1
|
da Silva AS, de Mello TF, Fagá HFE, Knorst JK, Silva FRMB, Leite GAA. Female Mice Exposed to Pyriproxyfen Since Prepuberty Showed Reproductive Impairment During Sexual Maturity and Increased Fetal Death in Their Offspring. ENVIRONMENTAL TOXICOLOGY 2024; 39:5019-5038. [PMID: 39037111 DOI: 10.1002/tox.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 06/01/2024] [Indexed: 07/23/2024]
Abstract
Pyriproxyfen (PPF) is an insecticide used in agriculture, which is approved for use in drinking water tanks for human consumption. However, some studies indicate that it may act as an endocrine disruptor and affect nontarget organisms. This study aimed to evaluate the effects of PPF on reproduction and general health status in female mice exposed from pre-puberty to adulthood. In the first experiment, females were treated by gavage from postnatal day (PND) 23 to (PND) 75 and were distributed into three experimental groups: control (vehicle), PPF 0.1 mg/kg, and PPF 1 mg/kg. Female mice were assessed for the age of puberty onset, body mass, water and food consumption, and the estrous cycle. On PDN 75, a subgroup was euthanized, when vital and reproductive organs were collected and weighed. The thyroid, ovary, and uterus were evaluated for histomorphometry. The other subgroup was assessed in relation to reproductive performance and fetal parameters. In a second experiment, the uterotrophic assay was performed with juvenile females (PND 18) using doses of 0.01, 0.1, or 1 mg/kg of PPF. PPF treatment reduced thyroid mass and increased liver mass. Furthermore, there was an increase in ovarian interstitial tissue and, in the uterus, a decrease in the thickness of the endometrial stroma with reduced content of collagen fibers. There was also a reduction of 30% in pregnancy rate in the treated groups and an increase in the frequency of fetal death. This study suggests that, based on this experimental model, the insecticide may pose a reproductive risk for females chronically exposed to the substance from the pre-pubertal period until adulthood. These results raise concerns about prolonged exposure of women to the same compound.
Collapse
Affiliation(s)
- Alice Santos da Silva
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-graduação em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tainara Fernandes de Mello
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-graduação em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Henrique Frederico Enz Fagá
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jennyfer Karen Knorst
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Gabriel Adan Araújo Leite
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
2
|
Sheikh IA, Beg MA, Macha MA. Pyrethroids and reproductive function: some endocrine disrupting perspectives from molecular simulations. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1086-1095. [PMID: 39214921 DOI: 10.1007/s10646-024-02801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Pyrethroids are widely used insecticides with huge applications for household as well as agricultural purposes and contribute to improved product quality and higher yields. In recent decades, the demand for pyrethroids has increased significantly due to advantages such as broad-spectrum efficacy, high insecticidal potential, and lower pest resistance. However, several studies have suggested that human exposure to pyrethroids leads to reproductive problems. Sex hormone-binding globulin (SHBG) is an important hormone transport protein regulating the availability of steroids at their target site. The aim of our study was to investigate the structural interactions of commonly used pyrethroids, cypermethrin and deltamethrin, with ligand binding pocket of SHBG. Cypermethrin and deltamethrin were docked into the steroid binding pocket of SHBG using Schrodinger's induced fit docking (IFD) followed by molecular dynamics (MD) simulation studies. The resultant SHBG-pyrethroid complexes from IFD experiments were subjected to structural analysis including the molecular interactions followed by binding energy estimation. The analysis revealed that both the ligands were tightly bound in the SHBG pocket with high percentage of commonality among the SHBG residues between the indicated pyrethroid ligands and the SHBG native ligand, dihydrotestosterone (DHT). The estimated binding energy values for cypermethrin were less but close to the values calculated for the SHBG native ligand, DHT. However, the estimated binding energy values for deltamethrin were higher compared to the values calculated for SHBG native ligand, DHT. Furthermore, the MD simulation results also revealed the higher stability of SHBG-deltamethrin than SHBG-cypermethrin complex. To sum up, the results suggested that deltamethrin has a greater capability than cypermethrin to prevent sex steroid hormone from binding to SHBG, even though both pyrethroids have this ability. Consequently, this might hamper the circulatory transport of sex steroid hormones and their availability at the target site, subsequently interfering with reproductive function.
Collapse
Affiliation(s)
- Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Mohd Amin Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Muzafar A Macha
- Watson-Crick Center for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192123, India
| |
Collapse
|
3
|
Dong Y, Xu W, Liu S, Xu Z, Qiao S, Cai Y. Serum albumin and liver dysfunction mediate the associations between organophosphorus pesticide exposure and hypertension among US adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174748. [PMID: 39019272 DOI: 10.1016/j.scitotenv.2024.174748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Human health is commonly threatened by organophosphorus pesticides (OPPs) due to their widespread use and biological characteristics. However, the combined effect of mixtures of OPPs metabolites on the risk of hypertension and potential mechanism remain limited. OBJECTIVES To comprehensively investigate the effects between OPPs exposure on hypertension risk and explore and underlying mechanism among US general population. METHODS This cross-sectional study collected US adults who had available data on urine OPPs metabolites (dialkyl phosphate compounds, DAPs) from the National Health and Nutrition Examination Survey (NHANES) to assess the relationships of DAPs with hypertension risk. Survey-weighted logistic regression, restricted cubic spline (RCS), and mixed exposure analysis models [weighted quantile sum regression (WQS) and Bayesian kernel machine regression (BKMR)] were used to analyze individual, dose-response and combined associations between urinary DAPs metabolites and hypertension risk, respectively. Mediation analysis determined the potential intermediary role of serum albumin and liver function in the above associations. RESULTS Compared with the reference group, participants with the highest tertile levels of DEP, DMTP, DETP, and DMDTP experienced increased risk of hypertension by 1.21-fold (95%CI: 1.02-1.36), 1.20-fold (95%CI: 1.02-1.42), 1.19-fold (95%CI: 1.01-1.40), and 1.17-fold (95%CI: 1.03-1.43), respectively. RCS curve also showed positive exposure-response associations of individual DAPs with hypertension risk. WQS and BKMR analysis further confirmed DAP mixtures were significantly associated with increased risk of hypertension, with DEP identified as a major contributor to the combined effect. Mediation analysis indicated that serum albumin and AST/ALT ratios played crucial mediating roles in the relationships between individual and mixed urinary DAPs and the prevalence of hypertension. CONCLUSION Our findings provided more comprehensive and novel perspectives into the individual and combined effects of urinary OPPs matabolites on the increased risk of hypertension and the possible driving mechanism, which would be of great significance for environmental control and early prevention of hypertension.
Collapse
Affiliation(s)
- Yinqiao Dong
- Department of Public Health, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200335, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Xu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shiping Liu
- National Children's Medical Center, Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhongqing Xu
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200335, China
| | - Shan Qiao
- Department of Health Promotion Education and Behaviors, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
| | - Yong Cai
- Department of Public Health, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200335, China.
| |
Collapse
|
4
|
Du G, Qian Z, Huang L, Wang M, Wang Q. Physiologically based toxicokinetic and toxicodynamic (PBTK-TD) modelling of cis-bifenthrin in Carassius auratus and Xenopus laevis accounting for reproductive toxicity. ENVIRONMENTAL RESEARCH 2024; 263:120126. [PMID: 39426455 DOI: 10.1016/j.envres.2024.120126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Pyrethroid insecticides are a class of endocrine disruptors and are believed to exhibit reproductive toxicity to aquatic organisms. Pyrethroids are widely detected in aquatic environments and can accumulate in aquatic organisms, but studies on their accumulation and the associated reproductive toxicity in aquatic organisms are still limited. We utilized Carassius auratus and Xenopus laevis as models for fish and amphibians, respectively, and developed and validated a physiologically based toxicokinetic and toxicodynamic (PBTK-TD) model for adult fish and frogs exposed to typical pyrethroid pesticides cis-bifenthrin (cis-BF). The model includes the brain, kidney, liver, gonads, gills/lungs, well-perfused tissue, and poorly-perfused tissue, which are interconnected by blood circulation in the PBTK process. There are also dynamic relationships between target organ concentrations and reproductive-related endpoints in the TD process. Results showed that the PBTK sub-model accurately described and predicted the uptake, distribution, and disposition kinetics in fish and frogs. In fish, the kidney exhibited the fastest accumulation rate, while in frogs, the skin showed the fastest accumulation rate, followed by the kidney. Sensitivity analysis indicated that parameters such as blood flow and blood distribution coefficients had significant effects on chemical concentrations. A sigmoid Emax model was employed to describe the relationship between the reproductive toxicity effects of cis-BF and its dose-concentration variations. We found that testosterone (T) exhibited the highest correlation coefficient, suggesting that T could serve as an effective biomarker for cis-BF reproductive toxicity. The PBTK-TD model established in this study is beneficial for predicting the toxicological effects of pyrethroids in fish and amphibians.
Collapse
Affiliation(s)
- Gaoyi Du
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Zhisong Qian
- Hangzhou EXPEC Technology Co., Ltd., Hangzhou, 310058, China
| | - Lei Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Dong PY, Yuan S, Chen Yan YM, Chen Y, Bai Y, Dong Y, Li YY, Shen W, Zhang XF. A multi-omics approach reveals that lotus root polysaccharide iron ameliorates iron deficiency-induced testicular damage by activating PPARγ to promote steroid hormone synthesis. J Adv Res 2024:S2090-1232(24)00424-7. [PMID: 39343163 DOI: 10.1016/j.jare.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
Iron deficiency is a common nutritional issue that seriously affects male reproductive health. Lotus root polysaccharide iron (LRPF), a novel nutritional supplement, may ameliorate the damage caused by iron deficiency, however, the mechanism is unclear. In this study, we comprehensively determined the benefits of LRPF on reproduction in iron-deficient mice by integrating transcriptomics, microbiomics and serum metabolomics. Microbiomics showed that LRPF could restore changes to the intestinal microbiota caused by iron deficiency. Metabolomics results showed that LRPF stabilised steroid hormone and fatty acid metabolism in iron-deficient mice, reduced the content of ethyl chrysanthemumate (EC) and ameliorated the reproductive impairment. The transcriptomic analysis showed that LRPF regulated steroid hormone synthesis and the peroxisome proliferator-activated receptor (PPAR) signalling pathway in iron-deficient mice. In vitro experiments showed that LRPF could promote steroid hormone synthesis in Leydig cells by activating PPARγ. In conclusion, this study highlights the advantage of LRPF to improve testicular development.
Collapse
Affiliation(s)
- Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yue Bai
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yang Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Yin-Yin Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China.
| |
Collapse
|
6
|
Wang F. Reproductive endocrine disruption effect and mechanism in male zebrafish after life cycle exposure to environmental relevant triclosan. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106899. [PMID: 38492288 DOI: 10.1016/j.aquatox.2024.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Triclosan (TCS) is a wide-spectrum antibacterial agent that is found in various water environments. It has been reported to have estrogenic effects. However, the impact of TCS exposure on the reproductive system of zebrafish (Danio rerio) throughout their life cycle is not well understood. In this study, zebrafish fertilized eggs were exposed to 0, 10, and 50 μg/L TCS for 120 days. The study investigated the effects of TCS exposure on brain and testis coefficients, the expression of genes related to the hypothalamus-pituitary-gonadal (HPG) axis, hormone levels, vitellogenin (VTG) content, histopathological sections, and performed RNA sequencing of male zebrafish. The results revealed that life cycle TCS exposure had significant effects on zebrafish reproductive parameters. It increased the testis coefficient, while decreasing the brain coefficient. TCS exposure also led to a decrease in mature spermatozoa and altered the expression of genes related to the HPG axis. Furthermore, TCS disrupted the balance of sex hormone levels and increased VTG content of male zebrafish. Transcriptome sequencing analysis indicated that TCS affected reproductive endocrine related pathways, including PPAR signaling pathway, cell cycle, GnRH signaling pathway, steroid biosynthesis, cytokine-cytokine receptor interaction, and steroid hormone biosynthesis. Protein-protein interaction (PPI) network analysis confirmed the enrichment of hub genes in these pathways, including bub1bb, ccnb1, cdc20, cdk1, mcm2, mcm5, mcm6, plk1, and ttk in the brain, as well as fabp1b.1, fabp2, fabp6, ccr7, cxcl11.8, hsd11b2, and hsd3b1 in the testis. This study sheds light on the reproductive endocrine-disrupting mechanisms of life cycle exposure to TCS.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, No. 6 Jiqing Road, Yibin District, Luoyang 471022, China.
