1
|
Miyata K, Inoue Y, Yamane M, Honda H. Fish environmental RNA sequencing sensitively captures accumulative stress responses through short-term aquarium sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178182. [PMID: 39719761 DOI: 10.1016/j.scitotenv.2024.178182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
The utility of environmental RNA (eRNA) in capturing biological responses to stresses has been discussed previously; however, the limited number of genes detected remains a significant hindrance to its widespread implementation. Here, we investigated the potential of eRNA to assess the health status of Japanese medaka fish exposed to linear alkylbenzene sulfonate. Analyzing eRNA and organismal RNA (oRNA) in aquarium water within 12 h, we achieved high mapping rates and 10 times more differentially expressed genes than previously reported. This advancement has facilitated the previously unattainable capability of gene ontology (GO) analysis. The GO analysis revealed that eRNA can detect nuclear genes associated with cellular components and reflect cumulative gene expression signatures over time, while oRNA provided short-term gene expression signatures in biological process. Moreover, eRNA exhibited high sensitivity in responding to genes associated with sphingolipid and ceramide biosynthesis, which are involved in inflammatory responses possibly originating from impaired cells. This finding aligns with the observations made in oRNA. In conclusion, eRNA-sequencing (eRNA-seq) using aquarium water emerges as a valuable high sensitivity tool for analyzing physiological stress. The findings of this study lay the foundation for further development of eRNA-seq technologies.
Collapse
Affiliation(s)
- Kaede Miyata
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan.
| | - Yasuaki Inoue
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan.
| | - Masayuki Yamane
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Hiroshi Honda
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| |
Collapse
|
2
|
Ren H, Yin K, Lu X, Liu J, Li D, Liu Z, Zhou H, Xu S, Li H. Synergy between nanoplastics and benzo[a]pyrene promotes senescence by aggravating ferroptosis and impairing mitochondria integrity in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174418. [PMID: 38960162 DOI: 10.1016/j.scitotenv.2024.174418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Micro-nano plastics have been reported as important carriers of polycyclic aromatic hydrocarbons (PAHs) for long-distance migration in the environment. However, the combined toxicity from long-term chronic exposure beyond the vehicle-release mechanism remains elusive. In this study, we investigated the synergistic action of Benzo[a]pyrene (BaP) and Polystyrene nanoparticles (PS) in Caenorhabditis elegans (C. elegans) as a combined exposure model with environmental concentrations. We found that the combined exposure to BaP and PS, as opposed to single exposures at low concentrations, significantly shortened the lifespan of C. elegans, leading to the occurrence of multiple senescence phenotypes. Multi-omics data indicated that the combined exposure to BaP and PS is associated with the disruption of glutathione homeostasis. Consequently, the accumulated reactive oxygen species (ROS) cannot be effectively cleared, which is highly correlated with mitochondrial dysfunction. Moreover, the increase in ROS promoted lipid peroxidation in C. elegans and downregulated Ferritin-1 (Ftn-1), resulting in ferroptosis and ultimately accelerating the aging process of C. elegans. Collectively, our study provides a new perspective to explain the long-term compound toxicity caused by BaP and PS at real-world exposure concentrations.
Collapse
Affiliation(s)
- Huasheng Ren
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Kai Yin
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Xinhe Lu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Jiaojiao Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Dandan Li
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Zuojun Liu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- School of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hanzeng Li
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Wu MM, Zhang H, Yang Y, Wang Y, Luk PK, Xia IF, Wong KH, Kwok KW. Food emulsifiers aggravate inflammation and oxidative stress induced by food contaminants in zebrafish. Food Chem Toxicol 2024; 191:114850. [PMID: 38986831 DOI: 10.1016/j.fct.2024.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Food emulsifiers like glycerol monostearate (G) and Tween 80 (TW) are commonly used to help formation and maintain stability of emulsions. However, certain food contaminants and emulsifiers often co-occur in the same food item due to food culture and cooking methods. For this reason, the present study investigated interaction of toxic effect of emulsifiers (G and TW) and process contaminants (acrylamide (AA) and benzo [a]pyrene (BAP)) on zebrafish. Adult zebrafish were exposed to emulsifiers, food contaminants, or the combination through diet for 2 h and 7 days. Oxidative stress and inflammation caused by food contaminants were increased when food emulsifiers were present. These combined treatments also induced more severe morphological changes than the contaminant alone treatments. In the gut, disruption of villi structure and increased number of goblet cells was observed and in the liver there were increased lipid deposition, infiltration of immune cells, glycogen depletion and focal necrosis. Increased accumulation of AA and BAP in the liver and gut were detected after addition of emulsifiers, suggesting that emulsifiers can enhance absorption of diet-borne contaminants. Our results showed food emulsifiers and contaminants can interact synergistically and increase risk.
Collapse
Affiliation(s)
- Margaret Mh Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China; Research Institute for Future Food, The Hong Kong Polytechnic University, China.
| | - Huan Zhang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China
| | - Ye Yang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China
| | - Yinglun Wang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China
| | - Peter Kh Luk
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China
| | - Ivan Fan Xia
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China; Section of Cardiology, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ka-Hing Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China; Research Institute for Future Food, The Hong Kong Polytechnic University, China
| | - Kevin Wh Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China; Research Institute for Future Food, The Hong Kong Polytechnic University, China.
| |
Collapse
|
4
|
Pei J, Chen S, Li L, Wang K, Pang A, Niu M, Peng X, Li N, Wu H, Nie P. Impact of polystyrene nanoplastics on apoptosis and inflammation in zebrafish larvae: Insights from reactive oxygen species perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174737. [PMID: 39004365 DOI: 10.1016/j.scitotenv.2024.174737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
In recent years, there has been a growing focus on the toxicity and mortality induced by nanoplastics (NPs) in aquatic organisms. However, studies investigating mechanisms underlying oxidative stress (OS), apoptosis, and inflammation induced by NPs in fish remain limited. This study observed that polystyrene NPs (PS-NPs) were accumulated into zebrafish larvae and zebrafish embryonic fibroblast (ZF4 cells), accompanied by the occurrence of pathological damage both at the cellular and tissue-organ level. Additionally, the transcriptional up-regulation of NADPH oxidases (NOXs) and subsequent excessive generation of reactive oxygen species (ROS) resulted in notable changes in the relative mRNA and protein expression levels associated with antioxidant oxidase systems in larvae. Furthermore, the study identified the impact of NPs on mitochondrial ultrastructural, resulting in mitochondrial depolarization and downregulation of mRNA expression related to the electron transport chain due to excessive ROS generation. Short-term exposure to NPs also triggered apoptosis and inflammation in zebrafish larvae, evident from significant up-regulation in mRNA expressions of proapoptotic factors and NF-κB proinflammatory signaling pathway, as well as increased transcription and protein levels of pro-inflammatory factors in larvae. Inhibition of intracellular excessive ROS effectively reduced the induction of apoptosis, NF-κB P65 nuclear migration levels, and cytokine secretion, underscoring OS as a pivotal factor throughout the process of apoptosis and inflammatory responses induced by NPs. This research significantly advances our comprehension of biological effects and underlying mechanisms of NPs in freshwater fish.
