region, we sampled soils from chemical mixing, crop production, and drainage areas, as well as retention reservoirs (dam) sediments, from 3 blueberry farms with varying land-use history in subtropical Australia. Soils were analysed for 97 different pesticides and trace metal/metalloid contents. The most recent farm had fungicides propiconazole and cyprodinil contents that may compromise soil invertebrate survival and/or nutrient recycling (5-125 mg kg-1). A site previously used to cultivate bananas had 6 dam sediment subsamples with arsenic contents over sediment quality guidelines (SQG); however, the soil content values were just below Australian health investigation levels (100 mg kg-1). Arsenic is suspected to originate from pesticide application during previous banana cultivation in the region. Dam sediment cores at all sites had mercury contents over the SQG likely due to fungicides or fertiliser impurities. Mean contents of mercury from dam sediments (141 ± 15.5 µg kg-1) were greater than terrestrial soils (78 ± 6.5 µg kg-1), and sediment profiles suggest mercury retention in anoxic sediments. Soils in chemical mixing areas at two sites were contaminated with copper and zinc which were above the national soil ecological investigation levels. Based on toxicity data, distribution, persistence, and mobility, we identified the fungicide cyprodinil, mercury, and phosphorus as contaminants of the greatest concern in this intensive horticulture area of Australia. Additional sampling (spatial, chemical speciation, biotic) is required to support mitigation efforts of the emerging contamination in the rapidly expanding blueberry farms of this region of Australia.
Collapse
Affiliation(s)
- Stephen R Conrad
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW, 2540, Australia.
| | - Shane A White
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW, 2540, Australia
| | - Isaac R Santos
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW, 2540, Australia
- Department of Marine Sciences, University of Gothenburg, P.O. Box 461, 40530, Gothenburg, Sweden
| | - Christian J Sanders
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW, 2540, Australia
| |
Collapse
|
8
|
Wadnerkar PD, Andrews L, Wong WW, Chen X, Correa RE, White S, Cook PLM, Sanders CJ, Santos IR. Land use and episodic rainfall as drivers of nitrogen exports in subtropical rivers: Insights from δ 15N-NO 3-, δ 18O-NO 3- and 222Rn. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143669. [PMID: 33277015 DOI: 10.1016/j.scitotenv.2020.143669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Ongoing land-use intensification in subtropical catchments is expected to release more inorganic nitrogen to downstream coastal waters similar to historical changes in temperate ecosystems. Here, we examined spatial and temporal drivers of stream nitrogen loads across a subtropical land-use gradient using the isotopic compositions of nitrate (NO3--N) and radon (222Rn), a natural groundwater tracer. We investigated eleven subtropical creeks/rivers over contrasting hydrological conditions in Australia. NOx-N (nitrite (NO2--N) + nitrate (NO3--N)) accounted for 13.1%, 34.0%, and 42.6% of total dissolved nitrogen (TDN-N) in forest, peri-urban and agricultural creeks, respectively. Following an 80 mm rain event, loads of dissolved inorganic nitrogen (DIN-N) from agriculture catchments reached 368 mg N m-2 catchment area day-1. Forest and peri-urban catchments had aquatic TDN-N loads 17.8% and 31.1% of loads from agricultural catchments. Radon observations suggest that nitrogen and phosphorus loads were driven primarily by surface runoff rather than groundwater discharge. The δ15N-NO3- and δ18O-NO3- values in the agriculture, forest and peri-urban catchments indicate fertilisers and soil nitrogen as the main sources of NO3--N. However, one of the catchments (Double Crossing Creek) received a mixture of recirculated greywater and chemical nitrogen fertilisers. Isotopic signatures imply significant NO3--N losses via denitrification during dry conditions. Groundwater discharge played a minor role because regional aquifers were not contaminated by nitrogen. Overall, intensive agricultural land use and episodic rainfall events were the major spatial and temporal drivers of nitrogen loads.
Collapse
Affiliation(s)
- Praktan D Wadnerkar
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia.