| |
Collapse
|
7
|
Neff AM, Inman Z, Mourikes VE, Santacruz-Márquez R, Gonsioroski A, Laws MJ, Flaws JA. The role of the aryl hydrocarbon receptor in mediating the effects of mono(2-ethylhexyl) phthalate in mouse ovarian antral follicles†. Biol Reprod 2024; 110:632-641. [PMID: 38134965 PMCID: PMC10993471 DOI: 10.1093/biolre/ioad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a pervasive environmental toxicant used in the manufacturing of numerous consumer products, medical supplies, and building materials. DEHP is metabolized to mono(2-ethylhexyl) phthalate (MEHP). MEHP is an endocrine disruptor that adversely affects folliculogenesis and steroidogenesis in the ovary, but its mechanism of action is not fully understood. Thus, we tested the hypothesis that the aryl hydrocarbon receptor (AHR) plays a functional role in MEHP-mediated disruption of folliculogenesis and steroidogenesis. CD-1 mouse antral follicles were isolated and cultured with MEHP (0-400 μM) in the presence or absence of the AHR antagonist CH223191 (1 μM). MEHP treatment reduced follicle growth over a 96-h period, and this effect was partially rescued by co-culture with CH223191. MEHP exposure alone increased expression of known AHR targets, cytochrome P450 (CYP) enzymes Cyp1a1 and Cyp1b1, and this induction was blocked by CH223191. MEHP reduced media concentrations of estrone and estradiol compared to control. This effect was mitigated by co-culture with CH223191. Moreover, MEHP reduced the expression of the estrogen-sensitive genes progesterone receptor (Pgr) and luteinizing hormone/choriogonadotropin receptor (Lhcgr) and co-treatment with CH223191 blocked this effect. Collectively, these data indicate that MEHP activates the AHR to impair follicle growth and reduce estrogen production and signaling in ovarian antral follicles.
Collapse
Affiliation(s)
- Alison M Neff
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Zane Inman
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Andressa Gonsioroski
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
8
|
Shen Z, Zhang F, Guan X, Liu Z, Zong Y, Zhang D, Wang R, Xue Q, Ma W, Zhuge R, Guo L, Yin F. Associations of pyrethroid exposure with bone mineral density and osteopenia in adults. J Bone Miner Metab 2024; 42:242-252. [PMID: 38498197 DOI: 10.1007/s00774-024-01499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/15/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION This study was to investigate the correlations between pyrethroid exposure and bone mineral density (BMD) and osteopenia. MATERIALS AND METHODS This cross-sectional study included 1389 participants over 50 years of age drawn from the 2007-2010 and 2013-2014 National Health and Nutrition Examination Survey (NHANES). Three pyrethroid metabolites, 3-phenoxybenzoic acid (3-PBA), trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid (trans-DCCA), and 4-fluoro-3-phenoxybenzoic acid (4-F-3PBA) were used as indicators of pyrethroid exposure. Low BMD was defined as T-score < - 1.0, including osteopenia. Weighted multivariable linear regression analysis or logistic regression analysis was utilized to evaluate the correlation between pyrethroid exposure and BMD and low BMD. Bayesian kernel machine regression (BKMR) model was utilized to analyze the correlation between pyrethroids mixed exposure and low BMD. RESULTS There were 648 (48.41%) patients with low BMD. In individual pyrethroid metabolite analysis, both tertile 2 and tertile 3 of trans-DCCA were negatively related to total femur, femur neck, and total spine BMD [coefficient (β) = - 0.041 to - 0.028; all P < 0.05]. Both tertile 2 and tertile 3 of 4-F-3PBA were negatively related to total femur BMD (P < 0.05). Only tertile 2 [odds ratio (OR) = 1.63; 95% CI = 1.07, 2.48] and tertile 3 (OR = 1.65; 95% CI = 1.10, 2.50) of trans-DCCA was correlated with an increased risk of low BMD. The BKMR analysis indicated that there was a positive tendency between mixed pyrethroids exposure and low BMD. CONCLUSION In conclusion, pyrethroids exposure was negatively correlated with BMD levels, and the associations of pyrethroids with BMD and low BMD varied by specific pyrethroids, pyrethroid concentrations, and bone sites.
Collapse
Affiliation(s)
- Zhubin Shen
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China.
| | - Fengyi Zhang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
| | - Xiaoqing Guan
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
| | - Zhiming Liu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yuan Zong
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
| | - Ding Zhang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
| | - Rui Wang
- Department of Toxicology, School of Public, Health of Jilin University, Changchun, 130021, China
| | - Qian Xue
- Department of Toxicology, School of Public, Health of Jilin University, Changchun, 130021, China
| | - Wenxuan Ma
- Department of Toxicology, School of Public, Health of Jilin University, Changchun, 130021, China
| | - Ruijian Zhuge
- Department of Toxicology, School of Public, Health of Jilin University, Changchun, 130021, China
| | - Li Guo
- Department of Toxicology, School of Public, Health of Jilin University, Changchun, 130021, China
| | - Fei Yin
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China.
| |
Collapse
|
9
|
Zheng CY, Yu YX, Cao SY, Bai X. Epigenetics of inflammation in hypothalamus pituitary gonadal and neuroendocrine disorders. Semin Cell Dev Biol 2024; 154:340-345. [PMID: 37142487 DOI: 10.1016/j.semcdb.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
The hormone producing hypothalamus, pituitary and gonadal are arranged in hierarchy to form the hypothalamic-pituitary-gonadal axis (HPG axis). The axis is neuroendocrine in nature and releases hormones in response to the inputs from nervous systems. The axis maintains homeostasis and ensures smooth body functions, particularly those related to growth and reproduction. A deregulated HPG axis, such as observed under inflammation and other conditions, is therefore associated with several disorders such as polycystic ovary syndrome, functional hypothalamic amenorrhea etc. Several factors, both genetic as well as environmental, in addition to aging, obesity etc. affect HPG axis with resulting effects on puberty, sexual maturation and reproductive health. More research is now indicative of a role of epigenetics in mediating these HPG-affecting factors. Hypothalamus-secreted gonadotropin-releasing hormone is important for eventual release of sex hormones and it is subjected to several neuronal and epigenetic regulations. Gene promoter methylation as well as histone methylations and acetylations form the backbone of epigenetic regulation of HPG-axis, as the incoming reports suggest. Epigenetic events also mediate several feedback mechanisms within HPG axis and between HPG axis and the central nervous system. In addition, data is emerging for a role of non-coding RNAs, particularly the miRNAs, in regulation and normal functioning of HPG axis. Thus, the epigenetic interactions need better understanding to understand the functioning and regulation of HPG axis.
Collapse
Affiliation(s)
- Chun-Yang Zheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, No. 83, Zhongshan Road, Heping District, Shenyang 110000, Liaoning Province, China
| | - Yue-Xin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Shi-Yue Cao
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Xue Bai
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
10
|
Mohanty B. Pesticides exposure and compromised fitness in wild birds: Focusing on the reproductive endocrine disruption. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105800. [PMID: 38458691 DOI: 10.1016/j.pestbp.2024.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
Exposure of pesticides to wildlife species, especially on the aspect of endocrine disruption is of great concern. Wildlife species are more at risk to harmful exposures to the pesticides in their natural habitat through diet and several other means. Species at a higher tropic level in the food chain are more susceptible to the deleterious effects due to sequential biomagnifications of the pesticides/metabolites. Pesticides directly affect fitness of the species in the wild causing reproductive endocrine disruption impairing the hormones of the gonads and thyroid glands as reproduction is under the influence of cross regulations of these hormones. This review presents a comprehensive compilation of important literatures on the impact of the current use pesticides in disruption of both the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid axes particularly in birds addressing impacts on the reproductive impairments and overall fitness. In addition to the epidemiological studies, laboratory investigations those provide supportive evidences of the probable mechanisms of disruption in the wild also have been incorporated in this review. To accurately predict the endocrine-disruption of the pesticides as well as to delineate the risk associated with potential cumulative effects, studies are to be more focused on the environmentally realistic exposure dose, mixture pesticide exposures and transgenerational effects. In addition, strategic screening/appropriate methodologies have to be developed to reveal the endocrine disruption potential of the contemporary use pesticides. Demand for adequate quantitative structure-activity relationships and insilico molecular docking studies for timely validation have been highlighted.
Collapse
|
11
|
Li Y, He X, Sun B, Hu N, Li J, You R, Tao F, Fang L, Li Y, Zhai Q. Combined exposure of beta-cypermethrin and emamectin benzoate interferes with the HPO axis through oxidative stress, causing an imbalance of hormone homeostasis in female rats. Reprod Toxicol 2024; 123:108502. [PMID: 37984602 DOI: 10.1016/j.reprotox.2023.108502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
The impact of pesticides on reproductive health has been increasingly recognized. β-cypermethrin (β-CYP) and emamectin benzoate (EMB) are commonly used with agricultural workers. There are few published studies on the effects of combined poisoning of these two pesticides on the reproductive system. This study investigated the toxic effects and mechanism of β-CYP and EMB on the reproductive system of female rats based on the hypothalamic-pituitary-ovarian (HPO) axis. The hypothalamic GnRH content tended to decrease, and Kiss-1 and GPR-54 mRNA and protein expression tended to increase in exposed rats. FSH content was elevated for the pituitary gland, and Kiss-1 and GPR-54 mRNA and protein expression were enhanced in all experimental groups compared with the control group. E2 content in rat ovaries and ERα mRNA and protein expression were reduced by β-CYP and EMB. Furthermore, there were interactive effects of β-CYP and EMB on FSH and E2 release, pituitary GPR-54 mRNA and protein, and ovarian ERα mRNA expression. To investigate causes of damage, oxidative damage indicators were tested and showed that exposure to β-CYP and EMB decreased GSH-Px and SOD activities in the HPO axis, increased MDA levels in the hypothalamus and ovary together with LDH activities in the HPO axis, with an interaction effect on GSH-Px and SOD activities in the hypothalamus and pituitary gland as well as on MDA in the ovary. The above results support the screening of sensitive molecular biomarkers and evaluation of the adverse effects of pesticide exposure in greenhouse operations on reproductive health.
Collapse
Affiliation(s)
- Yuxin Li
- School of Public Health, Weifang Medical University, Weifang 261053, China; Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing 100191, China
| | - Xianzhi He
- School of Public Health, Changsha Medical University, Changsha 410219, China
| | - Bin Sun
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Nannan Hu
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Jiamin Li
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Ruolan You
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Feiyan Tao
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Lei Fang
- School of Public Health, Weifang Medical University, Weifang 261053, China
| | - Yuanyuan Li
- Department of Neonatology, Weifang Maternal and Child Health Hospital, Weifang 261011, China.
| | - Qingfeng Zhai
- School of Public Health, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
12
|
Liu Y, Jiang S, Xiang Y, Lin F, Yue X, Li M, Xiao J, Cao H, Shi Y. In vivo-in vitro correlations (IVIVC) for the assessment of pyrethroid bioavailability in honey. Food Chem 2023; 429:136873. [PMID: 37459714 DOI: 10.1016/j.foodchem.2023.136873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Bioaccessibility/bioavailability is an important factor in assessing the potential human health risk via oral exposure. However, methods for accurately predicting the bioaccessibility/bioavailability of pesticide residues are still limited, preventing accurate measurements of actual exposure to pesticide residues. In this study, pyrethroid bioavailability in honey were analysed using a mouse bioassay and bioaccessibility via in vitro methods with Tenax extraction. The results demonstrated that the combined liver plus kidney data served as an appropriate biomarker to estimate the relative bioavailability. Notably, significant in vivo-in vitro correlations (IVIVC) were observed between bioavailability and bioaccessibility (R2 = 0.7898-0.9793). Estimation of the bioavailability of honey from different nectar plants using derived IVIVC confirmed that different contents and physicochemical properties might affect its bioavailability. The findings provide insight into assessing human exposure to pesticides based on bioavailability and can decrease the uncertainty about the assessment of the risk of dietary exposure to pesticides.