Collapse
Affiliation(s)
- Jincheng Pei
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Kailun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Anning Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Mengmeng Niu
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Xueyun Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Hongjuan Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
5
|
Xu H, Chen F, Liu Z, Gao R, He J, Li F, Li N, Mu X, Liu T, Wang Y, Chen X. B(a)P induces ovarian granulosa cell apoptosis via TRAF2-NFκB-Caspase1 axis during early pregnancy. ENVIRONMENTAL RESEARCH 2024; 252:118865. [PMID: 38583661 DOI: 10.1016/j.envres.2024.118865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.
Collapse
Affiliation(s)
- Hanting Xu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangyuan Chen
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhihao Liu
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangfang Li
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Nanyan Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Jiulongpo District Center for Disease Control and Prevention, Chongqing, 400039, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Taihang Liu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
6
|
Pan S, Li Y, Zhang J. 6-Shogaol prevents benzo (A) pyrene-exposed lung carcinogenesis via modulating PRDX1-associated oxidative stress, inflammation, and proliferation in mouse models. ENVIRONMENTAL TOXICOLOGY 2024; 39:75-84. [PMID: 37638803 DOI: 10.1002/tox.23946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023]
Abstract
In this study, we have investigated the chemopreventive role of 6-shogaol (6-SGL) on benzopyrene (BaP) exposed lung carcinogenesis by modulating PRDX1-associated oxidative stress, inflammation, and proliferation in Swiss albino mouse models. Mice were exposed to BaP (50 mg/kg b.wt) orally twice a week for four consecutive weeks and maintained for 16 weeks, respectively. 6-SGL (30 mg/kg b.wt) were orally administered to mouse 1 h before BaP exposure for 16 weeks. After the experiment's termination, 6-SGL (30 mg/kg b.wt) prevented the loss in body weight, increased lung weight, and the total number of tumors in the mice. Moreover, we observed that 6-SGL treatment reverted the activity of BaP-induced lipid peroxidation and antioxidants in mice. Also, 6-SGL impeded the phosphorylation of MAPK family proteins such as Erk1, p38, and Jnk1 in BaP-exposed mice. PRDX1 is an essential antioxidant protein that scavenges toxic radicals and enhances several antioxidant proteins. Overexpression of PRDX1 substantially inhibits MAPKs, proliferation, and inflammation signaling axis. Hence, PRDX1 is thought to be a novel targeting protein for preventing BaP-induced lung cancer. In this study, we have obtained the 6-SGL treatment in a mouse model that reverted BaP-induced depletion of PRDX1 expression. Moreover, pretreatment of 6-SGL (30 mg/kg b.wt) significantly inhibited enhanced proinflammatory cytokines (TNF-α, IL-6, IL-β1, IL-10) and proliferative markers (Cyclin-D1, Cyclin-D2, and PCNA) in BaP-exposed mice. The histopathological studies also confirmed that 6-SGL effectively protected the cells with less damage. Thus, the study demonstrated that 6-SGL could be a potential phytochemical and act as a chemopreventive agent in BaP-induced lung cancer by enhancing PRDX1 expression.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yaming Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jinzhao Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
7
|
Chen Q, Li Z, Li Y, Liu M, Wu Y, Chen Z, Zhu B. Biodegradation of benzo[a]pyrene by a marine Chlorella vulgaris LH-1 with heterotrophic ability. MARINE POLLUTION BULLETIN 2024; 198:115848. [PMID: 38029673 DOI: 10.1016/j.marpolbul.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
In this study, a microalga, Chlorella vulgaris LH-1, with heterotrophic ability to degrade BaP was explored. The effect of BaP concentration on microalga growth was investigated, and the possible biodegradation mechanism of BaP was proposed. Results showed that low BaP concentration (<5 mg/L) had less negative influence on the growth of this microalga under mixotrophic condition, but high BaP concentration (>5 mg/L) had a significant inhibitory effect on its growth. During heterotrophic cultivation, low BaP concentration (<20 mg/L) promoted the growth of C. vulgaris LH-1, whereas high BaP concentration (>20 mg/L) inhibited its growth significantly. The degradation rates of mixotrophic and heterotrophic C. vulgaris LH-1 were 62.56 %-74.13 % and 52.07 %-71.67 %, respectively, when the BaP concentration ranged from 0.5 mg/L to 2 mg/L. The expression of functional enzyme genes of C. vulgaris LH-1 such as phenol 2-monooxygenase activity, protocatechuate 3,4-dioxygenase activity, catechol 1,2-dioxygenase activity, styrene degradation, and benzoate degradation were upregulated in the process of BaP degradation. C. vulgaris LH-1 may degrade BaP by monooxygenase and dioxygenase simultaneously. The degradation of BaP by this microalga under mixotrophic condition goes through the degradation pathway of phthalic acid, whereas it goes through the degradation pathway of benzoic acid under heterotrophic condition.
Collapse
Affiliation(s)
- Qingguo Chen
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhenzhen Li
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, PR China
| | - Yijing Li
- School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, PR China
| | - Mei Liu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Yingqi Wu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering & Computer Sciences, Concordia University, Montreal, Quebec H3G1M8, Canada
| | - Baikang Zhu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
8
|
Wang Y, Zhao J, Xu Y, Tao C, Tong J, Luo Y, Chen Y, Liu X, Xu T. Uncovering SOD3 and GPX4 as new targets of Benzo[α]pyrene-induced hepatotoxicity through Metabolomics and Chemical Proteomics. Redox Biol 2023; 67:102930. [PMID: 37847980 PMCID: PMC10585396 DOI: 10.1016/j.redox.2023.102930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Benzo[α]pyrene (Bap) is recognized as a ubiquitous environmental pollutant among the polycyclic aromatic hydrocarbons (PAHs) class. Previous studies have shown that the hepatotoxicity of Bap is mainly caused by its metabolites, although it remains unclear whether Bap itself induces such damage. This study integrated metabolomics and chemical proteomics approaches to comprehensively identify the potential target proteins affected by Bap in liver cells. The results from the metabolomics showed that the significant changed metabolites were related with cellular redox homeostasis. CEllular Thermal Shift Assay (CETSA) showed that Bap induced protein thermal displacement of superoxide dismutase 3 (SOD3) and glutathione peroxidase 4 (GPX4), which are closely related to oxidative homeostasis. Further validation through in vitro CETSA and drug affinity response target stability (DARTS) revealed that Bap directly affected the stability of SOD3 and GPX4 proteins. The binding affinities of Bap to the potential target proteins were further evaluated using molecular docking, while the isothermal titration calorimetry (ITC) interaction measurements indicated nanomolar-level Kd values. Importantly, we found that Bap weakened the antioxidant capacity by destroying the activities of SOD3 and GPX4, which provided a new understanding of the mechanism of hepatotoxicity induced by Bap. Moreover, our provided workflow integrating metabolomics and label-free chemical proteomics, can be regarded as a practical way to identify the targets and inter-mechanisms for the various environmental compounds.
