1
|
Markey E, Hourihane Clancy J, Martínez-Bracero M, Sarda-Estève R, Baisnée D, McGillicuddy EJ, Sewell G, Skjøth CA, O'Connor DJ. Spectroscopic detection of bioaerosols with the wibs-4+: Anthropogenic and meteorological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173649. [PMID: 38852865 DOI: 10.1016/j.scitotenv.2024.173649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
This research builds upon a previous study that explored the potential of the modified WIBS-4+ to selectively differentiate and detect different bioaerosol classes. The current work evaluates the influence of meteorological and air quality parameters on bioaerosol concentrations, specifically pollen and fungal spore dynamics. Temperature was found to be the most influential parameter in terms of pollen production and release, showing a strong positive correlation. Wind data analysis provided insights into the potential geographic origins of pollen and fungal spore concentrations. Fungal spores were primarily shown to originate from a westerly direction, corresponding to agricultural land use, whereas pollen largely originated from a North-easterly direction, corresponding to several forests. The influence of air quality was also analysed to understand its potential impact on the WIBS fluorescent parameters investigated. Most parameters had a negative association with fungal spore concentrations, whereas several anthropogenic influences showed notable positive correlations with daily pollen concentrations. This is attributed to similar driving forces (meteorological parameters) and geographical origins. In addition, the WIBS showed a significant correlation with anthropogenic pollutants originating from combustion sources, suggesting the potential for such modified spectroscopic instruments to be utilized as air quality monitors. By combining all meteorological and pollution data along with WIBS-4+ channel data, a set of Multiple Linear Regression (MLR) analyses were completed. Successful results with R2 values ranging from 0.6 to 0.8 were recorded. The inclusion of meteorological parameters was dependent on the spore or pollen type being examined.
Collapse
Affiliation(s)
- Emma Markey
- School of Chemical Sciences, Dublin City University, D09 E432 Dublin, Ireland
| | | | | | - Roland Sarda-Estève
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CNRS-CEA-UVSQ, 91191 Saint-Aubin, France
| | - Dominique Baisnée
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CNRS-CEA-UVSQ, 91191 Saint-Aubin, France
| | - Eoin J McGillicuddy
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Gavin Sewell
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Carsten Ambelas Skjøth
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - David J O'Connor
- School of Chemical Sciences, Dublin City University, D09 E432 Dublin, Ireland
| |
Collapse
|
2
|
Ščevková J, Štefániková N, Dušička J, Lafférsová J, Zahradníková E. Long-term pollen season trends of Fraxinus (ash), Quercus (oak) and Ambrosia artemisiifolia (ragweed) as indicators of anthropogenic climate change impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43238-43248. [PMID: 38898346 PMCID: PMC11222177 DOI: 10.1007/s11356-024-34027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
The ongoing climatic change, together with atmospheric pollution, influences the timing, duration and intensity of pollen seasons of some allergenic plant taxa. To study these influences, we correlated the trends in the pollen season characteristics of both woody (Fraxinus, Quercus) and herbaceous (Ambrosia) taxa from two pollen monitoring stations in Slovakia with the trends in meteorological factors and air pollutants during the last two decades. In woody species, the increased temperature during the formation of flower buds in summer and autumn led to an earlier onset and intensification of next year's pollen season, especially in Quercus. The increase of relative air humidity and precipitation during this time also had a positive influence on the intensity of the pollen season of trees. The pollen season of the invasive herbaceous species Ambrosia artemisiifolia was prolonged by increased temperature and humidity during the summer and autumn of the same year, which extended the blooming period and delayed the end of the pollen season. From the studied air pollutants, only three were found to correlate with the intensity of the pollen season of the studied taxa, CO - positively and SO2 and NO2 - negatively. It is important to study these long-term trends since they not only give us valuable insight into the response of plants to changing conditions but also enable the prognosis of the exacerbations of pollen-related allergenic diseases.