Collapse
Affiliation(s)
- Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Siyuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuxin Xiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Xingyu Yue
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Minkun Li
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China.
| |
Collapse
|
13
|
Adhikari A, Das BK, Ganguly S, Nag SK, Sadhukhan D, Raut SS. Emerging contaminant triclosan incites endocrine disruption, reproductive impairments and oxidative stress in the commercially important carp, Catla (Labeo catla): An insight through molecular, histopathological and bioinformatic approach. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109605. [PMID: 36906249 DOI: 10.1016/j.cbpc.2023.109605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent is ubiquitous in aquatic ecosystems; however, the mechanisms regarding TCS-induced reproductive toxicity in the teleost still remains uncertain. In this context, Labeo catla were subjected to sub-lethal doses of TCS for 30 days and variations in expression of genes and hormones comprising the hypothalamic-pituitary-gonadal (HPG) axis along with alterations in sex steroids were evaluated. Moreover, manifestation of oxidative stress, histopathological alterations, in silico docking and the potential to bioaccumulate were also investigated. Exposure to TCS may lead to an inevitable onset of the steroidogenic pathway through its interaction at several loci along the reproductive axis: TCS stimulated synthesis of kisspeptin 2 (Kiss 2) mRNAs which in turn prompts the hypothalamus to secrete gonadotropin-releasing hormone (GnRH), resulting in elevated serum 17β-estradiol (E2) as a consequence; TCS exposure increased aromatase synthesis by brain, which by converting androgens to oestrogens may raise E2 levels; Moreover, TCS treatment resulted in elevated production of GnRH and gonadotropins by the hypothalamus and pituitary, respectively resulting in the induction of E2. The elevation in serum E2 may be linked to abnormally elevated levels of vitellogenin (Vtg) with harmful consequences evident as hypertrophy of hepatocytes and increment in hepatosomatic indices. Additionally, molecular docking studies revealed potential interactions with multiple targets viz. Vtg and luteinizing hormone (LH). Furthermore, TCS exposure induced oxidative stress and caused extensive damage to tissue architecture. This study elucidated molecular mechanisms underlying TCS-induced reproductive toxicity and the need for regulated use and efficient alternatives which could suffice for TCS.
Collapse
Affiliation(s)
- Anupam Adhikari
- ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Basanta Kumar Das
- ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India.
| | - Satabdi Ganguly
- ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Subir Kumar Nag
- ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Debalina Sadhukhan
- ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | | |
Collapse
|
14
|
Chen L, Xie Y, Li M, Mortimer M, Li F, Guo LH. Toxicological Mechanisms of Emerging Per-/poly-fluoroalkyl Substances: Focusing on Transcriptional Activity and Gene Expression Disruption. Toxicology 2023:153566. [PMID: 37263573 DOI: 10.1016/j.tox.2023.153566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Environmental and human monitoring studies have witnessed increasing occurrence of emerging per-/poly-fluoroalkyl substances (ePFASs) worldwide. Three classes of ePFASs, namely chlorinated polyfluoroalkylether sulfonic acids, hexafluoropropylene oxide homologues and short-chain perfluoroalkyl acids attracted the most attention. It is, therefore, the goal of this review to systematically and critically analyse the toxicity and toxicological mechanisms of these ePFASs based on the papers published between 2017 and 2022. The review summarized the main findings from both in vivo and in vitro studies, covering the hepatotoxicity of ePFASs and their interference with the endocrine system, including reproductive, developmental and thyroid toxicity. It also summarized the changes in gene expression in the hypothalamic-pituitary-thyroid axis and hypothalamic-pituitary-gonad axis of the model organisms after ePFASs exposure. The changes in gene expression in vitro and in vivo provide a clearer understanding of the toxicological mechanisms of ePFASs interference on hormonal levels (i.e., estradiol, testosterone, and thyroid hormones), developmental disturbance (e.g., swim bladder dysfunction) and lipid metabolism disruption (e.g., lipid droplet accumulation and hepatomegaly). In the end, future research directions on the toxicological mechanisms of ePFASs are suggested.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Yue Xie
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| |
Collapse
|
15
|
Göl E, Çok İ, Battal D, Şüküroğlu AA. Assessment of Preschool Children's Exposure Levels to Organophosphate and Pyrethroid Pesticide: A Human Biomonitoring Study in Two Turkish Provinces. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:318-331. [PMID: 36877224 DOI: 10.1007/s00244-023-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are products developed to prevent, destroy, repel or control certain forms of plant or animal life that are considered to be pests. However, now they are one of the critical risk factors threatening the environment, and they create a significant threat to the health of children. Organophosphate (OP) and pyrethroid (PYR) pesticides are widely used in Turkey as well as all over the world. The main focus of this presented study was to analyze the OP and PYR exposure levels in urine samples obtained from 3- to 6-year-old Turkish preschool children who live in the Ankara (n:132) and Mersin (n:54) provinces. In order to measure the concentrations of three nonspecific metabolites of PYR insecticides and four nonspecific and one specific metabolite of OPs, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses were performed. The nonspecific PYR metabolite 3-phenoxybenzoic acid (3-PBA) found in 87.1% of samples (n = 162) and the specific OP metabolite 3,5,6-trichloro-2-pyridinol (TCPY) found in 60.2% of samples (n = 112) were the most frequently detected metabolites in all urine samples. The mean concentrations of 3-PBA and TCPY were 0.38 ± 0.8 and 0.11 ± 0.43 ng/g creatinine, respectively. Although due to the large individual variation no statistically significant differences were found between 3-PBA (p = 0.9969) and TCPY (p = 0.6558) urine levels in the two provinces, significant exposure differences were determined both between provinces and within the province in terms of gender. Risk assessment strategies performed in light of our findings do not disclose any proof of a possible health problems related to analyzed pesticide exposure in Turkish children.
Collapse
Affiliation(s)
- Ersin Göl
- Ankara Toxicology Department of the Council of Forensic Medicine, 06300, Keçiören, Ankara, Turkey
| | - İsmet Çok
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey.
| | - Dilek Battal
- Faculty of Pharmacy, Department of Toxicology, Mersin University, Mersin, Turkey
| | - Ayça Aktaş Şüküroğlu
- Faculty of Pharmacy, Department of Toxicology, Mersin University, Mersin, Turkey
| |
Collapse
|
16
|
Gupta P, Mahapatra A, Suman A, Singh RK. In silico and in vivo assessment of developmental toxicity, oxidative stress response & Na +/K +-ATPase activity in zebrafish embryos exposed to cypermethrin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114547. [PMID: 36680990 DOI: 10.1016/j.ecoenv.2023.114547] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Cypermethrin (CYP), a synthetic type II pyrethroid pesticide, is extensively used to control pests in industrial, domestic, and agricultural environments. However, its indiscriminate use leads to a potential threat to aquatic organisms. Although several reports focussed on developmental toxicity effects, a concise study combining cardiotoxicity along with Na+/K+-ATPase activity and molecular docking of developmental proteins with CYP was lacking. This present study was designed to address this gap to comprehend the impact of CYP exposure (0, 25, 100 and 200 µg/L) on embryonic zebrafish. As a result, CYP delayed the hatching rate, reduced heart rate, increased mortality rate and induced numerous morphological abnormalities. Subsequently, CYP induced oxidative stress in treated zebrafish embryos with the concomitant increase in antioxidant enzymes (SOD and CAT) and malondialdehyde production. In addition, an alteration in AChE, NO content and Na+/K+-ATPase activity was observed, suggesting a disruption in cardiac development and ion regulation. Furthermore, AO staining showed notable apoptotic cells which are supported by alteration in apoptosis-related gene expressions. Moreover, to explore the putative targets of CYP, computational docking with developmental proteins (WNT3A, WNT8A, GATA-4, Nkx 2-5 and ZHE1) showed strong interactions and binding. Taken together, our findings provide a better understanding of assessing the ecotoxicological risk information and the mode of action underlying the development of teleost fishes following CYP exposure. Meanwhile, the pioneering nature of this study is to emphasize the future use of Na+/K+-ATPase activity as a potential toxicity biomarker and in silico molecular docking studies to complement developmental toxicity findings.
Collapse
Affiliation(s)
- Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
17
|
Bittencourt KC, Souza RRDE. Insecticidal activity of the organotellurium 2-Phenylethynyl-Butyltellurium on the Drosophila melanogaster model. AN ACAD BRAS CIENC 2023; 95:e20211486. [PMID: 36946808 DOI: 10.1590/0001-3765202320211486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/04/2022] [Indexed: 03/18/2023] Open
Abstract
2-Phenylethynyl-Butyltellurium (PEBT) is a synthetic organotellurium compound that has shown various pharmacological properties on mammals without any signs of toxicity, but its effects on insects have not been reported before. Therefore, the aim of this study was to assess whether acute exposure to PEBT would promote an insecticidal effect against Drosophila melanogaster. The flies were exposed to three concentrations of PEBT (0.325 µmol L-1, 1.300 µmol L-1, and 5.200 µmol L-1) and a control solution (vehicle), using 450 flies per treatment (three repetitions of 150 flies), for 48 hours. Negative geotaxis and open field tests were performed (in vivo) after 24 and 48h, and acetylcholinesterase (AChE) activity was assessed (ex vivo) after 48h. Also, the mortality rate, 50% Lethal Concentration (LC50), 80% Lethal Concentration (LC80), and 95% Lethal Concentration (LC95) were calculated. Our results show that PEBT presented insecticidal activity against Drosophila melanogaster at all tested concentrations, which caused locomotor impairment and increased acetylcholinesterase activity in the flies' heads.
Collapse
Affiliation(s)
- Karina Chertok Bittencourt
- Federal University of Santa Maria (UFSM), Department of Agronomic and Environmental Sciences, Linha 7 de Setembro, s/n, BR 386, Km 40, 98400-000 Frederico Westphalen, RS, Brazil
| | - Rafael Rodrigues DE Souza
- Federal University of Santa Maria (UFSM), Department of Plant Science, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
18
|
Sheikh IA, Beg MA, Hamoda TAAM, Mandourah HMS, Memili E. Androgen receptor signaling and pyrethroids: Potential male infertility consequences. Front Cell Dev Biol 2023; 11:1173575. [PMID: 37187621 PMCID: PMC10175798 DOI: 10.3389/fcell.2023.1173575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Infertility is a global health concern inflicting a considerable burden on the global economy and a severe socio-psychological impact. Approximately 15% of couples suffer from infertility globally, with a male factor contribution of approximately 50%. However, male infertility remains largely unexplored, as the burden of infertility is mostly assigned to female people. Endocrine-disrupting chemicals (EDCs) have been proposed as one of the factors causing male infertility. Pyrethroids represent an important class of EDCs, and numerous studies have associated pyrethroid exposure with impaired male reproductive function and development. Therefore, the present study investigated the potentially toxic effects of two common pyrethroids, cypermethrin and deltamethrin, on androgen receptor (AR) signaling. The structural binding characterization of cypermethrin and deltamethrin against the AR ligand-binding pocket was performed using Schrodinger's induced fit docking (IFD) approach. Various parameters were estimated, such as binding interactions, binding energy, docking score, and IFD score. Furthermore, the AR native ligand, testosterone, was subjected to similar experiments against the AR ligand-binding pocket. The results revealed commonality in the amino acid-binding interactions and overlap in other structural parameters between the AR native ligand, testosterone, and the ligands, cypermethrin and deltamethrin. The estimated binding energy values of cypermethrin and deltamethrin were very high and close to those calculated for AR native ligand, testosterone. Taken together, the results of this study suggested potential disruption of AR signaling by cypermethrin and deltamethrin, which may result in androgen dysfunction and subsequent male infertility.