Collapse
Affiliation(s)
- Yanwei Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jiahui Zhao
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yipeng Xu
- Department of Urology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Cimin Tao
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jie Tong
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yingjie Luo
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou, Zhejiang, 325899, China
| | - Yong Chen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou, Zhejiang, 325899, China
| | - Xuesong Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou, Zhejiang, 325899, China
| | - Tengfei Xu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou, Zhejiang, 325899, China.
| |
Collapse
|
9
|
Jang HJ, Boo HJ, Min HY, Kang YP, Kwon SW, Lee HY. Effect of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and benzo[a]pyrene exposure on the development of metabolic syndrome in mice. Life Sci 2023; 329:121925. [PMID: 37423377 DOI: 10.1016/j.lfs.2023.121925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
AIM The prevalence of metabolic syndrome (MetS), a cluster of serious medical conditions that raise the risk of lung cancer, has increased worldwide. Tobacco smoking (TS) potentially increases the risk of developing MetS. Despite the potential association of MetS with lung cancer, preclinical models that mimic human diseases, including TS-induced MetS, are limited. Here we evaluated the impact of exposure to tobacco smoke condensate (TSC) and two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNK) and benzo[a]pyrene (BaP), on MetS development in mice. MATERIALS AND METHODS FVB/N or C57BL/6 mice were exposed to vehicle, TSC, or NNK and BaP (NB) twice weekly for 5 months. The serum levels of total cholesterol (TCHO), triglycerides, high-density lipoprotein (HDL), blood glucose, and metabolites, along with glucose tolerance and body weight, were measured. KEY FINDINGS Compared with those of vehicle-treated mice, mice with TSC or NB exposure displayed major phenotypes associated with MetS, including increased serum levels of TCHO, triglycerides, and fasting and basal blood glucose and decreased glucose tolerance, and serum levels of HDL. These MetS-associated changes were found in both FVB/N and C57BL/6 mice that were susceptible or resistant to carcinogen-induced tumorigenesis, respectively, indicating that tumor formation is not involved in the TSC- or NB-mediated MetS. Moreover, oleic acid and palmitoleic acid, which are known to be associated with MetS, were significantly upregulated in the serum of TSC- or NB-treated mice compared with those in vehicle-treated mice. SIGNIFICANCE Both TSC and NB caused detrimental health problems, leading to the development of MetS in experimental mice.
Collapse
Affiliation(s)
- Hyun-Ji Jang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Jin Boo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Young Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Sweef O, Zaabout E, Bakheet A, Halawa M, Gad I, Akela M, Tousson E, Abdelghany A, Furuta S. Unraveling Therapeutic Opportunities and the Diagnostic Potential of microRNAs for Human Lung Cancer. Pharmaceutics 2023; 15:2061. [PMID: 37631277 PMCID: PMC10459057 DOI: 10.3390/pharmaceutics15082061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer is a major public health problem and a leading cause of cancer-related deaths worldwide. Despite advances in treatment options, the five-year survival rate for lung cancer patients remains low, emphasizing the urgent need for innovative diagnostic and therapeutic strategies. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets for lung cancer due to their crucial roles in regulating cell proliferation, differentiation, and apoptosis. For example, miR-34a and miR-150, once delivered to lung cancer via liposomes or nanoparticles, can inhibit tumor growth by downregulating critical cancer promoting genes. Conversely, miR-21 and miR-155, frequently overexpressed in lung cancer, are associated with increased cell proliferation, invasion, and chemotherapy resistance. In this review, we summarize the current knowledge of the roles of miRNAs in lung carcinogenesis, especially those induced by exposure to environmental pollutants, namely, arsenic and benzopyrene, which account for up to 1/10 of lung cancer cases. We then discuss the recent advances in miRNA-based cancer therapeutics and diagnostics. Such information will provide new insights into lung cancer pathogenesis and innovative diagnostic and therapeutic modalities based on miRNAs.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed Zaabout
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Bakheet
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ibrahim Gad
- Department of Statistics and Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf Abdelghany
- Biomedical Research Center of University of Granada, Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
11
|
Gallego-Rentero M, Nicolás-Morala J, Alonso-Juarranz M, Carrasco E, Portillo-Esnaola M, Rodríguez-Luna A, González S. Protective Effect of the Hydrophilic Extract of Polypodium leucotomos, Fernblock ®, against the Synergistic Action of UVA Radiation and Benzo[a]pyrene Pollutant. Antioxidants (Basel) 2022; 11:2185. [PMID: 36358556 PMCID: PMC9686834 DOI: 10.3390/antiox11112185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is a harmful effect induced on the skin by polycyclic aromatic hydrocarbons (PAH), including benzo[a]pyrene (BaP) air pollutants. This effect is amplified by the additive damaging effect of the sun, especially through the UVA light component. Besides being one of the main compounds that make up air pollution, BaP can also be found in tar, tobacco smoke, and various foods. In addition to its direct carcinogenic potential, BaP can act as a photosensitizer absorbing sunlight in the UVA range and thus generating ROS and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Fernblock® (FB) is an aqueous extract from the leaves of Polypodium leucotomos that has been proven to exert photoprotective and antioxidant effects on skin cells. In this study, we evaluate the potential of FB to prevent the damage induced by a combination of BaP and UVA light on human keratinocyte and mouse melanocyte cell lines (HaCaT and B16-F10, respectively). In particular, we have analyzed the capacity of FB to counteract the alterations caused on cellular morphology, viability, oxidative stress and melanogenic signaling pathway activation. Our data indicate that FB prevented cell damage and reduced oxidative stress and melanogenic signaling pathway activation caused by a combination of BaP and UVA light irradiation. Altogether, our findings support the fact that FB is able to prevent skin damage caused by the exposure to a combination of UVA and the air pollutant BaP.