Collapse
Affiliation(s)
- Jana Ščevková
- Faculty of Natural Sciences, Department of Botany, Comenius University in Bratislava, Révová 39, 811 02, Bratislava, Slovakia
| | - Natália Štefániková
- Faculty of Natural Sciences, Department of Botany, Comenius University in Bratislava, Révová 39, 811 02, Bratislava, Slovakia.
| | - Jozef Dušička
- Faculty of Natural Sciences, Department of Botany, Comenius University in Bratislava, Révová 39, 811 02, Bratislava, Slovakia
| | - Janka Lafférsová
- Department of Environmental Biology, Public Health Office, Banská Bystrica, Slovakia
| | - Eva Zahradníková
- Faculty of Natural Sciences, Department of Botany, Comenius University in Bratislava, Révová 39, 811 02, Bratislava, Slovakia
| |
Collapse
|
3
|
Rodríguez-Fernández A, Aloisi I, Blanco-Alegre C, Vega-Maray AM, Valencia-Barrera RM, Suanno C, Calvo AI, Fraile R, Fernández-González D. Identifying key environmental factors to model Alt a 1 airborne allergen presence and variation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170597. [PMID: 38307265 DOI: 10.1016/j.scitotenv.2024.170597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Fungal spores, commonly found in the atmosphere, can trigger important respiratory disorders. The glycoprotein Alt a 1 is the major allergen present in conidia of the genus Alternaria and has a high clinical relevance for people sensitized to fungi. Exposure to this allergen has been traditionally assessed by aerobiological spore counts, although this does not always offer an accurate estimate of airborne allergen load. This study aims to pinpoint the key factors that explain the presence and variation of Alt a 1 concentration in the atmosphere in order to establish exposure risk periods and improve forecasting models. Alternaria spores were sampled using a Hirst-type volumetric sampler over a five-year period. The allergenic fraction from the bioaerosol was collected using a low-volume cyclone sampler and Alt a 1 quantified by Enzyme-Linked ImmunoSorbent Assay. A cluster analysis was executed in order to group days with similar environmental features and then analyze days with the presence of the allergen in each of them. Subsequently, a quadratic discriminant analysis was performed to evaluate if the selected variables can predict days with high Alt a 1 load. The results indicate that higher temperatures and absolute humidity favor the presence of Alt a 1 in the atmosphere, while time of precipitation is related to days without allergen. Moreover, using the selected parameters, the quadratic discriminant analysis to predict days with allergen showed an accuracy rate between 67 % and 85 %. The mismatch between daily airborne concentration of Alternaria spores and allergen load can be explained by the greater contribution of medium-to-long distance transport of the allergen from the major emission sources as compared with spores. Results highlight the importance of conducting aeroallergen quantification studies together with spore counts to improve the forecasting models of allergy risk, especially for fungal spores.
Collapse
Affiliation(s)
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Ana María Vega-Maray
- Department of Biodiversity and Environmental Management (Botany), University of León, León, Spain
| | | | - Chiara Suanno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | | | - Delia Fernández-González
- Department of Biodiversity and Environmental Management (Botany), University of León, León, Spain; Institute of Atmospheric Sciences and Climate-CNR, Bologna, Italy
| |
Collapse
|
4
|
Ortega-Rosas CI, Gutiérrez-Ruacho OG, Brito-Castillo L, Calderón-Ezquerro MC, Guerrero-Guerra C, Amaya-García V. Five-year airborne pollen calendar for a Sonoran Desert city and the relationships with meteorological variability. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1853-1868. [PMID: 37718383 DOI: 10.1007/s00484-023-02546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 09/19/2023]
Abstract
Aerobiological studies are still scarce in northwestern Mexico where allergenic pollen have great impacts on health. Current global pollution and climate change problems are closely related to many allergic diseases, enhancing the need to continue researching these issues and improve life quality. This study provides the first Pollen Calendar for Hermosillo, Sonora, México. Airborne pollen were continuously collected for 5 years (2015-2019). The standardized methodology with a Hirst-type spore trap proposed for global aerobiological studies was used. Weather data were also taken from a station located in the city and used to explore correlations between climate and airborne pollen concentrations in different seasons. The most important pollen taxa recorded in air belongs to herbaceous pollen, such as Poaceae, Ambrosia, Asteraceae, Chenopodiaceae-Amaranthaceae, and some shrub trees typical of this arid region, such as Nyctaginaceae, Prosopis, Parkinsonia, and Fabaceae. The most critical herbaceous pollen related to allergies have a long mean pollen season throughout the years, and the most critical periods with high pollen concentration in air occur in two seasons, spring (March-April) and summer-fall (August-October). In these 5 years, the correlation analyses for these two peaks indicate that a link exists between pollen in the air and decreases in precipitation and temperatures, and an increase in relative humidity. An inter-annual variability in pollen concentrations was recorded related to different weather conditions. Although pollen calendars are location-specific, they are useful for future research on biological air quality scenarios in different cities. Using this standardized method for other regions can provide pollen calendars that have been proven clinically important in allergic disease management worldwide.