Collapse
Affiliation(s)
- Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Ishfaq Ahmad Sheikh,
| | - Mohd Amin Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Erdogan Memili
- College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, United States
| |
Collapse
|
19
|
Gan H, Zhu B, Zhou F, Ding Z, Liu J, Ye X. Perinatal exposure to low doses of cypermethrin induce the puberty-related hormones and decrease the time to puberty in the female offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2665-2675. [PMID: 35931855 DOI: 10.1007/s11356-022-22328-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Pyrethroid insecticides are ubiquitously detected in environmental media, food, and urine samples. Our previous epidemiological study reported a correlation between increased pyrethroid exposure and delayed pubertal development in Chinese girls. In this study, we further investigated the effects of perinatal exposure to low doses of cypermethrin (CP) on pubertal onset and hypothalamic-pituitary-ovarian axis in the female mice offspring. The treatment of CP with 60 μg/kg/day from gestation day 6 (GD6) to postnatal day 21 (PND21) significantly decreased the time to puberty in the female offspring. Exposure of CP increased the serum levels of gonadotropin-releasing hormone (GnRH) and the expression of GnRH genes in a dose-dependent manner in the female offspring. CP also induced the serum levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the expression of gonadotropin subunit genes [LHβ, FSHβ, and chorionic gonadotropin α (Cgα)]. Furthermore, CP induced serum estradiol (E2) levels and the expression of steroidogenesis-related genes [steroidogenic acute regulatory (StAR) and Cytochrome p 450, family 11, subfamily A, polypeptide 1 (CYP11A1)] in the ovary. In accordance with the in vivo tests, administration of CP (6.7, 20, and 60 μg/L) stimulated a dose-dependent increase in the synthesis and secretion of the puberty-related hormones in the explants of hypothalamus, pituitary, and ovary. The interference with calcium channels in the ovary may be responsible for CP-induced pubertal onset. Our study provided evidence that perinatal exposure to low doses of CP induced puberty-related hormones and decreased the time to puberty in the female offspring.
Collapse
Affiliation(s)
- Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
20
|
Yu K, Qiu Y, Shi Y, Yu X, Dong T, Wu Y, Li H, Huang L. Association of long-term effects of low-level sulfamethoxazole with ovarian lipid and amino acid metabolism, sex hormone levels, and oocyte maturity in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114234. [PMID: 36326554 DOI: 10.1016/j.ecoenv.2022.114234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Sulfamethoxazole (SMZ) is an important antibiotic used to prevent and treat infections in both clinical settings and animal husbandry. High levels of SMZ may exhibit endocrine toxicity. Environmental SMZ enters the human body via food and water; however, the toxicity of environmental doses of SMZ and its effects on reproductive health are unknown. In the present study, zebrafish were exposed to low concentrations of SMZ (1000 and 5000 ng/L) from 2 h post-fertilization to 120 d post-fertilization. Consequently, the proportion of mature oocytes in adult female zebrafish ovarian tissue increased by 98.2 %, indicating that SMZ promotes ovarian maturation. Metabolomics analysis revealed significant changes in ovarian lipid and amino acid levels after SMZ treatment. An enzyme-linked immunoassay used to detect sex hormones in the ovaries showed that SMZ exposure significantly increased the levels of estradiol, a follicle-stimulating hormone, and of luteinizing hormone. Furthermore, an association analysis showed that most of the differentially expressed metabolites in the ovary were strongly correlated with the levels of sex hormones secreted by the pituitary gland. Therefore, significantly increased transcript levels of gonadotropin-releasing hormone (GnRH) and follicle-stimulating hormone detected in brain tissue suggested that SMZ may exhibit ovarian toxicity via the hypothalamus. In vitro experiments were performed to demonstrate that SMZ targets neurons in the hypothalamus. Exposure to SMZ significantly increased the GnRH content in GnRH neurons. Finally, molecular docking simulations indicated the potential interaction of SMZ with G protein-coupled receptor 54; this molecular binding can activate, synthesize, and release GnRH in neurons. In conclusion, long-term environmental exposure to SMZ may induce ovarian toxicity by affecting the hypothalamus-pituitary-gonad axis.
Collapse
Affiliation(s)
- Kan Yu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yushu Qiu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yi Shi
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Xiaogang Yu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Ting Dong
- Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yuhang Wu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Huajun Li
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Lisu Huang
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
21
|
Rousseau M, Rouzeau C, Bainvel J, Pelé F. Domestic Exposure to Chemicals in Household Products, Building Materials, Decoration, and Pesticides: Guidelines for Interventions During the Perinatal Period from the French National College of Midwives. J Midwifery Womens Health 2022; 67 Suppl 1:S113-S134. [PMID: 36480667 DOI: 10.1111/jmwh.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION We are exposed to numerous pollutants inside our homes. The perinatal period represents a particular window of vulnerability during which these exposures can have negative health effects over a more or less long term. The objective of this article is to formulate guidelines for health care professionals and intended for parents to reduce exposure to chemical pollutants at home, based on the scientific literature and already existing guidelines. METHODS We have followed the methodological procedures set forth by the French authority for health (HAS) to establish guidelines to limit exposure to pollutants in homes. This narrative review of the scientific literature was conducted with two principal objectives: (1) to identify priority substances emitted within homes and that have a reprotoxic potential and (2) to identify measures to limit exposure to these residential pollutants. The guidelines were developed from the data in the literature and from advice already made available by diverse institutions about environmental health during the perinatal period. RESULTS Domestic pollutants are numerous and come from both common (that is, shared, eg, painting, cleaning, and maintenance work) and specific (use of household pesticides) sources. Numerous pollutants are suspected or known to produce developmental toxicity, that is, to be toxic to children during developmental stages. Removing some products from the home, protecting the vulnerable (ie, pregnant women and young children) from exposure, and airing the home are among the preventive measures proposed to limit exposure to these chemical substances. CONCLUSION Health care professionals can provide advice to parents during the perinatal period to diminish exposure to household pollutants. The lack of interventional studies nonetheless limits the level of evidence for most of these recommendations.
Collapse
Affiliation(s)
- Mélie Rousseau
- Association pour la Prévention de la Pollution Atmosphérique (APPA), Loos, France
| | - Camille Rouzeau
- Département de médecine générale, Université de Rennes 1, Rennes, France
| | - Justine Bainvel
- Département de médecine générale, Université de Rennes 1, Rennes, France
| | - Fabienne Pelé
- Département de médecine générale, Université de Rennes 1, Rennes, France.,Université de Rennes, CHU Rennes, Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), Rennes, F-35000, France
| |
Collapse
|
22
|
Liu XC, Strodl E, Huang LH, Lu Q, Liang Y, Chen WQ. First Trimester of Pregnancy as the Sensitive Period for the Association between Prenatal Mosquito Coil Smoke Exposure and Preterm Birth. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11771. [PMID: 36142044 PMCID: PMC9517152 DOI: 10.3390/ijerph191811771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Mosquito coils are efficient mosquito repellents and mosquito coil smoke (MCS) contributes to indoor air pollution. However, no prior population-based study has investigated whether prenatal MCS exposure is a risk factor for preterm birth (PTB) and whether exposure to MCS in different trimesters of pregnancy is associated with different levels of risk. The sample involved 66,503 mother-child dyads. Logistic regression models were used to examine the relationships between prenatal MCS exposure during different trimesters of pregnancy and PTB. We found that prenatal MCS exposure was associated with a greater likelihood of PTB (OR = 1.12, 95%CI: 1.05-1.20). The prenatal MCS exposure during the first trimester was associated with 1.17 (95%CI: 1.09-1.25) times the odds of being PTB, which was higher than exposure during the second trimester (OR = 1.11, 95%CI: 1.03-1.19) and during the third trimester (OR = 1.08, 95%CI: 1.01-1.16). In the stratified analysis, prenatal MCS exposure significantly increased PTB risk among girls but not among boys. Our results indicated that maternal MCS exposure during pregnancy was associated with PTB and that the first trimester might be the sensitive period. In light of these findings, public health interventions are needed to reduce prenatal exposure to MCS, particularly during the first trimester of pregnancy.
Collapse
Affiliation(s)
- Xin-Chen Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Esben Strodl
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Li-Hua Huang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Lu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Qing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- School of Health, Xinhua College of Guangzhou, Guangzhou 510080, China
| |
Collapse
|
23
|
Xu H, Bo Y. Associations between pyrethroid exposure and serum sex steroid hormones in adults: Findings from a nationally representative sample. CHEMOSPHERE 2022; 300:134591. [PMID: 35427660 DOI: 10.1016/j.chemosphere.2022.134591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Pyrethroids have been considered as potential endocrine-disrupting chemicals and have been shown to be associated with endocrine-related health outcomes. However, limited studies directly explored the link between pyrethroid exposure and sex hormones in the general population. OBJECTIVES To explore the associations between exposure to pyrethroids and serum sex steroid hormones in adults. METHODS We evaluated the cross-sectional associations in 1235 adults aged ≥20 years who had been assigned to the National Health and Nutrition Examination Survey (NHANES) 2013-2014. The urinary concentration of 3-phenoxybenzoic acid (3-PBA) was applied as a biomarker of human pyrethroid exposure levels. Information on sex steroid hormones, including total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) in serum were measured. Free androgen index (FAI) and the ratio of TT to E2 (TT/E2) were also calculated. The percent changes with 95% confidence intervals (CIs) for a doubling of 3-PBA concentrations in the serum sex hormone levels were estimated using generalized linear regression models. RESULTS The overall median concentrations of creatinine-adjusted 3-PBA were 0.58 μg/g creatinine, and 90.0% of adults had a detectable level of 3-PBA. In females, every two-fold increase in 3-PBA was associated with 4.34% (95% CI: 1.58%, 7.18%) higher levels of TT and 4.05% (95% CI: 7.03%, 1.16%) higher levels of SHBG, respectively. In males, a doubling in 3-PBA was associated with 3.02% (95% CI: 1.21%, 4.86%) increase in SHBG but 1.85% (-3.59%, -0.07%) decrease in FAI, respectively. In addition, significant non-linear associations of 3-PBA with SHBG in both males and females and TT in females were observed. CONCLUSIONS Environmental pyrethroid exposure was associated with altered sex hormones in adults. This study provides important epidemiological evidence for the association of pyrethroids with endocrine disruption.
Collapse
Affiliation(s)
- Huadong Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.
| | - Yacong Bo
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450000, China
| |
Collapse
|
24
|
Song J, Ma X, Li F, Liu J. Exposure to multiple pyrethroid insecticides affects ovarian follicular development via modifying microRNA expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154384. [PMID: 35276145 DOI: 10.1016/j.scitotenv.2022.154384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Pyrethroids, a class of insecticides widely used in agriculture and residential pest control, have been considered as endocrine-disrupting chemicals (EDCs). Our previous epidemiological study reported a positive association of urinary levels of pyrethroid metabolites with the risk of primary ovarian insufficiency in women, suggesting that pyrethroid exposure may be a potential risk factor for female ovarian health. In this study, female mice at gestational, lactational or peripubertal stages were exposed to eight most commonly used pyrethroids at the doses of acceptable daily intake (ADI) recommended by the World Health Organization (WHO). Gestational exposure to eight pyrethroids at ADI doses led to a significant decrease in the number of primary follicles in female offspring on postnatal day (PND) 3, and an increase in the number of atretic follicles and granulosa cell apoptosis, as well as lower estrogen and higher follicle-stimulating hormone (FSH) levels in adult female offspring. Lactational and peripubertal exposure to pyrethroid mixture had no significant effects on follicular development and ovarian functions. The data of high-throughput microRNA (miRNA) sequencing showed that 23 miRNAs were differentially expressed in the ovaries of female offspring mice on PND 1 after gestational exposure to pyrethroid mixture. The results of qPCR confirmed that miR-152-3p, miR-450b-3p and miR-196a-5p were significantly upregulated in the neonatal ovaries in the exposed group. The bioinformatic analysis indicates that the modification of the expression of ovarian miRNAs by pyrethroid exposure may disrupt the key biological processes (such as mRNA processing) and major signaling pathways (such as PI3K/Akt pathway, adipocytokine pathway and GnRH pathway) governing follicular development and ovarian functions. This study first reported that gestational exposure of female mice to multiple pyrethroids at the recommended human safe doses had irreversible adverse effects on the ovaries in female offspring in adulthood through regulating the expression of miRNAs during early developmental stages.