Collapse
Affiliation(s)
- María Gallego-Rentero
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), 28049 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28049 Madrid, Spain
| | - Jimena Nicolás-Morala
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), 28049 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28049 Madrid, Spain
| | - Miguel Alonso-Juarranz
- Oral and Maxillofacial Surgery Service, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Elisa Carrasco
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), 28049 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28049 Madrid, Spain
| | - Mikel Portillo-Esnaola
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), 28049 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28049 Madrid, Spain
| | - Azahara Rodríguez-Luna
- Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), 28933 Alcorcón, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Alcalá de Henares University, 28805 Madrid, Spain
| |
Collapse
|
12
|
He H, Huang Y, Lu Y, Wang X, Ni H, Wu Y, Xia D, Ye D, Ding J, Mao Y, Teng Y. Effect of benzo[a]pyrene on proliferation and metastasis of oral squamous cell carcinoma cells: A transcriptome analysis based on RNA-seq. ENVIRONMENTAL TOXICOLOGY 2022; 37:2589-2604. [PMID: 35870112 DOI: 10.1002/tox.23621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Benzo[a]pyrene (BaP), a representative polycyclic aromatic hydrocarbon compound, is a carcinogen that causes head and neck cancers. Despite intensive research, the molecular mechanism of BaP in the development of oral squamous cell carcinoma (OSCC) remains largely unknown. In the present study, the SCC-9 human OSCC cell line was cultured in vitro, separated into treatment groups, and treated with dimethyl sulfoxide or BaP at various concentrations. The malignant behavior ascribed to the BaP treatment was investigated by cell proliferation, clony formation assay, and Transwell assays. Furthermore, transcriptome sequencing was performed to detect the differentially expressed genes, followed by quantitative real-time PCR to measure the expression levels of nine of these genes. Moreover, the Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed the biological processes and signaling pathways in which the target genes were involved. Significant effects on SCC-9 cell proliferation, tumorigenicity, cell migration, and invasion were observed after exposure to 8 μM BaP. Additional results revealed that BaP inhibited apoptosis in a dose-dependent manner. The transcriptome sequencing results showed 137 upregulated genes and 135 downregulated genes induced by BaP, associated with tumor-related biological processes and signaling pathways, mainly including transcriptional dysregulation in cancer, the tumor necrosis factor signaling pathway, metabolism of xenobiotics by cytochrome P450, mitogen-activated protein kinase signaling pathway, and so forth. Our study demonstrates that BaP may regulate the expression of certain genes involved in tumor-associated signaling pathways, thereby promoting the proliferative, tumorigenic, and metastatic behaviors of OSCC cells while suppressing their apoptosis.
Collapse
Affiliation(s)
- Hanyi He
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixing Huang
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueyue Lu
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinlu Wang
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haifeng Ni
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jinwang Ding
- Department of Head and Neck Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| | - Yanjiao Mao
- Department of Oncology Radiotherapy, Hangzhou Cancer Hospital, Affiliated Medical College of Zhejiang University, Hangzhou, China
| | - Yaoshu Teng
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Chen J, He X, Song Y, Tu Y, Chen W, Yang G. Sporoderm-broken spores of Ganoderma lucidum alleviates liver injury induced by DBP and BaP co-exposure in rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113750. [PMID: 35696964 DOI: 10.1016/j.ecoenv.2022.113750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Dibutyl phthalate (DBP) and Benzo(a)pyrene (BaP) are ubiquitous contaminants in environment and foodstuffs, which increase the chance of their combined exposure to humans in daily life. However, the combined effects of DBP and BaP on liver and the underlying mechanisms are still unclear. In this study, we explored the combined effects of DBP and BaP on liver and the potential mechanisms in a rat model. We found that DBP and BaP co-exposure activated the MyD88/NF-κB pathway through increasing TLR4 acetylation (TLR4ac) level, leading to the imbalance of pro-inflammatory factors (CXCL-13, IL-6 and TNF-α) and anti-inflammatory factors (IL-10), ultimately resulting in liver tissue damage and functional changes. Sporoderm-broken spores of Ganoderma lucidum (SSGL) had strong alleviating effects on liver injury induced by DBP and BaP co-exposure. Our study found that SSGL suppressed TLR4ac-regulated MyD88/NF-κB signaling to reduce the release of pro-inflammatory factors, and promote the secretion of IL-10, thus alleviating liver injury caused by DBP and BaP co-exposure. In conclusion, SSGL contributed to liver protection against DBP and BaP-induced liver injury in rats via suppressing the TLR4ac-regulated MyD88/NF-κB signaling.
Collapse
Affiliation(s)
- Jing Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Xiu He
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yawen Song
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ying Tu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Wenyan Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China; School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
14
|
Saravanakumar K, Sivasantosh S, Sathiyaseelan A, Sankaranarayanan A, Naveen KV, Zhang X, Jamla M, Vijayasarathy S, Vishnu Priya V, MubarakAli D, Wang MH. Impact of benzo[a]pyrene with other pollutants induce the molecular alternation in the biological system: Existence, detection, and remediation methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119207. [PMID: 35351595 DOI: 10.1016/j.envpol.2022.119207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The exposure of benzo [a]pyrene (BaP) in recent times is rather unavoidable than ever before. BaP emissions are sourced majorly from anthropogenic rather than natural provenance from wildfires and volcanic eruptions. A major under-looked source is via the consumption of foods that are deep-fried, grilled, and charcoal smoked foods (meats in particular). BaP being a component of poly aromatic hydrocarbons has been classified as a Group I carcinogenic agent, which has been shown to cause both systemic and localized effects in animal models as well as in humans; has been known to cause various forms of cancer, accelerate neurological disorders, invoke DNA and cellular damage due to the generation of reactive oxygen species and involve in multi-generational phenotypic and genotypic defects. BaP's short and accumulated exposure has been shown in disrupting the fertility of gamete cells. In this review, we have discussed an in-depth and capacious run-through of the various origins of BaP, its economic distribution and its impact as well as toxicological effects on the environment and human health. It also deals with a mechanism as a single compound and its ability to synergize with other chemicals/materials, novel sensitive detection methods, and remediation approaches held in the environment.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | | | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Alwarappan Sankaranarayanan
- Department of Life Sciences, Sri Sathya Sai University for Human Excellence, Navanihal, Karnataka, 585 313, India.
| | - Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, 411007, India.