Collapse
Affiliation(s)
- C I Ortega-Rosas
- Cuerpo Académico de Recursos Naturales, Licenciatura en Ecología, Unidad Académica Hermosillo, Universidad Estatal de Sonora, Ley Federal del Trabajo S.N. Col. Apolo. Hermosillo, C.P. 83100, Sonora, Mexico.
| | - O G Gutiérrez-Ruacho
- Cuerpo Académico de Recursos Naturales, Licenciatura en Ecología, Unidad Académica Hermosillo, Universidad Estatal de Sonora, Ley Federal del Trabajo S.N. Col. Apolo. Hermosillo, C.P. 83100, Sonora, Mexico
| | - L Brito-Castillo
- Centro de Investigaciones Biológicas del Noroeste S.C., Guaymas, Sonora, Mexico
| | - M C Calderón-Ezquerro
- Red Mexicana de Aerobiología, Instituto de Ciencias de La Atmósfera Y Cambio Climático, UNAM, Mexico City, Mexico
| | - C Guerrero-Guerra
- Red Mexicana de Aerobiología, Instituto de Ciencias de La Atmósfera Y Cambio Climático, UNAM, Mexico City, Mexico
| | - V Amaya-García
- Cuerpo Académico de Recursos Naturales, Licenciatura en Ecología, Unidad Académica Hermosillo, Universidad Estatal de Sonora, Ley Federal del Trabajo S.N. Col. Apolo. Hermosillo, C.P. 83100, Sonora, Mexico
| |
Collapse
|
5
|
Alarcón M, Rodríguez-Solà R, Casas-Castillo MC, Molero F, Salvador P, Periago C, Belmonte J. Influence of synoptic meteorology on airborne allergenic pollen and spores in an urban environment in Northeastern Iberian Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165337. [PMID: 37414168 DOI: 10.1016/j.scitotenv.2023.165337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The influence of the most frequent patterns of synoptic circulation on the dynamics of airborne pollen/spores recorded at the Barcelona Aerobiological Station (BCN) was analysed. Six pollen types (Platanus, Cupressaceae, Olea, Poaceae, Urticaceae and Amaranthaceae), and one fungal spore (Alternaria) were selected for their high allergenic effect in sensitive people. Six synoptic meteorological patterns were identified through cluster analysis of sea level pressure fields as the main responsible of the weather conditions in the Iberian Peninsula. The local meteorological conditions in Barcelona associated with each one of the synoptic types were also stablished. Different statistical methods were applied to analyse possible relationships between concentrations and timing of the recorded aerobiological particles and specific synoptic types. The study, focused in the 19-year period 2001-2019, shows that one of the scenarios, frequent in winter and linked to high stability and air-mass blockage, registered the highest mean and median values for Platanus and Cupressaceae, but it was not very relevant for the other taxa. It was also this scenario that turned out to be the most influent on the pollination timing showing a significant influence on the start occurrence of Urticaceae flowering and on the peak date of Platanus. On the other hand, the most frequent synoptic type in the period, relevant in spring and summer, was linked to sporadic episodes of levels considered to be of high risk of allergy to Platanus, Poaceae, and Urticaceae pollen, and Alternaria fungal spore. This synoptic pattern, characterized by the presence of the Azores anticyclone and the Atlantic low located in the north of the United Kingdom, was associated with high temperatures, low relative humidity and moderate winds from the NW in Barcelona. The identification of an interaction between synoptic meteorology and pollen/spore dynamics will allow better abatement measures, reducing adverse health effects on sensitive population.