Collapse
Affiliation(s)
- Jingyi Song
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaochen Ma
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Montaño-Campaz ML, Dias LG, Bacca T, Toro-Restrepo B, Oliveira EE. Exposures to deltamethrin on immature Chironomus columbiensis drive sublethal and transgenerational effects on their reproduction and wing morphology. CHEMOSPHERE 2022; 296:134042. [PMID: 35202668 DOI: 10.1016/j.chemosphere.2022.134042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Sublethal exposure to insecticides can trigger unintended responses in non-target insects that may disrupt reproductive and developmental performances of these organisms. Here, we assessed whether sublethal exposure to the pyrethroid insecticide deltamethrin in early life had sublethal and transgenerational effects on the reproduction (i.e., fecundity and fertility) and wing morphology of Chironomus columbiensis, an aquatic insect used as a water quality indicator. We first conducted concentration-response bioassays to evaluate the susceptibility of C. columbiensis larvae to deltamethrin. Our results revealed that deltamethrin toxicity was approximately 7-fold higher when C. columbiensis larvae where exposed to 96 h (LC50 = 0.17 [0.15-0.20] μg/L) than to 24 h (LC50 = 1.17 [0.97-1.43] μg/L). Furthermore, the sublethal exposures (at LC1 = 0.02 μg/L or LC10 = 0.05 μg/L) of immature C. columbiensis resulted in lower fecundity (e.g., reduced eggs production) and morphometric variation wing shapes. Further reduction in fertility rates (quantity of viable eggs) occurred at deltamethrin LC10 (0.05 μg/L). Almost 80% of the fecundity was recovered with only a single recovery generation; however, two subsequent recovery generations were not sufficient to fully recover fecundity in C. columbiensis. Specimens recovered from 98.5% of wing morphometric variation after two consecutive generations without deltamethrin exposure. Collectively, our findings demonstrates that sublethal exposure to synthetic pyrethroids such as deltamethrin detrimentally affect the reproduction and wing shape of C. columbiensis, but also indicate that proper management of these compounds (e.g., concentration and frequency of application) would suffice for these insects' population recovery.
Collapse
Affiliation(s)
- Milton L Montaño-Campaz
- Programa de Doctorado, Facultad de Ciencias Agropecuarias, Grupo de Investigación Bionat, Universidad de Caldas, Caldas, Colombia; Programa de Pós-Graduação Em Ecologia, Universidade Federal do Viçosa (UFV), 36570-900, Viçosa, MG, Brazil
| | - Lucimar G Dias
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas Y Naturales, Grupo de Investigación Bionat, Universidad de Caldas, Caldas, Colombia
| | - Tito Bacca
- Facultad de Ingeniería Agronómica, Universidad del Tolima., Tolima, Colombia
| | - Beatriz Toro-Restrepo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas Y Naturales, Grupo de Investigación Bionat, Universidad de Caldas, Caldas, Colombia
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
26
|
Choi YH, Lee JY, Huh DA, Moon KW. Urinary 3-phenoxybenzoic acid (3-PBA) levels and changes in hematological parameters in Korean adult population: A Korean National Environmental Health Survey (KoNEHS) 2012-2014 analysis. Int J Hyg Environ Health 2022; 243:113988. [PMID: 35640467 DOI: 10.1016/j.ijheh.2022.113988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
Pyrethroid insecticides have been broadly used as pest control in agriculture and residential spaces, exerting high effectiveness of insecticidal property and relatively low toxicity to humans. Several animal studies suggested that exposure to pyrethroids may induce hematological abnormalities, thereby altering the number of blood cells and resulting in blood disorders. However, no epidemiologic study has reported on the effect of pyrethroid insecticide exposure on hematological changes, except for occupational exposure. This study aimed to investigate the effect of urinary 3-phenoxybenzoic acid (3-PBA) concentrations on hematological parameters in a representative South Korean adult population. We analyzed data from 6296 adults enrolled in the Korean National Environmental Health Survey (2012-2014). We employed multiple linear regression analysis to evaluate the association of urinary 3-PBA levels with eight hematological profiles: white blood cells (WBCs), red blood cells (RBCs), hemoglobin, hematocrit, platelets, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC). The urinary 3-PBA levels were negatively associated with WBC, RBC, and hemoglobin levels and positively associated with MCV levels. The direction and magnitude of the association between the 3-PBA and hematological parameters varied according to sex and age. The adverse effects of 3-PBA on hematological parameters were distinctive among males aged 60 years and older. In this age group, 3-PBA levels were negatively associated with the WBC, RBC, hemoglobin, hematocrit, and MCHC levels among males. This study is the first to verify that urinary 3-PBA concentrations at the levels found in a Korean population are associated with blood parameters. This finding merits further investigation to understand the impact of 3-PBA on human blood function and public health.
Collapse
Affiliation(s)
- Yun-Hee Choi
- Department of Health and Safety Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea; BK21 FOUR R & E Center for Learning Health System, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| | - Ju-Yeon Lee
- Department of Health and Safety Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea; BK21 FOUR R & E Center for Learning Health System, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| | - Da-An Huh
- Institute of Health Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea
| | - Kyong Whan Moon
- BK21 FOUR R & E Center for Learning Health System, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea; Department of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
27
|
Radwan P, Wielgomas B, Radwan M, Krasiński R, Kilanowicz-Sapota A, Banaszczyk R, Jurewicz J. Synthetic Pyrethroids Exposure and Embryological Outcomes: A Cohort Study in Women from Fertility Clinic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095117. [PMID: 35564520 PMCID: PMC9100335 DOI: 10.3390/ijerph19095117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Pyrethroids exposure has been associated with adverse reproductive outcome. However, there is no study that explores the effect of environmental exposure and embryological outcomes. This question was addressed in a prospective cohort of couples undergoing fertility treatment. The study aims to assess the association between urinary metabolites of synthetic pyrethroids and embryological outcomes (MII oocyte count, top quality embryo, fertilization and implantation rate). We included 450 women aged 25−45 undergoing assisted reproductive technology (ART) cycle at Infertility Clinic in Poland. Urine samples were collected at the time of fertility procedure(s) to assess four urinary synthetic pyrethroids concentrations (3-phenoxybenzoic acid (3PBA), cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA), trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA), cis-2,2-dibromovinyl-2,2-dimethylocyclopropane-1-carboxylic acid (DBCA)) using validated gas chromatography ion-tap mass spectrometry and calculated for each cycle-specific metabolite. To evaluate the effect of environmental exposure to synthetic pyrethroids and embryological outcomes (methaphase II (MII) oocyte yield, top quality embryo, fertilization rate, implantation rate), multivariable generalized linear mixed analyses with random intercepts were prepared. Urinary 3-PBA concentrations decrease MII oocyte count (p = 0.007) in the fourth quartile (>75 percentile) compared to women in the first quartile (≤25 percentile). Additionally, when 3-PBA was treated as continuous variable, the negative association between exposure to pyrethroids and MII oocyte count was also observed (p = 0.012). Exposure to other pyrethroid metabolities (CDCCA, TDCCA, DBCA) was not related to any of the examined embryological outcomes. Exposure to synthetic pyrethroids may be associated with poorer embryological outcome among couples seeking fertility treatments. As this is the first study on this topic, the results need to be confirmed in further studies.
Collapse
Affiliation(s)
- Paweł Radwan
- Gameta Health Centre, 7 Cybernetyki St., 02-677 Warsaw, Poland;
- Gameta, Kielce-Regional Science-Technology Centre, 45 Podzamcze St., Chęciny, 26-060 Kielce, Poland
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdansk, Poland;
| | - Michał Radwan
- Department of Gynecology and Reproduction, Gameta Hospital, 34/36 Rudzka St., 95-030 Rzgow, Poland; (M.R.); (R.K.); (R.B.)
- Faculty of Health Sciences, Mazovian State University in Plock, 2 Dabrowskiego Sq., 09-402 Plock, Poland
| | - Rafał Krasiński
- Department of Gynecology and Reproduction, Gameta Hospital, 34/36 Rudzka St., 95-030 Rzgow, Poland; (M.R.); (R.K.); (R.B.)
| | - Anna Kilanowicz-Sapota
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Renata Banaszczyk
- Department of Gynecology and Reproduction, Gameta Hospital, 34/36 Rudzka St., 95-030 Rzgow, Poland; (M.R.); (R.K.); (R.B.)
| | - Joanna Jurewicz
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St., 91-348 Lodz, Poland
- Correspondence:
| |
Collapse
|
28
|
Yang Y, Wang C, Shen H, Fan H, Liu J, Wu N. Cis-bifenthrin inhibits cortisol and aldosterone biosynthesis in human adrenocortical H295R cells via cAMP signaling cascade. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103784. [PMID: 34896276 DOI: 10.1016/j.etap.2021.103784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Cis-bifenthrin (cis-BF) is a common-used pyrethroid insecticide frequently detected in environmental and biological matrices. Mounting evidence highlights the endocrine disrupting effects of cis-BF due to anti-estrogenic or anti-androgenic activity. However, little is known about the exposure effects of cis-BF on adrenal cortex function. In this study, effects of cis-BF on biosynthesis of adrenal steroids, as well as the potential mechanisms were investigated in human adrenocortical carcinoma (H295R) cells. Cis-BF decreased basal production levels of cortisol and aldosterone, as well as cAMP-induced production of cortisol. Both he basal and cAMP-stimulated transcriptional levels of several steroidogenic genes were significantly down-regulated by cis-BF. As an important rate-limiting enzyme in steroidogenesis, the protein level of StAR was prohibited by cis-BF on both basal and cAMP-induced conditions. Intracellular level of cAMP was significantly reduced by cis-BF. Overall, these data suggest that cis-BF may inhibit the biosynthesis of cortisol and aldosterone via disrupting cAMP signaling cascade.
Collapse
Affiliation(s)
- Ye Yang
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China.
| | - Chunlei Wang
- Department of Public Health, Yu Hang No.2 People's Hospital, Hangzhou 311100, China
| | - Hong Shen
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Hongliang Fan
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Jing Liu
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nanxiang Wu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| |
Collapse
|
29
|
Lin X, Zhang Z, Wu B, Liu J. Temporal variability of organophosphate insecticide metabolites over one year in Chinese adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149041. [PMID: 34328903 DOI: 10.1016/j.scitotenv.2021.149041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Organophosphate (OP) insecticides widely used worldwide are a class of non-persistent pollutants with a short biological half-life. Most OP insecticides are rapidly metabolized in the human body to six dialkyl phosphate metabolites (DAPs), of which urinary concentrations are usually used to assess OP insecticide exposures. In this study, to understand the reliability of a single measurement of OP insecticide metabolites in representing a true longer-term average exposure, we investigated the temporal variability of urinary DAPs over one year in 114 Chinese adults aged 18-30. The detection rates for all six DAP metabolites exceeded 98%. The intraclass correlation coefficients (ICCs) of DAPs indicated poor (ICC < 0.4) to fair (ICC = 0.4-0.75) reproducibility in spot urine samples over one week, month, or year. Log-transformed DAP metabolites requested 2-12 spot urine samples per subject to offer a reliable estimate of OP insecticide exposures over several months or one year. The sensitivity and specificity for predicting subjects with the one-year average OP insecticide exposure in the highest tertile with one, two, or three urine samples varied from 0.25 to 0.991, 0.491 to 0.966, respectively. We recommend at least 3 spot urine samples for the assessment of one-year OP insecticide exposure by using log-transformed DAPs. This study offers a reference for an appropriate evaluation of a relatively long-period exposure to OP insecticides in biomonitoring and epidemiological studies.
Collapse
Affiliation(s)
- Xuan Lin
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Zhao T, Hu K, Li J, Zhu Y, Liu A, Yao K, Liu S. Current insights into the microbial degradation for pyrethroids: strain safety, biochemical pathway, and genetic engineering. CHEMOSPHERE 2021; 279:130542. [PMID: 33866100 DOI: 10.1016/j.chemosphere.2021.130542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/09/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
As a biologically inspired insecticide, pyrethroids (PYRs) exert evident toxic side effects on non-target organisms. PYRs and their general toxic intermediate 3-phenoxybenzoic acid (3-PBA) have shown high detection rates/levels in human beings recently, for which diet was identified as the major exposure route. Microbial mineralization has emerged as a versatile strategy in addressing such escalating concern. Herein, PYRs and 3-PBA biodegradation with regards to strain safety, application and surfactant were summarized. Numerous PYRs-degrading microbes have been reported yet with a minority focused on 3-PBA. Most isolates were from contaminated sites while several microbial food cultures (MFCs) have been investigated. MFCs such as Bacillus spp. and Aspergillus spp. that dominate in PYRs-degrading microbial pools are applicable candidates for agricultural by-products detoxification during the postharvest process. Subsequently, we discussed committed degradation steps, wherein hydrolase responsible for PYRs ester linkage cleavage and oxygenase for 3-PBA diphenyl ether bond rupture play vital roles. Finally, comprehensive information of the key enzyme genes is outlined along with methodologies concerning gene cloning. Cytochrome P450 monooxygenases (CYP) is competent for diphenyl ether scission. Newly-developed omics has become a feasible gene and enzyme mining technology. To achieve PYRs mineralization in feed and food commodities, the screening of MFCs rich in related enzymes and the construction of MFCs-derived genetically modified microbes (GMMs) exhibit great potential considering the safety issues.