| | - Luke Andrews
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Wei Wen Wong
- Water Studies Centre, School of Chemistry, Monash University, Clayton 3800, Australia
| | - Xiaogang Chen
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; School of Engineering, Westlake University, Hangzhou 310021, PR China
| | - Rogger E Correa
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Shane White
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Perran L M Cook
- Water Studies Centre, School of Chemistry, Monash University, Clayton 3800, Australia
| | - Christian J Sanders
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; State Key Laboratory of Estuarine and Coastal Research and Institute of Eco-Chongming, East China Normal University, Shanghai 201100, PR China
| | - Isaac R Santos
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Shen LD, Tian MH, Cheng HX, Liu X, Yang YL, Liu JQ, Xu JB, Kong Y, Li JH, Liu Y. Different responses of nitrite- and nitrate-dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114623. [PMID: 33618455 DOI: 10.1016/j.envpol.2020.114623] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 06/12/2023]
Abstract
Nitrite (NO2-)- and nitrate (NO3-)-dependent anaerobic oxidation of methane (AOM) are two new additions in microbial methane cycle, which potentially act as important methane sinks in freshwater aquatic systems. Here, we investigated spatial variations of community composition, abundance and potential activity of NO2-- and NO3--dependent anaerobic methanotrophs in the sediment of Jiulonghu Reservoir (Zhejiang Province, China), a freshwater reservoir having a gradient of increasing nitrogen loading from upstream to downstream regions. High-throughput sequencing of total bacterial and archaeal 16S rRNA genes showed the cooccurrence of Candidatus Methylomirabilis oxyfera (M. oxyfera)-like and Candidatus Methanoperedens nitroreducens (M. nitroreducens)-like anaerobic methanotrophs in the examined reservoir sediments. The community structures of these methanotrophs differed substantially between the sediments of upstream and downstream regions. Quantitative PCR suggested higher M. oxyfera-like bacterial abundance in the downstream (8.6 × 107 to 2.8 × 108 copies g-1 dry sediment) than upstream sediments (2.4 × 107 to 3.5 × 107 copies g-1 dry sediment), but there was no obvious difference in M. nitroreducens-like archaeal abundance between these sediments (3.7 × 105 to 4.8 × 105 copies g-1 dry sediment). The 13CH4 tracer experiments suggested the occurrence of NO2-- and NO3--dependent AOM activities, and their rates were 4.7-14.1 and 0.8-2.6 nmol CO2 g-1 (dry sediment) d-1, respectively. Further, the rates of NO2--dependent AOM in downstream sediment were significantly higher than those in upstream sediment. The NO3- concentration was the key factor affecting the spatial variations of abundance and activity of NO2--dependent anaerobic methanotrophs. Overall, our results showed different responses of NO2-- and NO3--dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir.
Collapse
Affiliation(s)
- Li-Dong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Mao-Hui Tian
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hai-Xiang Cheng
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou, 324000, China
| | - Xin Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yu-Ling Yang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jia-Qi Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jiang-Bing Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yun Kong
- College of Resources and Environment, Yangtze University, Hubei, Wuhan, 430100, China
| | - Jian-Hui Li
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou, 324000, China
| | - Yan Liu
- Wuxijiang National Wetland Park Service, Quzhou, 324000, China
| |
Collapse
|
10
|
Wadnerkar PD, Santos IR, Looman A, Sanders CJ, White S, Tucker JP, Holloway C. Significant nitrate attenuation in a mangrove-fringed estuary during a flood-chase experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:1000-1008. [PMID: 31434177 DOI: 10.1016/j.envpol.2019.06.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
Intertidal wetlands can sequester pollutants along estuarine conduits. Here we test the effectiveness of a mangrove-dominated estuary in removing dissolved nitrogen during a rain event. We intensively and simultaneously sampled surface water nutrients upstream and downstream of an estuary before, during and after a 63 mm rain event in Coffs Creek (Australia). NOx was the main form of dissolved nitrogen upstream of the estuary (∼60%), while dissolved organic nitrogen (DON) was an important form at the downstream station (∼46%) during observations. High NOx attenuation (71%) occurred during the rain event when the loads reached 31 μmol m-2 catchment area day-1. In contrast, the estuary was found to be a source of NH4+ (∼5 μmol m-2 catchment area day-1). This implies a moderate conversion of upstream NOx into NH4+ and DON along the transport pathway, likely due to tidally-driven pore water exchange within the anoxic estuarine mangrove sediments. Overall, the mangrove-lined estuary attenuated upstream total dissolved nitrogen loads, maintaining water quality and minimizing exports to the coastal ocean even during high flow conditions.
Collapse
Affiliation(s)
- Praktan D Wadnerkar
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia.
| | - Isaac R Santos
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; School of Environment, Science, and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Arun Looman
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia; School of Environment, Science, and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Christian J Sanders
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Shane White
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - James P Tucker
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Ceylena Holloway
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
11
|
Tang TT, Xing QJ, Zhang SH, Mu Y, Jiang XH, Zhou ZG, Xiao X, Zou JP. High selective reduction of nitrate into nitrogen by novel Fe-Cu/D407 composite with excellent stability and activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:888-896. [PMID: 31207573 DOI: 10.1016/j.envpol.2019.05.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 05/23/2023]
Abstract
In this study, we develop a new composite material of Fe-Cu/D407 composite via using nanoscale zero-valent iron (nZVI) with copper deposited on chelating resin (D407) to remove nitrate from the water. The experimental results show that a remarkable nitrate removal and the selectivity of N2 are 99.9% and 89.7%, respectively, under the anaerobic conditions of Cu/Fe molar ratio of 1:2, pH = 3.0. Even without of inert gas and adjusting the initial pH of the solution, the removal rate of nitrate by Fe-Cu/D407 reached to 85% and the selectivity of nitrogen reached to 55%. Meanwhile, the Fe-Cu/D407 maintained preferable removal efficiency of nitrate (100% - 92%) over a wide pH range of 3-11. In addition, the removal rate of the drinking water, lake water and wastewater from the Fe-Cu/D407 is still very high and the reactivity of Fe-Cu/D407 was relatively unaffected by the presence of dissolved ions in the waters tested. Moreover, the synergetic effect of Fe, Cu and D407 in the composite Fe-Cu/D407 were well investigated for the first time according to the analyses of TPR, XPS and EIS. The catalytic mechanism and denitrification routes were also proposed.
Collapse
Affiliation(s)
- Ting-Ting Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Qiu-Ju Xing
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Si-Hai Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yi Mu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xun-Heng Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhi-Gang Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|