1
|
Zhang S, Xu D, Tian W, Lu Z, Zhou Y, Chu M, Zhao J, Liu B, Cao H, Zhang R, Chen Z. The effect of bioturbation on the release behavior of polycyclic aromatic hydrocarbons from sediments: A sediment-seawater microcosm experiment combined with a fugacity model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123933. [PMID: 38583795 DOI: 10.1016/j.envpol.2024.123933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The effects of two benthonic species, Perinereis aibuhitensis and Matuta planipes Fabricius, on the release of polycyclic aromatic hydrocarbons (PAHs) from sediments were investigated using a sediment-seawater microcosm. A Level IV fugacity model was used to simulate the behavior and fate of PAHs in the environment. This study revealed that both benthos significantly influenced the release of PAHs, and Matuta planipes Fabricius had a stronger disturbance effect than another. The final concentrations of Matuta planipes Fabricius group, Perinereis aibuhitensis group and the control group in the seawater phase reached 10.8, 9.94 and 7.90 μg/L, respectively. There were certain differences in the behaviour of the two benthonic species. Matuta planipes Fabricius caused more sediment resuspension, while Perinereis aibuhitensis increased the total organic carbon (TOC) content in the environment. The vertical concentration distribution of sediment indicated that vertical mixing was slightly stronger in the Matuta planipes Fabricius group than that in the Perinereis aibuhitensis group. The fugacity model effectively simulated the release behavior of PAHs, providing insight into PAH transport and distribution. The results demonstrated that bioturbation could promote the release of PAHs from seawater. The amount of PAHs released was significantly correlated with the biological habits of the benthos.
Collapse
Affiliation(s)
- Surong Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Dongpo Xu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, PR China.
| | - Zhiyang Lu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Yuhang Zhou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Standard Testing Group Co., Ltd, Qingdao, 266100, PR China
| | - Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Jing Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao, 266100, PR China
| | - Bingkun Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Huimin Cao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Ruijuan Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zhuo Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
2
|
Gonzalez SV, Dafforn KA, Gribben PE, O'Connor WA, Johnston EL. Organic enrichment reduces sediment bacterial and archaeal diversity, composition, and functional profile independent of bioturbator activity. MARINE POLLUTION BULLETIN 2023; 196:115608. [PMID: 37797537 DOI: 10.1016/j.marpolbul.2023.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/16/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Eutrophication is a worldwide issue that can disrupt ecosystem processes in sediments. Studies have shown that macrofauna influences sediment processes by engineering environments that constrain microbial communities. Here, we explored the effect of different sizes of the Sydney cockle (Anadara trapezia), on bacterial and archaeal communities in natural and experimentally enriched sediments. A mesocosm experiment was conducted with two enrichment conditions (natural or enriched) and 5 cockle treatments (small, medium, large, mixed sizes and a control). This study was unable to detect A. trapezia effects on microbial communities irrespective of body size. However, a substantial decrease of bacterial richness, diversity, and structural and functional shifts, were seen with organic enrichment of sediments. Archaea were similarly changed although the magnitude of effect was less than for bacteria. Overall, we found evidence to suggest that A. trapezia had limited capacity to affect sediment microbial communities and mitigate the effects of organic enrichment.
Collapse
Affiliation(s)
- Sebastian Vadillo Gonzalez
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia; Evolution and Ecology Research Centre, University of New South Wales, Sydney, Australia.