Collapse
Affiliation(s)
- Tianye Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yuanting Zhu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kai Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
31
|
Yu H, Lyu Q, Chen X, Guo D, He D, Jia X, Han L, Xiao W. Nylon membranes modified by gold nanoparticles as surface-enhanced Raman spectroscopy substrates for several pesticides detection. RSC Adv 2021; 11:24183-24189. [PMID: 35479016 PMCID: PMC9036823 DOI: 10.1039/d1ra03490a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Surface enhanced Raman spectroscopy (SERS) is an attractive means for trace compound detection because of its high sensitivity, however, the poor reproducibility is a major challenge. Herein, we propose a facile SERS strategy employing the several developed test processes to improve the repeatability of the SERS analysis based on regular nylon membranes as substrates to detect trace compounds. Various methods, including in situ reduction, immersion adsorption, and filtration, were first compared to prepare composite substrates using nylon membranes and gold nanoparticles. The substrates prepared by filtration showed the best test parallelism (RSD = 7.85%). Its limit of detection (LOD) could reach 10-8 g mL-1 with a good linear relationship in the range 10-8 to 10-7 g mL-1. Finally, three pesticide solutions were tested to verify the substrate applicability. A superior LOD of 10-8 g mL-1 was observed for thiram, whereas the LODs of both phorate and benthiocarb could reach 10-6 g mL-1. Overall, modifying nylon membrane substrates with gold nanoparticles improves the repeatability and economic viability of SERS and favors its wider commercial application for detecting trace compounds.
Collapse
Affiliation(s)
- Haitao Yu
- College of Engineering, China Agricultural University (East Campus) Box 191 Beijing 100083 China +86 10 62736778 +86 10 62736778
| | - Qian Lyu
- College of Engineering, China Agricultural University (East Campus) Box 191 Beijing 100083 China +86 10 62736778 +86 10 62736778
| | - Xueli Chen
- College of Engineering, China Agricultural University (East Campus) Box 191 Beijing 100083 China +86 10 62736778 +86 10 62736778
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University West Lafayette Indiana 47907 USA
| | - Dongyi Guo
- College of Engineering, China Agricultural University (East Campus) Box 191 Beijing 100083 China +86 10 62736778 +86 10 62736778
| | - Dingping He
- College of Engineering, China Agricultural University (East Campus) Box 191 Beijing 100083 China +86 10 62736778 +86 10 62736778
| | - Xiwen Jia
- College of Engineering, China Agricultural University (East Campus) Box 191 Beijing 100083 China +86 10 62736778 +86 10 62736778
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus) Box 191 Beijing 100083 China +86 10 62736778 +86 10 62736778
| | - Weihua Xiao
- College of Engineering, China Agricultural University (East Campus) Box 191 Beijing 100083 China +86 10 62736778 +86 10 62736778
| |
Collapse
|
32
|
Vorselaars ADM, van den Berg PM, Drent M. Severe pulmonary toxicity associated with inhalation of pyrethroid-based domestic insecticides (Bop/Sapolio): a case series and literature review. Curr Opin Pulm Med 2021; 27:271-277. [PMID: 33927133 DOI: 10.1097/mcp.0000000000000779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The current review focuses on serious pulmonary toxicity after inhalation of over the counter available pyrethroid-based insecticides. Pyrethroid is a synthetic product of pyrethrin, which in turn is the active ingredient of pyrethrum, a flower extract. RECENT FINDINGS On the contrary, a large gap of knowledge exists in the association of interstitial lung disease (ILD) with pyrethroids. So far, two cases of ILD, one associated with pyrethrin and one associated with pyrethrum, were described. Existing literature on both other (pulmo)toxic effects of pyrethroids in human and animals is summarized. SUMMARY We present three cases of severe pulmonary toxicity after inhalation of pyrethroid-based insecticides demanding hospitalization and oxygen therapy. One of these cases died. Although a causal relationship was hard to establish, these cases all demonstrated an obvious history of (repeated) pyrethroid exposure associated with ILD. Moreover, other causes of ILD as well as infections were excluded. Furthermore, studies in mammals as well as aquatic animals confirm (pulmonary) toxicity of pyrethroids. The occurrence of toxicity is dose-dependent but also associated with individual susceptibility. Therefore, we would like to acknowledge that awareness of potential hazards of commercially available insecticides containing pyrethroids to both medical physicians and the public is mandatory.
Collapse
Affiliation(s)
- Adriane D M Vorselaars
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein
- Division of Heart and Lungs, University Medical Centre, Utrecht
- Department of Pulmonology, Curaçao Medical Centre, Willemstad, Curaçao
| | | | - Marjolein Drent
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein
- Department of Pharmacology and Toxicology, Faculty of Health and Life Sciences, Maastricht University, Maastricht
- ILD Care Foundation Research Team, Ede, The Netherlands
| |
Collapse
|
33
|
Ma X, Pan W, Zhu Z, Ye X, Li C, Zhou J, Liu J. A case-control study of thallium exposure with the risk of premature ovarian insufficiency in women. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2021; 77:468-477. [PMID: 34078236 DOI: 10.1080/19338244.2021.1931797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thallium exposure has been associated with female reproductive health, but little is known about its potential association with premature ovarian insufficiency (POI). In this study, a total of 169 patients with POI and 209 healthy women were recruited from Zhejiang province, China. Urinary thallium concentrations were significantly positively associated with the risk of POI [adjusted odds ratio (OR) = 1.63, 95% CI: 1.25-2.13, p < 0.001], geometric mean values of which were significantly higher in POI cases (0.213 μg/L, 0.302 μg/g for creatinine adjustment) than those of controls (0.153 μg/L, 0.233 μg/g for creatinine adjustment). Furthermore, the serum levels of follicle-stimulating hormone and luteinizing hormone were positively associated with urinary thallium concentrations, whereas anti-Mullerian hormone and estradiol were negatively correlated with thallium. To the best of our knowledge, this is the first study to provide evidence that thallium exposure at currently environmental levels is the potential risk factor for POI in women.
Collapse
Affiliation(s)
- Xiaochen Ma
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zheying Zhu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women'sHospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women'sHospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
McNew SM, Boquete MT, Espinoza‐Ulloa S, Andres JA, Wagemaker NCAM, Knutie SA, Richards CL, Clayton DH. Epigenetic effects of parasites and pesticides on captive and wild nestling birds. Ecol Evol 2021; 11:7713-7729. [PMID: 34188846 PMCID: PMC8216931 DOI: 10.1002/ece3.7606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic changes to the environment challenge animal populations to adapt to new conditions and unique threats. While the study of adaptation has focused on genetic variation, epigenetic mechanisms may also be important. DNA methylation is sensitive to environmental stressors, such as parasites and pesticides, which may affect gene expression and phenotype. We studied the effects of an invasive ectoparasite, Philornis downsi, on DNA methylation of Galápagos mockingbirds (Mimus parvulus). We used the insecticide permethrin to manipulate P. downsi presence in nests of free-living mockingbirds and tested for effects of parasitism on nestling mockingbirds using epiGBS, a reduced-representation bisulfite sequencing (RRBS) approach. To distinguish the confounding effects of insecticide exposure, we conducted a matching experiment exposing captive nestling zebra finches (Taeniopygia guttata) to permethrin. We used zebra finches because they were the closest model organism to mockingbirds that we could breed in controlled conditions. We identified a limited number of differentially methylated cytosines (DMCs) in parasitized versus nonparasitized mockingbirds, but the number was not more than expected by chance. In contrast, we saw clear effects of permethrin on methylation in captive zebra finches. DMCs in zebra finches paralleled documented effects of permethrin exposure on vertebrate cellular signaling and endocrine function. Our results from captive birds indicate a role for epigenetic processes in mediating sublethal nontarget effects of pyrethroid exposure in vertebrates. Environmental conditions in the field were more variable than the laboratory, which may have made effects of both parasitism and permethrin harder to detect in mockingbirds. RRBS approaches such as epiGBS may be a cost-effective way to characterize genome-wide methylation profiles. However, our results indicate that ecological epigenetic studies in natural populations should consider the number of cytosines interrogated and the depth of sequencing in order to have adequate power to detect small and variable effects.
Collapse
Affiliation(s)
- Sabrina M. McNew
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Cornell Lab of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - M. Teresa Boquete
- Department of Integrative BiologyUniversity of South FloridaTampaFLUSA
- Department of Evolutionary EcologyEstación Biológica de DoñanaCSICSevillaSpain
| | - Sebastian Espinoza‐Ulloa
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
- Facultad de MedicinaPontifica Universidad Católica del EcuadorQuitoEcuador
| | - Jose A. Andres
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
| | | | - Sarah A. Knutie
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsCTUSA
| | | | - Dale H. Clayton
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
35
|
Freire C, Suárez B, Vela-Soria F, Castiello F, Reina-Pérez I, Andersen HR, Olea N, Fernández MF. Urinary metabolites of non-persistent pesticides and serum hormones in Spanish adolescent males. ENVIRONMENTAL RESEARCH 2021; 197:111016. [PMID: 33771511 DOI: 10.1016/j.envres.2021.111016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To assess the relationship of urinary concentrations of ethylenethiourea (ETU), the main degradation product of ethylene bis-dithiocarbamate fungicides, 3-phenoxybenzoic acid (3-PBA), a common metabolite of many pyrethroids, and 1-naphthol (1N), a metabolite of the carbamate insecticide carbaryl, with hormone concentrations in adolescent males; and to examine interactions between pesticide metabolites and polymorphisms in xenobiotic metabolizing enzymes, including CYP2C19 and CYP2D6, in relation to hormone concentrations. METHODS A cross-sectional study was conducted in 134 males from the Spanish Environment and Childhood (INMA)-Granada cohort. Urine and serum samples were collected from participants during the same clinical visit at the age of 15-17 years. First morning urine void was analyzed for concentrations of ETU, 3-PBA, and 1N. Serum was analyzed for concentrations of reproductive hormones (testosterone, 17β-estradiol [E2], dehydroepiandrosterone sulfate [DHEAS], sex hormone binding globulin [SHBG], luteinizing hormone [LH], follicle stimulating hormone [FSH], anti-Müllerian hormone [AMH], and prolactin), thyroid hormones (free thyroxine [FT4], total triiodothyronine [TT3], and thyroid stimulating hormone [TSH]), insulin growth factor 1 (IGF-1), adrenocorticotropic hormone (ACTH), and cortisol. CYP2C19 G681A and CYP2D6 G1846A polymorphisms were determined in blood from 117 participants. Multiple linear regression, interaction terms, and stratified analyses were performed. RESULTS Urinary ETU was detected in 74.6% of participants, 1N in 38.1%, and 3-PBA in 19.4%. Positive associations between detectable 3-PBA and TT3 and between detectable 1N and DHEAS were found, and marginally-significant associations of 1N with reduced E2 and FSH were observed. Poor CYP2C19 and CYP2D6 metabolizers (GA and AA genotype carriers) showed a greater increase in DHEAS for detected versus undetected 1N compared with GG genotype carriers. Poor CYP2D6 metabolizers (1846 GA and AA genotypes) evidenced increased cortisol for detected versus undetected ETU. CONCLUSIONS The associations observed between urinary pesticide metabolites and altered thyroid and reproductive hormones are novel and should be verified in studies with larger sample size. Further research on gene-environment interactions is warranted to establish individual susceptibility to pesticides and the risk of adverse health effects.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain.
| | - Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain.
| | - Francesca Castiello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016, Granada, Spain.
| | - Iris Reina-Pérez
- Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18071, Granada, Spain.
| | - Helle R Andersen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18071, Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
36
|
Pan W, Ye X, Zhu Z, Li C, Zhou J, Liu J. Urinary cadmium concentrations and risk of primary ovarian insufficiency in women: a case-control study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2025-2035. [PMID: 33222148 DOI: 10.1007/s10653-020-00775-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/04/2020] [Indexed: 05/22/2023]
Abstract
Cadmium, a toxic heavy metal that occurs in the environment in large quantities through human activities, has been shown to have adverse effects on female reproductive health. However, the association between cadmium exposure and primary ovarian insufficiency (POI), one of the most prevalent ovarian diseases in women, has not been examined yet. This case-control study involving 169 POI cases and 209 healthy controls was conducted in Zhejiang Province, China. The urinary concentrations of cadmium were determined by inductively coupled plasma mass spectrometry (ICP-MS). In addition, serum levels of reproductive hormones, including follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Mullerian hormone (AMH) and estradiol, were measured. The median concentration of urinary cadmium in POI cases (0.43 μg/L, 0.58 μg/g for creatinine adjustment) was significantly higher than that of controls (0.29 μg/L, 0.43 μg/g for creatinine adjustment). The results of binary logistic regression models showed that the concentrations of urinary cadmium were positively significantly correlated with the odds ratio (ORs) of POI before the adjustment of confounders. After the adjustment, a significantly positive association was still present between the increased concentrations of cadmium and the ORs of POI (2.50, 95% CIs: 1.34-4.65 for the third tertile, p for trend = 0.001). The serum levels of FSH and LH were positively associated with urinary cadmium, while AMH and estradiol levels were inversely correlated. To the best of our knowledge, this is the first reported positive association of cadmium exposure with the risk of POI in women.