| | - Sampathkumar Vijayasarathy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Veeraraghavan Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
15
|
Huang Y, Zhang J, Tao Y, Ji C, Aniagu S, Jiang Y, Chen T. AHR/ROS-mediated mitochondria apoptosis contributes to benzo[a]pyrene-induced heart defects and the protective effects of resveratrol. Toxicology 2021; 462:152965. [PMID: 34597721 DOI: 10.1016/j.tox.2021.152965] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022]
Abstract
Benzo[a]pyrene (BaP), a prototypical polycyclic aromatic hydrocarbon, is widely present in the environment. BaP-induced heart defects have been frequently reported, but the underlying molecular mechanisms remain elusive. Here, we found that BaP increased heart malformations in zebrafish embryos in a concentration-dependent manner, which were attenuated by supplementation with either CH223191 (CH), an aryl hydrocarbon receptor (AHR) inhibitor, or N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger. While CH and NAC both inhibited BaP-induced ROS generation, NAC had no effect on BaP-induced AHR activation. We further demonstrated that BaP increased mitochondrial ROS, decreased mitochondrial membrane potential, and caused endogenous apoptosis, with all these effects being counteracted by supplementation with either CH or NAC. Resveratrol (RSV), a natural AHR antagonist and ROS scavenger, also counteracted the heart malformations caused by BaP. Further experiments showed that RSV attenuated BaP-induced oxidative stress, mitochondrial damage and apoptosis, but had no significant effect on AHR activation. In conclusion, our findings show that BaP induces oxidative stress via AHR activation, which causes mitochondria-mediated intrinsic apoptosis, resulting in heart malformations in zebrafish embryos, and that RSV had a protective effect against BaP-induced heart defects mainly by inhibiting oxidative stress rather than through antagonism of AHR activity.
Collapse
Affiliation(s)
- Yujie Huang
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jie Zhang
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yizhou Tao
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Aguilar L, Lara-Flores M, Rendón-von Osten J, Kurczyn JA, Vilela B, da Cruz AL. Effects of polycyclic aromatic hydrocarbons on biomarker responses in Gambusia yucatana, an endemic fish from Yucatán Peninsula, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47262-47274. [PMID: 33891236 DOI: 10.1007/s11356-021-13952-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are petroleum components that, when dissolved in the aquatic environment, can disrupt normal animal physiological functions and negatively affect species populations. Gambusia yucatana is an endemic fish of the Yucatán Peninsula that seems to be particularly sensitive to the presence of PAHs dissolved in the water. Here, we examined PAH effects on gene expressions linked to endocrine disruption and biotransformation in this species. Specifically, we examined the expression of vitellogenin I (vtg1), vitellogenin II (vtg2), oestrogen receptor α (esr1), oestrogen receptor β (esr2), aryl hydrocarbon receptor (AhR) and the cytochrome P4503A (CYP3A) genes. We exposed G. yucatana to different concentrations of PAHs (3.89, 9.27, 19.51 μg/L) over a period of 72 h and found changes associated with reproduction, such as increases in hepatic expression of vtg, esr, AhR and CYP3A, mainly at concentrations of 9.27 and 19.51 μg/L. Our results also indicate that benzo[a]pyrene was probably the main PAH responsible for the observed effects. The genes examined here can be used as molecular markers of endocrine-disrupting compounds, as the PAHs, present in the environment, as gene expression increases could be observed as early as after 24 h. These biomarkers can help researchers and conservationists rapidly identify the impacts of oil spills and improve mitigation before the detrimental effects of environmental stressors become irreversible.
Collapse
Affiliation(s)
- Letícia Aguilar
- Institute of Biology, Laboratory of Animal Physiology, Federal University of Bahia, Rua Barão de Jeremoabo 147, Salvador, Bahia, CEP 40.170-115, Brazil
| | - Maurílio Lara-Flores
- Institute of Ecology, Fisheries and Oceanography of the Gulf of Mexico, Laboratory of Ecotoxicology, Autonomous University of Campeche, Av. Héroe de Nacozari 480, C.P. 24029, San Francisco de Campeche, Campeche, Mexico
| | - Jaime Rendón-von Osten
- Institute of Ecology, Fisheries and Oceanography of the Gulf of Mexico, Laboratory of Ecotoxicology, Autonomous University of Campeche, Av. Héroe de Nacozari 480, C.P. 24029, San Francisco de Campeche, Campeche, Mexico
| | - Jorge A Kurczyn
- Institute of Engineering, Coastal Engineering and Processes Laboratory, National Autonomous University of Mexico, Puerto de Abrigo s/n, 97356, Sisal, Yucatán, Mexico
| | - Bruno Vilela
- Institute of Biology, Spatial Ecology Laboratory, Federal University of Bahia, Rua Barão de Jeremoabo 147, Salvador, Bahia, CEP 40.170-115, Brazil
| | - André Luis da Cruz
- Institute of Biology, Laboratory of Animal Physiology, Federal University of Bahia, Rua Barão de Jeremoabo 147, Salvador, Bahia, CEP 40.170-115, Brazil.
| |
Collapse
|
17
|
Isoorientin Attenuated the Pyroptotic Hepatocyte Damage Induced by Benzo[a]pyrene via ROS/NF-κB/NLRP3/Caspase-1 Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10081275. [PMID: 34439523 PMCID: PMC8389279 DOI: 10.3390/antiox10081275] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 01/29/2023] Open
Abstract
Isoorientin (Iso), a natural bioactive flavonoid, possesses significant anti-tumor and anti-oxidant activities. Benzo[a]pyrene (BaP) is a food processing injurant with carcinogenicity, teratogenicity, and genotoxicity. Our preliminary study demonstrates that Iso attenuated the pyroptotic hepatocyte damage induced by BaP; however, the molecular mechanism remains unknown. The present study showed that Iso reduced the increase caused by BaP in the overflow of LDH, NO, and the electrical conductivity and the protein expressions of GSDMD-N, IL-18, and IL-1β, further showing that Iso could reduced the pyroptotic damage in HL-7702 cells induced by BaP. Caspase-1 inhibitor (Z-VAD-FMK) inhibited the characteristic pyroptosis protein expressions of Caspase-1, GSDMD-N, IL-18, and IL-1β, showing that the classic pyroptosis pathway depending on Caspase-1 was caused by BaP in HL-7702 cells. Consistent with the effects of the NLRP3 inhibitor (MCC950), NF-κB inhibitor (PDTC), ROS, and mtROS inhibitor (NAC and Mito-TEMPO), Iso weakened the stimulatory effects of BaP on the levels of ROS, the nuclear localization of NF-κB, and the activation of NLRP3 inflammasome and the characteristic indices of pyroptosis, demonstrating that Iso could alleviate the BaP-induced pyroptotic hepatocytes injury through inhibiting the ROS/NF-κB/NLRP3/Caspase-1 signaling pathway, which provides a new perspective and strategy to prevent liver injury induced by BaP.