Collapse
Affiliation(s)
- Marta Alarcón
- Departament de Física, EEBE, Universitat Politècnica de Catalunya·BarcelonaTech, Eduard Maristany 16, 08019 Barcelona, Spain.
| | - Raül Rodríguez-Solà
- Departament de Física, ETSEIB, Universitat Politècnica de Catalunya·BarcelonaTech, Diagonal 647, 08028 Barcelona, Spain.
| | - M Carmen Casas-Castillo
- Departament de Física, ESEIAAT, Universitat Politècnica de Catalunya·BarcelonaTech, Colom 1, 08222 Terrassa, Spain.
| | - Francisco Molero
- Departamento de Medio Ambiente, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 22, 28040 Madrid, Spain.
| | - Pedro Salvador
- Departamento de Medio Ambiente, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 22, 28040 Madrid, Spain.
| | - Cristina Periago
- Departament de Física, EEBE, Universitat Politècnica de Catalunya·BarcelonaTech, Eduard Maristany 16, 08019 Barcelona, Spain.
| | - Jordina Belmonte
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Bellaterra, 08193 Bellaterra, Spain.
| |
Collapse
|
6
|
Bayr D, Plaza MP, Gilles S, Kolek F, Leier-Wirtz V, Traidl-Hoffmann C, Damialis A. Pollen long-distance transport associated with symptoms in pollen allergics on the German Alps: An old story with a new ending? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163310. [PMID: 37028681 DOI: 10.1016/j.scitotenv.2023.163310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 06/01/2023]
Abstract
Pollen grains are among the main causes of respiratory allergies worldwide and hence they are routinely monitored in urban environments. However, their sources can be located farther, outside cities' borders. So, the fundamental question remains as to how frequent longer-range pollen transport incidents are and if they may actually comprise high-risk allergy cases. The aim was to study the pollen exposure on a high-altitude location where only scarce vegetation exists, by biomonitoring airborne pollen and symptoms of grass pollen allergic individuals, locally. The research was carried out in 2016 in the alpine research station UFS, located at 2650 m height, on the Zugspitze Mountain in Bavaria, Germany. Airborne pollen was monitored by use of portable Hirst-type volumetric traps. As a case study, grass pollen-allergic human volunteers were registering their symptoms daily during the peak of the grass pollen season in 2016, during a 2-week stay on Zugspitze, 13-24 June. The possible origin of some pollen types was identified using back trajectory model HYSPLIT for 27 air mass backward trajectories up to 24 h. We found that episodes of high aeroallergen concentrations may occur even at such a high-altitude location. More than 1000 pollen grains m-3 of air were measured on the UFS within only 4 days. It was confirmed that the locally detected bioaerosols originated from at least Switzerland, and up to northwest France, even eastern American Continent, because of frequent long-distance transport. Such far-transported pollen may explain the observed allergic symptoms in sensitized individuals at a remarkable rate of 87 % during the study period. Long-distance transport of aeroallergens can cause allergic symptoms in sensitized individuals, as evidenced in a sparse-vegetation, low-exposure, 'low-risk' alpine environment. We strongly suggest that we need cross-border pollen monitoring to investigate long-distance pollen transport, as its occurrence seems both frequent and clinically relevant.