Collapse
Affiliation(s)
- Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zheying Zhu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Green MP, Harvey AJ, Finger BJ, Tarulli GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. ENVIRONMENTAL RESEARCH 2021; 194:110694. [PMID: 33385395 DOI: 10.1016/j.envres.2020.110694] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
It is becoming increasingly difficult to avoid exposure to man-made endocrine disrupting chemicals (EDCs) and environmental toxicants. This escalating yet constant exposure is postulated to partially explain the concurrent decline in human fertility that has occurred over the last 50 years. Controversy however remains as to whether associations exist, with conflicting findings commonly reported for all major EDC classes. The primary aim of this extensive work was to identify and review strong peer-reviewed evidence regarding the effects of environmentally-relevant EDC concentrations on adult male and female fertility during the critical periconception period on reproductive hormone concentrations, gamete and embryo characteristics, as well as the time to pregnancy in the general population. Secondly, to ascertain whether individuals or couples diagnosed as sub-fertile exhibit higher EDC or toxicant concentrations. Lastly, to highlight where little or no data exists that prevents strong associations being identified. From the greater than 1480 known EDCs, substantial evidence supports a negative association between exposure to phthalates, PCBs, PBDEs, pyrethroids, organochloride pesticides and male fertility and fecundity. Only moderate evidence exists for a negative association between BPA, PCBs, organochloride pesticides and female fertility and fecundity. Overall fewer studies were reported in women than men, with knowledge gaps generally evident for both sexes for all the major EDC classes, as well as a paucity of female fertility studies following exposure to parabens, triclosans, dioxins, PFAS, organophosphates and pyrethroids. Generally, sub-fertile individuals or couples exhibit higher EDC concentrations, endorsing a positive association between EDC exposure and sub-fertility. This review also discusses confounding and limiting factors that hamper our understanding of EDC exposures on fertility and fecundity. Finally, it highlights future research areas, as well as government, industry and social awareness strategies required to mitigate the negative effects of EDC and environmental toxicant exposure on human fertility and fecundity.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard A Tarulli
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Chen L, Zhang W, Huang R, Miao X, Li J, Yu D, Li Y, Hsu W, Qiu M, Zhang Z, Li F. The function of Wls in ovarian development. Mol Cell Endocrinol 2021; 522:111142. [PMID: 33359762 DOI: 10.1016/j.mce.2020.111142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 11/26/2022]
Abstract
WNT ligand transporter Wls is essential for the WNT dependent developmental and pathogenic processes. The spatiotemporal expression pattern of Wls was investigated in this study. Immature female mice (21-22 days old) were treated with 5 IU, pregnant mare's serum gonadotrophin (PMSG) to stimulate follicular development, followed 48 h later by injection with 5 IU, human chorionic gonadotrophin (hCG) to induce ovulation. The expression of Wls was stimulated in granulosa cells and the forming corpus luteum after hCG administration. To study the function of Wls, the Amhr2tm3(cre)Bhr strain was used to target deletion of Wls in granulosa cells. The deletion of Wls caused a significant decrease in the fertility of WlsAmhr2-Cre female mice. In female WlsAmhr2-Cre mice, decreased ovarian size and number of antral follicles were found. The number of corpus luteum in immature PMSG/hCG primed WlsAmhr2-Cre mice was much less than that in the control group. Compared with control animals, WlsAmhr2-Cre mice have lower serum progesterone levels. RNA sequencing was used to identify genes regulated by Wls after hCG treatment. Several genes known to be critical for follicle development and steroidogenesis were significantly down-regulated, such as Fshr, Lhcgr, Sfrp4, Inhba, Cyp17a1, Hsd3b1, and Hsd17b7. The expression of WNT signaling downstream target genes, Bmp2 and Cyp19a1, also decreased significantly in WlsAmhr2-Cre ovary. In summary, the findings of this study suggest that Wls is critical for female fertility and luteinization.
Collapse
Affiliation(s)
- Luyi Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Wei Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Ruiqi Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xiaoping Miao
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Jianying Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Dongliang Yu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yan Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Zunyi Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China.
| |
Collapse
|
39
|
Structural Aspects of Potential Endocrine-Disrupting Activity of Stereoisomers for a Common Pesticide Permethrin against Androgen Receptor. BIOLOGY 2021; 10:biology10020143. [PMID: 33670303 PMCID: PMC7918290 DOI: 10.3390/biology10020143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary Human exposure to synthetic or naturally occurring endocrine-disrupting compounds (EDCs) contaminating the environment is associated with disruption in endocrine signaling and homeostatic imbalance of hormones. Pyrethroids constitute an important class of extensively used insecticides reported to have endocrine-disrupting activity. Permethrin is one of the most commonly used pyrethroids and exists in isomeric forms. The aim of this study was to investigate and compare the potential endocrine-disrupting activity of permethrin isomers against the androgen receptor (AR). Structural binding studies showed that all permethrin isomer compounds have the potential to compete with native ligand binding in the AR ligand binding pocket. In conclusion, the results of this study suggest that human exposure to commercially produced isomeric forms of permethrin could potentially interfere with the AR function, which may lead to male reproductive dysfunction. Abstract Endocrine-disrupting chemicals (EDCs) are a serious global public health and environmental concern. Pyrethroids are insecticide chemicals that are extensively used for crop protection and household purposes but have been identified as EDCs. On account of their ubiquitous environmental presence, human exposure occurs via food, dermal, or inhalation routes and is associated with health problems, including reproductive dysfunction. Permethrin is the most commonly used pyrethroid, and with two chiral centers in its structure, it has four stereoisomeric forms (two enantiomer pairs), i.e., permethrin (1R,3R)-cis, permethrin (1R,3S)-trans, permethrin (1S,3S)-cis, and permethrin (1S,3R)-trans. The current study was performed for predicting the potential endocrine-disrupting activity of the aforementioned four stereoisomers of permethrin against the androgen receptor (AR). The structural binding characterization and binding energy estimations in the AR binding pocket were done using induced fit docking. The structural binding data indicated that all stereoisomers were placed stably in the AR binding pocket and that the estimated binding energy values were comparable to the AR native ligand, except for permethrin (1S,3S)-cis. Furthermore, the commonality in the amino acid interactions to that of the AR native ligand and the binding energy values suggested the potential AR-disrupting activity of all the stereoisomers; however, stereoselective differences were not observed. Taken together, the results suggest that human exposure to permethrin, either as a racemate mixture or in individual stereoisomer form, could potentially interfere with AR function, which may lead to male reproductive dysfunction.
Collapse
|
40
|
Hu P, Su W, Vinturache A, Gu H, Cai C, Lu M, Ding G. Urinary 3-phenoxybenzoic acid (3-PBA) concentration and pulmonary function in children: A National Health and Nutrition Examination Survey (NHANES) 2007-2012 analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116178. [PMID: 33341554 DOI: 10.1016/j.envpol.2020.116178] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Epidemiological studies have reported association of urinary 3-phenoxybenzoic acid (3-PBA), a major metabolite of pyrethroid insecticides (PYRs), with respiratory disease. However, knowledge regarding its effect on pulmonary function in susceptible children is limited. This study aimed to assess the associations between environmental 3-PBA concentrations and pulmonary function in children aged 6-17 years. Using data on 1174 children aged 6-17 years from the U.S. National Health and Nutrition Examination Survey (NHANES) 2007-2012, the exposure to PYRs was assessed by measuring urinary 3-PBA concentrations and pulmonary function was assessed by spirometry. Multivariable linear regression and generalized linear models (GLMs) were used to examine the associations between 3-PBA concentrations and pulmonary function in children, controlling for confounders. We found that 3-PBA concentrations were inversely associated with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and peak expiratory flow (PEF) in the pediatric population (p-trends < 0.05). When stratified by age (6-10 and 11-17 years) and gender (boys and girls), the adverse effects of PYR exposures on pulmonary function were more pronounced among boys aged 11-17 years. Among this age group, 3-PBA concentrations were negatively associated with FEV1, FVC, forced expiratory flow between 25% and 75% of FVC (FEF25-75%), and PEF. However, among children aged 6-10 years, no associations were found between 3-PBA concentrations and any of the pulmonary function measures, in either boys or girls. Our findings suggest that environmental PYR exposures may adversely affect children's pulmonary function, with the strongest associations among 11-17 years old boys.
Collapse
Affiliation(s)
- Peipei Hu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Weiwei Su
- Department of Respiratory Medicine, the Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China.
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, Queen Elizabeth II Hospital, Alberta, Canada.
| | - Haoxiang Gu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Chen Cai
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Min Lu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
41
|
Lin X, Pan W, Liu J. Variability of urinary pyrethroid biomarkers in Chinese young-aged men and women over one year. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116155. [PMID: 33280923 DOI: 10.1016/j.envpol.2020.116155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/01/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Pyrethroids are a class of the most commonly used insecticides. The urinary metabolites are usually used as biomarkers of pyrethroid exposures in humans. In this study, the temporal variability of urinary pyrethroid biomarkers was investigated among 114 Chinese young-aged adults who provided up to 4-11 urine samples over one year. The detection rates of four urinary pyrethroid biomarkers, 3-phenoxybenzoic acid (3PBA), 4-fluoro-3-phenoxybenzoic acid (4F-3PBA), trans-2,2-(dichloro)-2-dimethylvinylcyclopropane carboxylic acid (trans-DCCA) and cis-2,2-(dichloro)-2-dimethylvinylcyclopropane carboxylic acid (cis-DCCA) were 100%, 8%, 69% and 44%, respectively. The intraclass correlation coefficient (ICC) estimates for 3PBA indicated poor reproducibility (<0.15) in the spot urine samples of young-aged adults over a week, month and year. Log-transformed 3PBA used the least number of random spot urine samples (≥4) per person, which would provide a reliable biomarker estimate (ICC≥0.40) over a year. As the predictors of the top 33% yearly average 3PBA concentrations, the sensitivity and specificity of 3PBA ranged from 0.25 to 0.89, 0.58 to 0.96, respectively. Based on the results of this study, we recommend at least 4 urine samples collected 3 months apart for prospective assessment of pyrethroid exposure in the epidemiological studies to estimate exposure-response relationships between pyrethroids and health outcomes with relative long-term exposure periods.
Collapse
Affiliation(s)
- Xuan Lin
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wuye Pan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
42
|
Ravula AR, Yenugu S. Effect of oral administration of a mixture of pyrethroids at doses relevant to human exposure on the general and male reproductive physiology in the rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111714. [PMID: 33396045 DOI: 10.1016/j.ecoenv.2020.111714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Studies on the effects of unintentional intake of pyrethroid pesticides that are akin to actual human exposure settings are very rare. Such an exposure is primarily by consuming the food products as routine diet that contain residual levels of pyrethroids. In this study, rats were orally administered for 15 months with a mixture of pyrethroids at a dose that is one-fifth (high dose; HD) or one-twenty fifth (low dose; LD) of the residual levels commonly present in the average amount of rice and vegetables consumed by Indian population. Lipid profile, kidney and liver function were assessed. Lipid peroxidation, nitric oxide, antioxidant enzyme activities and histopathological changes were analyzed in the liver, lung, kidney, pancreas, testes, caput, cauda and prostate. The effect on the male reproductive system as a function of sperm count, enzyme activity of 3β-HSD and 17β-HSD and the expression profile of genes involved in spermatogenesis, steroidogenesis, genetic reprogramming and apoptosis of male gametes were evaluated. Significant increase in the relative organ weight, perturbations in the activities of antioxidant enzymes, lipid profile and liver function were observed in both LD and HD groups. Damage to the anatomical architecture was evident in all the tissues due to pyrethroid toxicity. Exposure to LD and HD of pyrethroid mixture resulted in decreased sperm count, activities of 3β-HSD and 17β-HSD, impaired capacitation and acrosome reaction and perturbations in the expression of genes that govern male gamete production. Results of our study indicate that exposure to pyrethroids for longer durations even at doses that are far below the residual levels present in the food consumed will result in severe damage to general physiological processes as well as reproductive function.