Collapse
|
18
|
Ji Y, Wang Y, Shen D, Kang Q, Chen L. Mucin corona delays intracellular trafficking and alleviates cytotoxicity of nanoplastic-benzopyrene combined contaminant. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124306. [PMID: 33109409 DOI: 10.1016/j.jhazmat.2020.124306] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Nanoplastics have recently become a worldwide concern as newly emerging airborne pollutants, which can associate with polycyclic aromatic hydrocarbons (PAHs) and form combined contaminant nanoparticles (CCNPs). After being inhaled in the respiratory system, the CCNPs would first encounter the mucous gel layer being rich in mucin. Herein, polystyrene-benzopyrene (PS@Bap) NPs were prepared as CCNPs model and their interaction with mucin and the resultant biological responses were studied. It was observed that mucin corona stably attached to the CCNPs surface, which significantly altered the fate of the CCNPs in lung epithelial cells (A 549 cell line). The mucin corona would 1) stably adsorbed on PS@Bap at the early stages of endocytosis until degraded during the lysosomal transport and maturation process, 2) delay intracellular trafficking of PS@Bap and the progress of Bap detached from PS, 3) enhance uptake of PS@Bap but reduce the cytotoxicity elicited by PS@Bap, as indicated by cell viability, generation of reactive oxygen species, impairment on mitochondrial function, and further cell apoptosis. In addition, in vivo study also verified the enhanced effect of PS on the development of an acute lung inflammatory response induced by Bap. This study highlights the significance of incorporating the effects of mucin for precisely assessing the respiratory system toxicity of nanoplastics based CCNPs in atmospheric environments.
Collapse
Affiliation(s)
- Yunxia Ji
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
19
|
Brinkmann V, Schiavi A, Shaik A, Puchta DR, Ventura N. Dietary and environmental factors have opposite AhR-dependent effects on C. elegans healthspan. Aging (Albany NY) 2020; 13:104-133. [PMID: 33349622 PMCID: PMC7835051 DOI: 10.18632/aging.202316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
Genetic, dietary, and environmental factors concurrently shape the aging process. The aryl hydrocarbon receptor (AhR) was discovered as a dioxin-binding transcription factor involved in the metabolism of different environmental toxicants in vertebrates. Since then, the variety of pathophysiological processes regulated by the AhR has grown, ranging from immune response, metabolic pathways, and aging. Many modulators of AhR activity may impact on aging and age-associated pathologies, but, whether their effects are AhR-dependent has never been explored. Here, using Caenorhabditis elegans, as an elective model organism for aging studies, we show for the first time that lack of CeAHR-1 can have opposite effects on health and lifespan in a context-dependent manner. Using known mammalian AhR modulators we found that, ahr-1 protects against environmental insults (benzo(a)pyrene and UVB light) and identified a new role for AhR-bacterial diet interaction in animal lifespan, stress resistance, and age-associated pathologies. We narrowed down the dietary factor to a bacterially extruded metabolite likely involved in tryptophan metabolism. This is the first study clearly establishing C. elegans as a good model organism to investigate evolutionarily conserved functions of AhR-modulators and -regulated processes, indicating it can be exploited to contribute to the discovery of novel information about AhR in mammals.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Alfonso Schiavi
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Anjumara Shaik
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Daniel Rüdiger Puchta
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Natascia Ventura
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Wang Z, Karkossa I, Großkopf H, Rolle-Kampczyk U, Hackermüller J, von Bergen M, Schubert K. Comparison of quantitation methods in proteomics to define relevant toxicological information on AhR activation of HepG2 cells by BaP. Toxicology 2020; 448:152652. [PMID: 33278487 DOI: 10.1016/j.tox.2020.152652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
The application of quantitative proteomics provides a new and promising tool for standardized toxicological research. However, choosing a suitable quantitative method still puzzles many researchers because the optimal method needs to be determined. In this study, we investigated the advantages and limitations of two of the most commonly used global quantitative proteomics methods, namely label-free quantitation (LFQ) and tandem mass tags (TMT). As a case study, we exposed hepatocytes (HepG2) to the environmental contaminant benzo[a]pyrene (BaP) using a concentration of 2 μM. Our results revealed that both methods yield a similar proteome coverage, in which for LFQ a wider range of fold changes was observed but with less significant p-values compared to TMT. We detected 37 and 47 significantly enriched pathways by LFQ and TMT, respectively, with 17 overlapping pathways. To define the minimally required effort in proteomics as a benchmark, we artificially reduced the LFQ, and TMT data sets stepwise and compared the pathway enrichment. Thereby, we found that fewer proteins are necessary for detecting significant enrichment of pathways in TMT compared to LFQ, which might be explained by the higher reproducibility of the TMT data that was observed. In summary, we showed that the TMT approach is the preferable one when investigating toxicological questions because it offers a high reproducibility and sufficient proteome coverage in a comparably short time.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Henning Großkopf
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jörg Hackermüller
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
21
|
Lv S, Luo H, Huang K, Zhu X. The Prognostic Role of Glutathione Peroxidase 1 and Immune Infiltrates in Glioma Investigated Using Public Datasets. Med Sci Monit 2020; 26:e926440. [PMID: 33085656 PMCID: PMC7590522 DOI: 10.12659/msm.926440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Glutathione peroxidase 1 (GPX1) is an essential component of the intracellular antioxidant enzyme system, but little is known about the role of GPX1 in the progression of malignancy in gliomas. Using public datasets, this study investigated the prognostic role of GPX1 and immune infiltrates in glioma. MATERIAL AND METHODS We investigated GPX1 expression levels in different cancers using the ONCOMINE and Tumor Immune Estimation Resource (TIMER) datasets. We also explored the prognostic landscape of GPX1 in gliomas based on The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets. Some significant pathways were identified by function enrichment analysis. We then explored the association between GPX1 expression and levels of tumor-infiltrating immune cells based on TIMER and Gene Expression Profiling Interactive Analysis (GEPIA) datasets. RESULTS Expression of GPX1 in brain and central nervous system cancers is at a much high level than in normal tissues, and it is higher in glioblastoma (GBM) than in lower-grade glioma (LGG). We found GPX1 expression to be positively correlated with the malignant clinicopathologic characteristics of gliomas. Univariate analysis and multivariate analysis revealed that overexpression of GPX1 was correlated with a worse prognosis in patients, and a nomogram indicated that GPX1 expression can predict clinical prognosis of glioma. Function enrichment analysis showed that some important pathways are related to glioma malignancy. Expression of GPX1 was positively associated with infiltrating levels of 6 types of immune cells and most of their gene markers in GBM and LGG. CONCLUSIONS These results indicate that GPX1 is an independent prognostic factor and a novel biomarker for predicting the progression of malignancy in gliomas, which is associated with immune infiltration.