| | - Katherine A Dafforn
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Sydney, Australia
| | - Paul E Gribben
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2052 Sydney, Australia; Evolution and Ecology Research Centre, University of New South Wales, Sydney, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Fisheries NSW, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Emma L Johnston
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2052 Sydney, Australia
| |
Collapse
|
3
|
Bugnot AB, Dafforn KA, Erickson K, McGrath A, O'Connor WA, Gribben PE. Reintroducing a keystone bioturbator can facilitate microbial bioremediation in urban polluted sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121419. [PMID: 36906055 DOI: 10.1016/j.envpol.2023.121419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic environmental stressors have significantly reduced biodiversity and the capacity of remnant natural habitats to deliver ecosystem functions and services in urban areas. To mitigate these impacts and recover biodiversity and function, ecological restoration strategies are needed. While habitat restoration is proliferating in rural and peri-urban areas, strategies purposely designed to succeed under the environmental, social and political pressures of urban areas are lacking. Here, we propose that ecosystem health in marine urban areas can be improved by restoring biodiversity to the most dominant habitat, unvegetated sediments. We reintroduced a native ecosystem engineer, the sediment bioturbating worm Diopatra aciculata, and assessed their effects on microbial biodiversity and function. Results showed that worms can affect the diversity of microbes, but effects varied between locations. Worms caused shifts in microbial community composition and function at all locations. Specifically, the abundance of microbes capable of chlorophyll production (i.e. benthic microalgae) increased and the abundance of microbes capable of methane production decreased. Moreover, worms increased the abundances of microbes capable of denitrification in the site with lowest sediment oxygenation. Worms also affected microbes capable of degrading the polycyclic aromatic hydrocarbon toluene, although the direction of that effect was site-specific. This study provides evidence that a simple intervention such as the reintroduction of a single species can enhance sediment functions important for the amelioration of contamination and eutrophication, although further studies are needed to understand the variation in outcomes between sites. Nevertheless, restoration strategies targeting unvegetated sediments provide an opportunity to combat anthropogenic stressors in urban ecosystems and may be used for precondition before more traditional forms of habitat restoration such as seagrass, mangrove and shellfish restoration.
Collapse
Affiliation(s)
- A B Bugnot
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia; CSIRO Oceans & Atmosphere, St. Lucia, QLD, 4067, Australia; Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia.
| | - K A Dafforn
- Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia; School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - K Erickson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - A McGrath
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - W A O'Connor
- Port Stephens Fisheries Institute, NSW Department of Primary Industries, Taylors Beach, 2316, Australia
| | - P E Gribben
- Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia; Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
4
|
Byers JE, Blaze JA, Dodd AC, Hall HL, Gribben PE. Exotic asphyxiation: interactions between invasive species and hypoxia. Biol Rev Camb Philos Soc 2023; 98:150-167. [PMID: 36097368 PMCID: PMC10087183 DOI: 10.1111/brv.12900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 01/12/2023]
Abstract
Non-indigenous species (NIS) and hypoxia (<2 mg O2 l-1 ) can disturb and restructure aquatic communities. Both are heavily influenced by human activities and are intensifying with global change. As these disturbances increase, understanding how they interact to affect native species and systems is essential. To expose patterns, outcomes, and generalizations, we thoroughly reviewed the biological invasion literature and compiled 100 studies that examine the interaction of hypoxia and NIS. We found that 64% of studies showed that NIS are tolerant of hypoxia, and 62% showed that NIS perform better than native species under hypoxia. Only one-quarter of studies examined NIS as creators of hypoxia; thus, NIS are more often considered passengers associated with hypoxia, rather than drivers of it. Paradoxically, the NIS that most commonly create hypoxia are primary producers. Taxa like molluscs are typically more hypoxia tolerant than mobile taxa like fish and crustaceans. Most studies examine individual-level or localized responses to hypoxia; however, the most extensive impacts occur when hypoxia associated with NIS affects communities and ecosystems. We discuss how these influences of hypoxia at higher levels of organization better inform net outcomes of the biological invasion process, i.e. establishment, spread, and impact, and are thus most useful to management. Our review identifies wide variation in the way in which the interaction between hypoxia and NIS is studied in the literature, and suggests ways to address the number of variables that affect their interaction and refine insight gleaned from future studies. We also identify a clear need for resource management to consider the interactive effects of these two global stressors which are almost exclusively managed independently.