Collapse
Affiliation(s)
- Anandha Rao Ravula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
43
|
Critique of the "Comment" etitled "Pyrethroid exposure: Not so harmless after all" by Demeneix et al. (2020) published in the lancet diabetes endocrinology. Toxicol Lett 2021; 340:1-3. [PMID: 33412252 DOI: 10.1016/j.toxlet.2020.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022]
|
44
|
Zhang X, Zhang T, Ren X, Chen X, Wang S, Qin C. Pyrethroids Toxicity to Male Reproductive System and Offspring as a Function of Oxidative Stress Induction: Rodent Studies. Front Endocrinol (Lausanne) 2021; 12:656106. [PMID: 34122335 PMCID: PMC8190395 DOI: 10.3389/fendo.2021.656106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
Pyrethroids may be related to male reproductive system damage. However, the results of many previous studies are contradictory and uncertain. Therefore, a systematic review and a meta-analysis were performed to assess the relationship between pyrethroid exposure and male reproductive system damage. A total of 72 articles were identified, among which 57 were selected for meta-analysis, and 15 were selected for qualitative analysis. Pyrethroid exposure affected sperm count (SMD= -2.0424; 95% CI, -2.4699 to -1.6149), sperm motility (SMD=-3.606; 95% CI, -4.5172 to -2.6948), sperm morphology (SMD=2.686; 95% CI, 1.9744 to 3.3976), testis weight (SMD=-1.1591; 95% CI, -1.6145 to -0.7038), epididymal weight (SMD=-1.1576; 95% CI, -1.7455 to -0.5697), and serum testosterone level (SMD=-1.9194; 95% CI, -2.4589 to -1.3798) in the studies of rats. We found that gestational and lactational exposure to pyrethroids can reduce sperm count (SMD=1.8469; 95% CI, -2.9010 to -0.7927), sperm motility (SMD=-2.7151; 95% CI, -3.9574 to -1.4728), testis weight (SMD=-1.4361; 95% CI, -1.8873 to -0.9848), and epididymal weight (SMD=-0.6639; 95% CI, -0.9544 to -0.3733) of F1 offspring. Exposure to pyrethroids can increase malondialdehyde (SMD=3.3451; 95% CI 1.9914 to 4.6988) oxide in testes and can reduce the activities of glutathione (SMD=-2.075; 95% CI -3.0651 to -1.0848), superoxide dismutase (SMD=-2.4856; 95% CI -3.9612 to -1.0100), and catalase (SMD=-2.7564; 95% CI -3.9788 to -1.5340). Pyrethroid exposure and oxidative stress could damage male sperm quality. Gestational and lactational pyrethroid exposure affects the reproductive system of F1 offspring.
Collapse
Affiliation(s)
| | | | | | | | | | - Chao Qin
- *Correspondence: Chao Qin, ; ShangQian Wang,
| |
Collapse
|
45
|
Li C, Cao M, Qi T, Ye X, Ma L, Pan W, Luo J, Chen P, Liu J, Zhou J. The association of bisphenol A exposure with premature ovarian insufficiency: a case-control study. Climacteric 2020; 24:95-100. [PMID: 32668991 DOI: 10.1080/13697137.2020.1781078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND A few epidemiological investigations and animal studies have demonstrated that bisphenol A (BPA) may affect female reproductive health. However, no epidemiologic study has investigated the relationship between BPA exposure and the risk of premature ovarian insufficiency (POI). METHODS In this case-control study, urinary concentrations of BPA and serum levels of reproductive hormone were measured. Associations between BPA concentrations and the risk of POI and POI-related hormone levels were estimated. RESULTS Among BPA quartiles, no obvious association was found between BPA levels and the risk of POI (p = 0.603). Although the adjusted odds ratio (OR) of POI was slightly increased for participants in the highest BPA concentration quartile, the association was not statistically significant (OR = 1.282, 95% confidence interval [CI] 0.615-2.049 for the highest vs. lowest quartile, p = 0.508). Although follicle stimulating hormone (FSH) and anti-Mullerian hormone (AMH) levels showed no tendency of an association with BPA (p = 0.941 and p = 0.876 for FSH and AMH, respectively), the highest quartile of luteinizing hormone was significantly positively associated with BPA levels (OR = 1.333, 95% CI 0.986-1.803, p = 0.042). CONCLUSIONS The urinary concentrations of BPA determined in this study were consistent with the range of exposure currently observed in Chinese women. However, BPA exposure at a relatively low level is not associated with POI in Chinese women. Further epidemiological studies are needed to confirm our findings.
Collapse
Affiliation(s)
- C Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - M Cao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - T Qi
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - X Ye
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - L Ma
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - W Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - J Luo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - P Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - J Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - J Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
Pan W, Ye X, Zhu Z, Li C, Zhou J, Liu J. A case-control study of arsenic exposure with the risk of primary ovarian insufficiency in women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25220-25229. [PMID: 32347494 DOI: 10.1007/s11356-020-08806-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/07/2020] [Indexed: 05/18/2023]
Abstract
Arsenic, a well-known toxic metalloid, is ubiquitously existed in environment. Arsenic exposure has been associated with female reproductive health. However, a potential association between arsenic exposure and primary ovarian insufficiency (POI) in women has not been recognized yet. In this case-control study, a total of 169 POI cases and 209 healthy controls were recruited to determine urinary concentrations of arsenic and serum levels of reproductive hormones (follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Mullerian hormone (AMH) and estradiol). The median concentration of urinary arsenic in cases (21.5 μg/L, 28.0 μg/g for creatinine adjustment) was significantly higher than that of controls (13.8 μg/L, 19.3 μg/g for creatinine adjustment). Urinary arsenic concentrations were significantly positively associated with the risk of POI (adjusted odds ratio (OR) = 2.66, 95% CI: 1.43-4.95 for the highest vs lowest tertile of arsenic, p = 0.002; p for trend = 0.004). We also assessed the associations between arsenic exposure and reproductive hormones that are important for ovarian functions. FSH and LH levels were positively associated with urinary arsenic, whereas AMH and estradiol levels were negatively correlated with this element. This study provided evidence that arsenic exposure could be the potential risk factor for POI in women.
Collapse
Affiliation(s)
- Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zheying Zhu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Ye X, Pan W, Li C, Ma X, Yin S, Zhou J, Liu J. Exposure to polycyclic aromatic hydrocarbons and risk for premature ovarian failure and reproductive hormones imbalance. J Environ Sci (China) 2020; 91:1-9. [PMID: 32172957 DOI: 10.1016/j.jes.2019.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a typical class of persistent organic pollutants that is ubiquitous worldwide. Previous animal studies suggested that PAHs had adverse effects on female reproduction. However, the human data regarding relationship of PAHs exposure with women reproductive health, such as ovarian dysfunction, are scarce. In this case-control study, the associations of serum levels of PAHs with the risk of premature ovarian failure (POF) and reproductive hormones in Chinese women were investigated, with recruiting 157 POF patients and 217 healthy women. The serum levels of 12 types of PAHs, as well as reproductive hormones, including follicle-stimulating hormone, luteinizing hormone and anti-mullerian hormone, were determined. In the logistic regression models, most individual PAH congeners showed significantly positive correlations with the risk of POF (p < 0.05), except for fluorine and pyrene. Benzo(a)pyrene (BaP), as the most carcinogenic PAH congener, was observed to be significantly positively associated with the risk of POF. After adjustment for age, body mass index, educational levels and household income, per one-unit increase in the log-transformed BaP concentration was significantly correlated with 2.191-fold increased risk of POF (OR = 2.191, 95%CI: 1.634-2.938, p < 0.05). To the best of our knowledge, this is the first study to report an association between internal exposure levels of PAHs and the increased risk of POF in women.
Collapse
Affiliation(s)
- Xiaoqing Ye
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaochen Ma
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Yin
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
48
|
Wang Q, Shen JY, Zhang R, Hong JW, Li Z, Ding Z, Wang HX, Zhang JP, Zhang MR, Xu LC. Effects and mechanisms of pyrethroids on male reproductive system. Toxicology 2020; 438:152460. [PMID: 32278050 DOI: 10.1016/j.tox.2020.152460] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Synthetic pyrethroids are used as insecticides in agriculture and a variety of household applications worldwide. Pyrethroids are widely distributed in all environmental compartments and the general populations are exposed to pyrethroids through various routes. Pyrethroids have been identified as endocrine-disrupting chemicals (EDCs) which are responsible for the male reproductive impairments. The data confirm pyrethroids cause male reproductive damages. The insecticides exert the toxic effects on male reproductive system through various complex mechanisms including antagonizing androgen receptor (AR), inhibiting steroid synthesis, affecting the hypothalamic-pituitary-gonadal (HPG) axis, acting as estrogen receptor (ER) modulators and inducing oxidative stress. The mechanisms of male reproductive toxicity of pyrethroids involve multiple targets and pathways. The review will provide further insight into pyrethroid-induced male reproductive toxicity and mechanisms, which is crucial to preserve male reproductive health.
Collapse
Affiliation(s)
- Qi Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jun-Yu Shen
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Rui Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jia-Wei Hong
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zheng Li
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zhen Ding
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Heng-Xue Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jin-Peng Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Mei-Rong Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Li-Chun Xu
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
49
|
Ji C, Song Q, Chen Y, Zhou Z, Wang P, Liu J, Sun Z, Zhao M. The potential endocrine disruption of pesticide transformation products (TPs): The blind spot of pesticide risk assessment. ENVIRONMENT INTERNATIONAL 2020; 137:105490. [PMID: 32007685 DOI: 10.1016/j.envint.2020.105490] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The ecological and health risk assessment of environmental pesticide residues have attracted ever-growing attention; however, their transformation products (TPs) have seldom been considered. Herein, we examined the endocrine-disrupting effects of 4 widely used pesticides as pyriproxyfen (Pyr), malathion (ML), benalaxyl (BX), and fenoxaprop-ethyl (FE), together with their 21 TPs through in vitro and in silico approaches, and found approximately 50% of the TPs exhibited stronger endocrine-disrupting effects than their corresponding parent compounds. Specifically, Pyr and 9 TPs (five TPs of Pyr, one of ML, one of BX, and two of FE) exhibited estrogen-disrupting effects, which were also confirmed by results of E-screen and pS2 expression assays, and molecular docking showed that certain hydroxylated TPs could well mimic the binding mode of estrogen with ERα. Meanwhile, two TPs of Pyr, ML and its TP demonstrated weak glucocorticoid antagonistic activities partially contributed by hydrogen bonds. We also discovered that in H295R cells, all the endocrine disruptors increased hormone secretion and the related gene expression levels. Conclusively, since an increasing number of pesticide TPs have been being detected in various environmental media, a more comprehensive understanding of the ecological risk of pesticide TPs is imperative for risk assessments more extensively and regulatory policy-making on pesticide restriction in the future.
Collapse
Affiliation(s)
- Chenyang Ji
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qin Song
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuanchen Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jing Liu
- College of Environment & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Sun
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
50
|
Demeneix B, Leemans M, Couderq S. Pyrethroid exposure: not so harmless after all. Lancet Diabetes Endocrinol 2020; 8:266-268. [PMID: 32066529 DOI: 10.1016/s2213-8587(20)30039-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Barbara Demeneix
- Centre national de la recherche scientifique, Muséum National d'Histoire Naturelle, 75005 Paris, France; Université Paris-Sorbonne, Paris, France.
| | - Michelle Leemans
- Centre national de la recherche scientifique, Muséum National d'Histoire Naturelle, 75005 Paris, France; Université Paris-Sorbonne, Paris, France
| | - Stephan Couderq
- Centre national de la recherche scientifique, Muséum National d'Histoire Naturelle, 75005 Paris, France; Université Paris-Sorbonne, Paris, France
| |
Collapse
|