Collapse
Affiliation(s)
- Daniela Bayr
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany
| | - Maria P Plaza
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany
| | - Franziska Kolek
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany
| | - Vivien Leier-Wirtz
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany; Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Athanasios Damialis
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany; Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
7
|
Rodríguez-Arias RM, Rojo J, Fernández-González F, Pérez-Badia R. Desert dust intrusions and their incidence on airborne biological content. Review and case study in the Iberian Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120464. [PMID: 36273688 DOI: 10.1016/j.envpol.2022.120464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Desert dust intrusions cause the transport of airborne particulate matter from natural sources, with important consequences for climate regulation, biodiversity, ecosystem functioning and dynamics, human health, and socio-economic activities. Some effects of desert intrusions are reinforced or aggravated by the bioaerosol content of the air during these episodes. The influence of desert intrusions on airborne bioaerosol content has been very little studied from a scientific point of view. In this study, a systematic review of scientific literature during 1970-2021 was carried out following the standard protocol Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). After this literature review, only 6% of the articles on airborne transport from desert areas published in the last 50 years are in some way associated with airborne pollen, and of these, only a small proportion focus on the study of pollen-related parameters. The Iberian Peninsula is affected by Saharan intrusions due to its proximity to the African continent and is seeing an increasing trend the number of intrusion events. There is a close relationship among the conditions favouring the occurrence of intrusion episodes, the transport of particulate matter, and the transport of bioaerosols such as pollen grains, spores, or bacteria. The lack of linearity in this relationship and the different seasonal patterns in the occurrence of intrusion events and the pollen season of most plants hinders the study of the correspondence between both phenomena. It is therefore important to analyse the proportion of pollen that comes from regional sources and the proportion that travels over long distances, and the atmospheric conditions that cause greater pollen emission during dust episodes. Current advances in aerobiological techniques make it possible to identify bioaerosols such as pollen and spores that serve as indicators of long-distance transport from remote areas belonging to other bioclimatic and biogeographical units. A greater incidence of desert intrusion episodes may pose a challenge for both traditional systems and for the calibration and correct validation of automatic aerobiological monitoring methods.
Collapse
Affiliation(s)
- R M Rodríguez-Arias
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - J Rojo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - F Fernández-González
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - R Pérez-Badia
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain.
| |
Collapse
|
8
|
Magyar D, Novák R, Udvardy O, Páldy A, Szigeti T, Stjepanović B, Hrga I, Večenaj A, Vucić A, Peroš Pucar D, Šikoparija B, Radišić P, Škorić T, Ščevková J, Simon-Csete E, Nagy M, Leelőssy Á. Unusual early peaks of airborne ragweed (Ambrosia L.) pollen in the Pannonian Biogeographical Region. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2195-2203. [PMID: 36053297 DOI: 10.1007/s00484-022-02348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Early peaks of airborne ragweed (Ambrosia L.) pollen concentrations were observed at several monitoring stations in Hungary in June 2017 and 2018, one month before the usual start of the pollen season at the end of July. Backward trajectories were calculated to simulate potential sources of pollen collected at different locations in the Pannonian Biogeographical Region. In a collaboration between aerobiological and phenological networks, a nationwide campaign was conducted to collect field data of ragweed blooming. During field surveys, ragweed plants having extremely early blooming were found most abundantly in a rural site near Vaja (North-East Hungary) and other locations in Hungary. Field observations matched with source areas identified by trajectory analyses; i.e., early-flowering ragweed plants were found at some of these locations. Although similar peaks of airborne pollen concentrations were not detected in other years (e.g., 2016, 2019-2021), alarming results suggest the possibility of expanding seasons of ragweed allergy.
Collapse
Affiliation(s)
- D Magyar
- National Public Health Center, Hungarian Aerobiological Network, Budapest, Hungary.