Collapse
Affiliation(s)
- James E. Byers
- Odum School of EcologyUniversity of Georgia140 E. Green St.AthensGA30602USA
| | - Julie A. Blaze
- Odum School of EcologyUniversity of Georgia140 E. Green St.AthensGA30602USA
| | - Alannah C. Dodd
- Odum School of EcologyUniversity of Georgia140 E. Green St.AthensGA30602USA
| | - Hannah L. Hall
- Odum School of EcologyUniversity of Georgia140 E. Green St.AthensGA30602USA
| | - Paul E. Gribben
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental ScienceUniversity of New South WalesRm 4115, Building E26SydneyNew South Wales2052Australia
- Sydney Institute of Marine ScienceChowder Bay RdMosmanNew South Wales2088Australia
| |
Collapse
|
5
|
Chakraborty A, Saha GK, Aditya G. Macroinvertebrates as engineers for bioturbation in freshwater ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64447-64468. [PMID: 35864394 DOI: 10.1007/s11356-022-22030-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bioturbation is recognized as a deterministic process that sustains the physicochemical properties of the freshwater ecosystem. Irrigation, ventilation, and particle reworking activities made by biotic components on sediment beds influence the flow of nutrients and transport of particles in the sediment-water interface. Thus, the biogenic disturbances in sediment are acknowledged as pivotal mechanism nutrient cycling in the aquatic system. The macroinvertebrates of diverse taxonomic identity qualify as potent bioturbators due to their abundance and activities in the freshwater. Of particular relevance are the bioturbation activities by the sediment-dwelling biota, which introduce changes in both sediment and water profile. Multiple outcomes of the macroinvertebrate-mediated bioturbation are recognized in the form of modified sediment architecture, changed redox potential in the sediment-water interface, and elicited nutrient fluxes. The physical movement and physiological activities of benthic macroinvertebrates influence organic deposition in sediment and remobilize sediment-bound pollutants and heavy metals, as well as community composition of microbes. As ecosystem engineers, the benthic macroinvertebrates execute multiple functional roles through bioturbation that facilitate maintaining the freshwater as self-sustaining and self-stabilizing system. The likely consequences of bioturbation on the freshwater ecosystems facilitated by various macroinvertebrates - the ecosystem engineers. Among the macroinvertebrates, varied species of molluscs, insects, and annelids are the key facilitators for the movement of the nutrients and shaping of the sediment of the freshwater ecosystem.
Collapse
Affiliation(s)
- Anupam Chakraborty
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Goutam K Saha
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Gautam Aditya
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
6
|
van der Meer TV, Verdonschot PFM, Dokter L, Absalah S, Kraak MHS. Organic matter degradation and redistribution of sediment associated contaminants by benthic invertebrate activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119455. [PMID: 35569623 DOI: 10.1016/j.envpol.2022.119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/26/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The fate of sediment associated compounds is the combined result of chemical properties and biological activities. Yet, studies simultaneously addressing the effects of biota on the redistribution and bioaccumulation of contaminants are scarce. Our aim was therefore to assess the effect of benthic invertebrate activities on organic matter degradation and the redistribution of metals and Polycyclic Aromatic Hydrocarbons (PAHs) in contaminated sediment. To this end, we introduced egg ropes of the non-biting midge Chironomus riparius into wastewater treatment plant sludge and allowed these to either develop until fourth instar larvae or to fully complete their life cycle into terrestrial flying adults. Chironomid larvae enhanced sludge degradation, resulting in increased metal concentrations in the sludge and in a flux of metals into the overlying water. Moreover, they hampered PAH degradation in the sludge. Contaminant transport from aquatic to terrestrial ecosystems with emerging invertebrates as a vector is widely acknowledged, but here we showed that biomanipulation prevailed over bioaccumulation, since due to chironomid activity, the flux of metals from the sludge into the overlying water was larger than into chironomid biomass. It is therefore concluded that contaminant-macroinvertebrate interactions are bilateral relationships driven by the interplay between macroinvertebrate traits and contaminant properties.