Collapse
Affiliation(s)
- Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,East China Institute of Digital Medical Engineering, Shangrao, Jiangxi, China (mainland)
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
22
|
Chen JC, Chen MY, Fang C, Zheng RH, Jiang YL, Zhang YS, Wang KJ, Bailey C, Segner H, Bo J. Microplastics negatively impact embryogenesis and modulate the immune response of the marine medaka Oryzias melastigma. MARINE POLLUTION BULLETIN 2020; 158:111349. [PMID: 32573451 DOI: 10.1016/j.marpolbul.2020.111349] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Microplastic (MP) pollution is an emerging contaminant in aquatic environments worldwide. Nonetheless, the developmental toxicity of MPs in the early life stages of fish and the mechanisms involved are not yet fully understood. The present study investigated the effects of different concentrations of polystyrene (PS) MPs on the early development of the marine model fish the medaka Oryzias melastigma. Our results showed that waterborne exposure to PS MPs significantly delayed the hatching time, altered the heartbeat and decreased the hatching rate of embryos. Furthermore, the genes involved in cardiac development, encoding for embryo-hatching enzymes, as well as inflammatory responses were significantly upregulated. The transcriptome results showed that mainly the pathways involved in metabolism, immune response, genetic information processing and diseases were significantly enriched. These results demonstrate that PS MPs negatively impact embryogenesis and the immune response of O. melastigma.
Collapse
Affiliation(s)
- Jin-Can Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, 361005 Xiamen, China
| | - Meng-Yun Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Rong-Hui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Yu-Lu Jiang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, 361005 Xiamen, China
| | - Yu-Sheng Zhang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, 361005 Xiamen, China
| | - Christyn Bailey
- Fish Immunology and Pathology Laboratory, Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China.
| |
Collapse
|
23
|
Salamat N, Derakhshesh N. Oxidative stress in liver cell culture from mullet, Liza klunzingeri, induced by short-term exposure to benzo[a]pyrene and nonylphenol. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1183-1197. [PMID: 32166615 DOI: 10.1007/s10695-020-00783-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/24/2020] [Indexed: 05/22/2023]
Abstract
The present investigation aimed to use primary liver cell culture obtained from mullet, Liza klunzingeri, to evaluate the toxic effects of benzo[a]pyrene (BaP) and nonylphenol (NP) on the antioxidant defense system. Liver samples taken from 20 L. klunzingeri were digested with 0.1% collagenase IV. The digested cells were then moved to Leibovitz L-15 culture medium and incubated at 25 °C for 2 weeks. 10-5 mol/l of BaP and 10-4 mol/l of NP were considered as the half maximal inhibitory concentration (IC50). Cells were then incubated with L-15 medium containing BaP (0[control], 10-6,2 × 10-6,3 × 10-6 mol/l) and NP (0[control],10-5,2 × 10-5,3 × 10-5 mol/l), and sampling was performed after 6, 12, and 24 h of incubation for measurement of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), lipid peroxidation (LPO), total antioxidant power, and total protein. The lowest concentration of BaP and NP did not have considerable toxic effects on cultivated hepatocytes. The activities of SOD, CAT, GPx, LPO, total antioxidant power, and total protein changed dose-dependently in cells treated with BaP and NP. In conclusion, based on the results, short-term exposure to BaP and NP induced the oxidative stress in cultivated liver cells of L. klunzingeri. The toxicity of both pollutants is mainly because of the induction of the reactive oxygen species (ROS), which lead to cell membrane disruption, damage of cellular metabolism, and interference with cellular macromolecules.
Collapse
Affiliation(s)
- Negin Salamat
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Negin Derakhshesh
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| |
Collapse
|
24
|
Kwon YS, Jung JW, Kim YJ, Park CB, Shon JC, Kim JH, Park JW, Kim SG, Seo JS. Proteomic analysis of whole-body responses in medaka ( Oryzias latipes) exposed to benzalkonium chloride. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1387-1397. [PMID: 32693679 DOI: 10.1080/10934529.2020.1796117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Benzalkonium chloride (BAC) is a cationic surfactant commonly used as a disinfectant, and is discharged into the aquatic environment by various water sources such as wastewater. BAC may also interact with potentially toxic substances such as persistent organic chemicals. Although studies of BAC contamination toxicity and bioaccumulation have been widely reported, the biochemical responses to BAC toxicity remain incompletely understood, and the detailed molecular mechanisms are largely unknown. In this study, two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry-based proteomic approaches were applied to investigate the protein profiles in Oryzias latipes (medaka) chronically exposed to BAC. Fish were exposed to three different concentrations of BAC, 0.05, 0.1, and 0.2 mg/L, for 21 days. A total of 20 proteins involved in the cytoskeleton, the oxidative stress response, the nervous and endocrine systems, signaling pathways, and cellular proteolysis were significantly upregulated by BAC exposure. The proteomic information obtained in the present study will be useful in identification of potential biomarkers for BAC toxicity, and begins to elucidate its molecular mechanisms, providing new insights into the ecotoxicity of BAC.
Collapse
Affiliation(s)
- Young Sang Kwon
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jae-Woong Jung
- Environmental Biology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Yeong Jin Kim
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Chang-Beom Park
- Ecotoxicology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jong Cheol Shon
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - June-Woo Park
- Environmental Biology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Sang Gon Kim
- Gyeongnam Oriental Anti-aging Institute, Sancheong, Republic of Korea
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| |
Collapse
|
25
|
Feng Y, Zhou A, Zhang Y, Liu S, Pan Z, Zou J, Xie S. Transcriptomic changes in western mosquitofish (Gambusia affinis) liver following benzo[a]pyrene exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21924-21938. [PMID: 32285385 DOI: 10.1007/s11356-020-08571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Widely distributed western mosquitofish (Gambusia affinis) has been used as a new model species for hazard assessment of environmental stressors such as polycyclic aromatic hydrocarbons (PAHs). However, most of the PAH studies using G. affinis rely on targeted biomarker-based analysis, and thus may not adequately address the complexity of the toxic mechanisms of the stressors. In the present study, the whole transcriptional sequencing of G. affinis liver after exposure to a PAH model, benzo[a]pyrene (BaP) (100 μg/L), for 20 days was performed by using the HiSeq XTen sequencers. In total, 58,156,233 and 51,825,467 clean nucleotide reads were obtained in the control and BaP-exposed libraries, respectively, with average N50 lengths of 1419 bp. In addition, after G. affinis was exposed for 20 days, 169 genes were upregulated, and 176 genes were downregulated in liver. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were applied to all the genes to determine the genes' biological functions and processes. The results clearly showed that the differentially expressed genes were mainly related to immune pathways and metabolic correlation pathways. Interestingly, almost all the pathways related with the immunity were upregulated, while the metabolism pathways were downregulated. Lastly, quantitative real-time PCR (qRT-PCR) was performed to measure expressional levels of twelve genes confirmed through the DGE analysis. These results demonstrate that BaP damages immunity and enhances the consumption of all available energy storage to activate mechanisms of the detoxification in G. affinis. Up until now, the present study is the first time that a whole transcriptome sequencing analysis in the liver of G. affinis exposed to BaP has been reported.