| | - R Novák
- National Food Chain Safety Office, Directorate of Plant Protection, Soil Conservation and Agri-Environment, Budapest, Hungary
| | - O Udvardy
- National Public Health Center, Hungarian Aerobiological Network, Budapest, Hungary
| | - A Páldy
- National Public Health Center, Hungarian Aerobiological Network, Budapest, Hungary
| | - T Szigeti
- National Public Health Center, Hungarian Aerobiological Network, Budapest, Hungary
| | - B Stjepanović
- Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
| | - I Hrga
- Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
| | - A Večenaj
- Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
| | - A Vucić
- Institute of Public Health Zadar, Zadar, Croatia
| | | | - B Šikoparija
- BioSense Institute - Research Institute for Information Technologies in Biosystems, Novi Sad, Serbia
| | - P Radišić
- BioSense Institute - Research Institute for Information Technologies in Biosystems, Novi Sad, Serbia
| | - T Škorić
- Public Health Institute, Subotica, Serbia
| | - J Ščevková
- Faculty of Natural Sciences, Department of Botany, Comenius University in Bratislava, Bratislava, Slovakia
| | - E Simon-Csete
- Department of Plant and Soil Protection, Government Office of Pest County, Budapest, Hungary
| | - M Nagy
- Department of Plant Health, Government Office of Szabolcs-Szatmár-Bereg County, Nyíregyháza, Hungary
| | - Á Leelőssy
- National Public Health Center, Hungarian Aerobiological Network, Budapest, Hungary
- Department of Meteorology, Eötvös Loránd University, Institute of Geography and Earth Sciences, Budapest, Hungary
| |
Collapse
|
9
|
Nachtnebel M, Führer B, Ettenberger-Bornberg G, Mertl J, Kaufmann L, Schroettner H, Rattenberger J. Determination of ragweed allergen Amb a 1 distribution in aerosols using ELISA and immunogold scanning electron microscopy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:265-272. [PMID: 37779543 PMCID: PMC10509994 DOI: 10.1016/j.jacig.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 10/03/2023]
Abstract
Background Ragweed as an invasive species in Europe has become more important for allergy sufferers in the last decade. Because pollen fractions can be found in the respirable fraction of aerosols, they can generate severe disease progressions. Objective To obtain information about the concentration and distribution of 1 of the main ragweed allergens Ambrosia artemisiifolia 1 in the air of Vienna, PM10 and PM2.5 fine dust filters were analyzed. Methods Standard fine dust filters used for air quality monitoring were analyzed via ELISA and immunogold scanning electron microscopy. Results Via ELISA it was possible to show that already at pollen season start in August a recognizably high A artemisiifolia 1 concentration can be found. In addition, the allergen concentration in the air stays comparatively high after the peak season has ended even when the pollen concentration drops to a moderate level. The immunogold electron microscopy investigation directly applied on filters shows that the allergen can be found on organic as well as on mixtures of organic and inorganic particles. A first semistatistical analysis of the labeled particle sizes indicates that a large number of the allergen carriers can be found within the smallest particle size range. Nevertheless, further investigations are needed to obtain enough particle counts for a significant statistical analysis. Conclusions It was possible to show that reliable results can be obtained from ELISA and immunogold scanning electron microscopy directly applied on filters that are used in air quality monitoring sites. By adaptation of the used protocols, it should be possible to obtain respective information about further allergens.
Collapse
Affiliation(s)
| | - Bernadette Führer
- Österreichisches Forschungsinstitut für Chemie und Technik (OFI), Franz-Grill-Straße 5/Objekt 213, Wien, Austria
| | | | - Johannes Mertl
- Österreichisches Forschungsinstitut für Chemie und Technik (OFI), Franz-Grill-Straße 5/Objekt 213, Wien, Austria
| | - Lilian Kaufmann
- Österreichisches Forschungsinstitut für Chemie und Technik (OFI), Franz-Grill-Straße 5/Objekt 213, Wien, Austria
| | - Hartmuth Schroettner
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse, Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis (FELMI), NAWI Graz, Graz University of Technology, Steyrergasse 17, Graz, Austria
| | - Johannes Rattenberger
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse, Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis (FELMI), NAWI Graz, Graz University of Technology, Steyrergasse 17, Graz, Austria
| |
Collapse
|
10
|