Collapse
Affiliation(s)
- Tom V van der Meer
- Wageningen Environmental Research, Wageningen UR, P.O. Box 47, 6700, AA, Wageningen, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090, GE, Amsterdam, the Netherlands.
| | - Piet F M Verdonschot
- Wageningen Environmental Research, Wageningen UR, P.O. Box 47, 6700, AA, Wageningen, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090, GE, Amsterdam, the Netherlands
| | - Lina Dokter
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090, GE, Amsterdam, the Netherlands
| | - Samira Absalah
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090, GE, Amsterdam, the Netherlands
| | - Michiel H S Kraak
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090, GE, Amsterdam, the Netherlands
| |
Collapse
|
7
|
|
8
|
Metagenomic Insights into the Structure of Microbial Communities Involved in Nitrogen Cycling in Two Integrated Multitrophic Aquaculture (IMTA) Ponds. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The microbial structure and metabolic potential, particularly with regard to nitrogen (N) cycling, in integrated multitrophic aquaculture (IMTA) ponds with shrimp remain unclear. In this study, an analysis of microbial community taxonomic diversity and a metagenomic analysis of N-related genes were performed in a shrimp-crab pond (Penaeus japonicus-Portunus trituberculatus, SC) and a shrimp-crab-clam pond (P. japonicus-P. trituberculatus-Sinonovacula constricta, SCC) to evaluate microbial structure and N transformation capacities in these two shrimp IMTA ponds. The composition of the microbial communities was similar between SC and SCC, but the water and sediments shared few common members in either pond. The relative abundances of N cycling genes were significantly higher in sediment than in water in both SC and SCC, except for assimilatory nitrate reduction genes. The main drivers of the differences in the relative abundances of N cycling genes in SC and SCC were salinity and pH in water and the NO2− and NH4+ contents of pore water in sediment. These results indicate that the coculture of S. constricta in a shrimp-crab pond may result in decreased N cycling in sediment. The reduced N flux in the shrimp IMTA ponds primarily originates within the sediment, except for assimilatory nitrate reduction.
Collapse
|
9
|
Birrer SC, Wemheuer F, Dafforn KA, Gribben PE, Steinberg PD, Simpson SL, Potts J, Scanes P, Doblin MA, Johnston EL. Legacy Metal Contaminants and Excess Nutrients in Low Flow Estuarine Embayments Alter Composition and Function of Benthic Bacterial Communities. Front Microbiol 2021; 12:661177. [PMID: 34690940 PMCID: PMC8531495 DOI: 10.3389/fmicb.2021.661177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
Coastal systems such as estuaries are threatened by multiple anthropogenic stressors worldwide. However, how these stressors and estuarine hydrology shape benthic bacterial communities and their functions remains poorly known. Here, we surveyed sediment bacterial communities in poorly flushed embayments and well flushed channels in Sydney Harbour, Australia, using 16S rRNA gene sequencing. Sediment samples were collected monthly during the Austral summer-autumn 2014 at increasing distance from a large storm drain in each channel and embayment. Bacterial communities differed significantly between sites that varied in proximity to storm drains, with a gradient of change apparent for sites within embayments. We explored this pattern for embayment sites with analysis of RNA-Seq gene expression patterns and found higher expression of multiple genes involved in bacterial stress response far from storm drains, suggesting that bacterial communities close to storm drains may be more tolerant of localised anthropogenic stressors. Several bacterial groups also differed close to and far from storm drains, suggesting their potential utility as bioindicators to monitor contaminants in estuarine sediments. Overall, our study provides useful insights into changes in the composition and functioning of benthic bacterial communities as a result of multiple anthropogenic stressors in differing hydrological conditions.