Collapse
Affiliation(s)
- Yongyong Feng
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Aiguo Zhou
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Zhang
- Departments of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shulin Liu
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Zhengkun Pan
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jixing Zou
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaolin Xie
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
26
|
Duan X, Yang Y, Zhang H, Liu B, Wei W, Wang L, Sun C, Yao W, Cui L, Zhou X, Wang W. Polycyclic aromatic hydrocarbon exposure, miRNA genetic variations, and associated leukocyte mitochondrial DNA copy number: A cross-sectional study in China. CHEMOSPHERE 2020; 246:125773. [PMID: 31911328 DOI: 10.1016/j.chemosphere.2019.125773] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Mitochondria DNA was preferentially attacked by the exogenous carcinogens including polycyclic aromatic hydrocarbons (PAHs) relative to nuclear DNA, and nuclear gene variants may account for variability in the mitochondrial DNA copy number (mtDNAcn). However, it remains unclear whether miRNA genetic variations are associated with mitochondrial DNA damage in the PAH-exposed workers. Therefore, we measured the leukocyte mtDNAcn, urinary 1-hydroxypyrene (1-OHPYR), environmental PAH exposure, and miRNA genetic polymorphisms among 544 coke oven workers and 238 healthy control participants. We found that the mtDNAcn in the exposure group (0.60 ± 0.29) was significantly lower than that in the control group (1.03 ± 0.31) (t = 18.931, P < 0.001). Spearman correlation analysis showed that the peripheral blood leukocyte mtDNAcn had significantly negative correlations with the levels of 1-OHPYR and environmental PAH exposure (P < 0.001). Covariance analysis indicated that miR-210 rs11246190 AA, miR-210 rs7395206 CC, and miR-126 rs2297538 GG probably promoted a decrease in leukocyte mtDNAcn in the exposure or control groups (P < 0.05). In generalized linear model, miR-210 rs11246190 GG was a protective factor of mtDNAcn, and environmental PAH exposure was the risk factor of the mtDNAcn. In conclusion, the decrease of leukocyte mtDNAcn is the result of a combination of environmental and genetic factors.
Collapse
Affiliation(s)
- Xiaoran Duan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China; Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hui Zhang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Bin Liu
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wan Wei
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Liuya Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Changqing Sun
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Liuxin Cui
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoshan Zhou
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
27
|
Silvestre F. Signaling pathways of oxidative stress in aquatic organisms exposed to xenobiotics. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:436-448. [DOI: 10.1002/jez.2356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Frédéric Silvestre
- Institute of Life, Earth, and Environment (ILEE)University of Namur Bruxelles Namur Belgium
| |
Collapse
|
28
|
Wang P, Wang J, Su Y, Liu Z, Mao Y. Air Exposure Affects Physiological Responses, Innate Immunity, Apoptosis and DNA Methylation of Kuruma Shrimp, Marsupenaeus japonicus. Front Physiol 2020; 11:223. [PMID: 32226395 PMCID: PMC7081841 DOI: 10.3389/fphys.2020.00223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Air exposure stress is a common phenomenon for commercial crustacean species in aquaculture and during waterless transportation. However, the antioxidant responses to air exposure discussed in previous studies may be insufficient to present the complexities involved in this process. The comprehensive immune responses, especially considering the immune genes, cell apoptosis, and epigenetic changes, are still unknown. Accordingly, we investigated the multifaceted responses of Marsupenaeus japonicus to air exposure. The results showed that the expression profiles of the apoptosis genes (e.g., IAP, TXNIP, caspase, and caspase-3) and the hypoxia-related genes (e.g., hsp70, hif-1α, and HcY) were all dramatically induced in the hepatopancreas and gills of M. japonicus. Heart rates, T-AOC (total antioxidant capacity) and lactate contents showed time-dependent changes upon air exposure. Air exposure significantly induced apoptosis in hepatopancreas and gills. Compared with the control group, the apoptosis index (AI) of the 12.5 h experimental group increased significantly (p < 0.05) in the hepatopancreas and gills. Most individuals in the experimental group (EG, 12.5 h) had lower methylation ratios than the control group (CG). Air exposure markedly reduced the full-methylation and total-methylation ratios (31.39% for the CG and 26.46% for the EG). This study provided a comprehensive understanding of the antioxidant responses of M. japonicus considering its physiology, innate immunity, apoptosis, and DNA methylation levels, and provided theoretical guidance for waterless transportation.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixin Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| |
Collapse
|
29
|
Xu M, Fu L, Zhang J, Wang T, Fan J, Zhu B, Dziugan P, Zhang B, Zhao H. Potential of Inactivated Bifidobacterium Strain in Attenuating Benzo(A)Pyrene Exposure-Induced Damage in Colon Epithelial Cells In Vitro. TOXICS 2020; 8:toxics8010012. [PMID: 32053893 PMCID: PMC7151743 DOI: 10.3390/toxics8010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Long-term exposure to benzo(a)pyrene (BaP) poses a serious genotoxic threat to human beings. This in vitro study investigated the potential of inactivated Bifidobacterium animalis subsp. lactis BI-04 in alleviating the damage caused by BaP in colon epithelial cells. A concentration of BaP higher than 50 μM strongly inhibited the growth of colon epithelial cells. The colon epithelial cells were treated with 50 μM BaP in the presence or absence of inactivated strain BI-04 (~5 × 108 CFU/mL). The BaP-induced apoptosis of the colon epithelial cells was retarded in the presence of B. lactis BI-04 through activation of the PI3K/ AKT signaling pathway, and p53 gene expression was decreased. The presence of the BI-04 strain reduced the intracellular oxidative stress and DNA damage incurred in the colon epithelial cells by BaP treatment due to the enhanced expression of antioxidant enzymes and metabolism-related enzymes (CYP1A1). The data from comet assay, qRT-PCR, and western blot analysis showed that the cytotoxic effects of BaP on colon epithelial cells were largely alleviated because the bifidobacterial strain could bind to this carcinogenic compound. The in vitro study highlights that the consumption of commercial probiotic strain BI-04 might be a promising strategy to mitigate BaP cytotoxicity.
Collapse
Affiliation(s)
- Mengfan Xu
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
| | - Lili Fu
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
| | - Junwen Zhang
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
| | - Tao Wang
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Junfeng Fan
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Piotr Dziugan
- Institute of Fermentation Technology & Microbiology, Technical University of Lodz, 90924 Lodz, Poland
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
- Correspondence: (B.Z.); (H.Z.)
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
- Correspondence: (B.Z.); (H.Z.)
| |
Collapse
|