Collapse
Affiliation(s)
- Simone C. Birrer
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Franziska Wemheuer
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Katherine A. Dafforn
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Department of Earth and Environmental Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Paul E. Gribben
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Peter D. Steinberg
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Stuart L. Simpson
- CSIRO Land and Water, Centre for Environmental Contaminants Research, Canberra, ACT, Australia
| | - Jaimie Potts
- Coastal Waters Unit, Science Division, NSW Department of Planning, Industry and Environment, Sydney, NSW, Australia
| | - Peter Scanes
- Coastal Waters Unit, Science Division, NSW Department of Planning, Industry and Environment, Sydney, NSW, Australia
| | - Martina A. Doblin
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Climate Change Cluster, University of Technology, Sydney, NSW, Australia
| | - Emma L. Johnston
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| |
Collapse
|
10
|
Vadillo Gonzalez S, Johnston EL, Dafforn KA, O'Connor WA, Gribben PE. Body size affects lethal and sublethal responses to organic enrichment: Evidence of associational susceptibility for an infaunal bivalve. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105391. [PMID: 34217096 DOI: 10.1016/j.marenvres.2021.105391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Eutrophication is an increasing problem worldwide and can disrupt ecosystem processes in which macrobenthic bioturbators play an essential role. This study explores how intraspecific variation in body size affects the survival, mobility and impact on sediment organic matter breakdown in enriched sediments of an infaunal bivalve. A mesocosm experiment was conducted in which monocultures and all size combinations of three body sizes (small, medium and large) of the Sydney cockle, Anadara trapezia, were exposed to natural or organically enriched sediments. Results demonstrate that larger body sizes have higher tolerance to enriched conditions and can reduce survival of smaller cockles when grown together. Also, large A. trapezia influenced sediment organic matter breakdown although a direct link to bioturbation activity was not clear. Overall, this study found that intraspecific variation in body size influences survival and performance of bioturbators in eutrophic scenarios.
Collapse
Affiliation(s)
- Sebastian Vadillo Gonzalez
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2033, Sydney, Australia; Evolution and Ecology Research Centre, University of New South Wales, Sydney, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Sydney, Australia.
| | - Emma L Johnston
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2033, Sydney, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Sydney, Australia
| | - Katherine A Dafforn
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Sydney, Australia; Department of Earth and Environmental Sciences, Macquarie University, North Ryde, NSW, 2113, Sydney, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Paul E Gribben
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2033, Sydney, Australia; Evolution and Ecology Research Centre, University of New South Wales, Sydney, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Sydney, Australia
| |
Collapse
|
11
|
Yang J, Li Q, An Y, Zhang M, Du J, Chen C, Zhao R, Zhao D, An S. The improvement of pollutant removal efficiency in saturated vertical flow constructed wetlands by tubifex tubifex. BIORESOURCE TECHNOLOGY 2020; 318:124202. [PMID: 33035945 DOI: 10.1016/j.biortech.2020.124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Pilot-scale saturated vertical flow constructed wetlands (VF-CWs) were established to identify whether T. tubifex has the similar performance in saturated VF-CWs to that in surface flow CWs in improving pollutant removal efficiency (RE). The saturated VF-CWs with T. tubifex achieved REs of 67.3% total nitrogen (TN) and 39.8% chemical oxygen demand (COD), which were significantly higher than treatments without T. tubifex (42.2% TN and 31.4% COD). There existed significant interactions between macrophytes and T. tubifex. T. tubifex greatly improved the dissolved oxygen by increasing the connectivity between layers, and enhanced dehydrogenase activity and fluorescein diacetate. Adding T. tubifex improved the bacterial diversity and relative abundance of both N-cycle bacteria and fermentation bacteria in the biofilms. The improvements of ammonia oxidation and anammox were the main pathways for the increased nitrogen removal by T. tubifex. Therefore, T. tubifex is a useful tool for improving pollutant REs in saturated VF-CWs.
Collapse
Affiliation(s)
- Jiqiang Yang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Qiming Li
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Yu An
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Miao Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Juan Du
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Chen Chen
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Ran Zhao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Dehua Zhao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China.
| | - Shuqing An
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| |
Collapse
|