Pitarch A, Diéguez-Uribeondo J, Martín-Torrijos L, Sergio F, Blanco G. Fungal signatures of oral disease reflect environmental degradation in a facultative avian scavenger. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155397. [PMID: 35460785 DOI: 10.1016/j.scitotenv.2022.155397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Degradation of natural ecosystems increases the risk of infections in wildlife due to microbiota dysbiosis. However, little is known about its influence on the development of fungal communities in predators and facultative avian scavengers. We evaluated the incidence of oral disease in wild nestling black kites (Milvus migrans) under contrasting environmental degradation conditions, and explored their oral fungal patterns using molecular methods and multivariate analysis. Oral lesions were found in 36.8% of the 38 nestlings examined in an anthropogenically altered habitat (southeastern Madrid, Spain), but in none of the 105 nestlings examined in a well-conserved natural area (Doñana National Park, Spain). In a subsample of 48 black kites, the composition of the oral fungal community differed among symptomatic nestlings from Madrid (SM) and asymptomatic nestlings from Madrid (AM) and Doñana (AD). Opportunistic fungal pathogens (e.g., Fusarium incarnatum-equiseti species complex, Mucor spp., Rhizopus oryzae) were more prevalent in SM and AM than in AD. Hierarchical clustering and principal component analyses revealed that fungal patterns were distinct between both study areas, and that anthropogenic and natural environmental factors had a greater impact on them than oral disease. Fungal signatures associated with anthropogenic and natural stresses harbored some taxa that could be used to flag oral infection (F. incarnatum-equiseti species complex and Alternaria), indicate environmental degradation (Alternaria) or provide protective benefits in degraded environments (Trichoderma, Epicoccum nigrum and Sordaria). Co-occurrence associations between potentially beneficial and pathogenic fungi were typical of AM and AD, hinting at a possible role in host health. This study shows that early-life exposure to highly degraded environments induces a shift towards a higher prevalence of pathogenic species in the oral cavity of black kites, favoring oral disease. Furthermore, our findings suggest potential ecological applications of the monitoring of oral mycobiome as a bioindication of oral disease and environmental degradation.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM) and Ramón y Cajal Institute of Health Research (IRYCIS), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Teaching Unit of Microbiology and Parasitology, Faculty of Optics and Optometry, Complutense University of Madrid (UCM), Arcos de Jalón, 118, 28037 Madrid, Spain.
| | | | - Laura Martín-Torrijos
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014 Madrid, Spain
| | - Fabrizio Sergio
- Department of Conservation Biology, Estacion Biologica de Doñana-CSIC, Americo Vespucio 26, 41092 Sevilla, Spain
| | - Guillermo Blanco
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
11
|
Rodríguez-Fernández A, Oteros J, Vega-Maray AM, Valencia-Barrera RM, Galán C, Fernández-González D. How to select the optimal monitoring locations for an aerobiological network: A case of study in central northwest of Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154370. [PMID: 35276149 DOI: 10.1016/j.scitotenv.2022.154370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Airborne pollen concentration varies depending on several factors, such as local plant biodiversity, geography and climatology. These particles are involved in triggering pollinosis in a share of worldwide human population, and adequate monitoring is, therefore, important. However, the pollen traps in aerobiological monitoring networks are usually installed in cities, and the features of the whole territory are not taken into account. The aim of this study was to analyze what environmental parameters are more suitable as regards setting up monitoring stations throughout a territory in order to obtain an aerobiological network that can represent environmental diversity. The analysis was carried out in 13 locations in Castilla y León over an 8 year period. This is a favorable territory in which to conduct this type of study owing to its climatic features, orography and biodiversity. The ten most abundant pollen types in the region were analyzed, and a clustering analysis was calculated with different distances so as to obtain homogeneous groups of stations. Moreover, the clusters obtained were analyzed in combination with altitudinal and different bioclimatic parameters, which derived from temperature and precipitation. The result here shows that the Castilla y León aerobiological network RACYL represents most of the environmental variability of the territory. Furthermore, it can be divided into two clusters and five sub-clusters for which the start of the main pollen season is different. This corresponds with the division of the territory as regards bioclimatic conditions. The most important bioclimatic parameters were the seasonality of the precipitation and the maximum temperature of the warmest month, although orography must also be taken into account. All of these help discover the optimal places in which to install traps and could reduce the number of monitoring stations. This study additionally provides data for unmonitored areas with similar bioclimatic conditions to those monitored.
Collapse
Affiliation(s)
| | - José Oteros
- Department of Botany, Ecology, Plant Physiology, University of Córdoba, Spain
| | | | | | - Carmen Galán
- Department of Botany, Ecology, Plant Physiology, University of Córdoba, Spain
| | - Delia Fernández-González
- Biodiversity and Environmental Management, University of León, Spain; Institute of Atmospheric Sciences and Climate-CNR, Bologna, Italy
| |
Collapse
|
12
|
Changes in Ambient Bacterial Community in Northern Taiwan during Long-Range Transport: Asian Dust Storm and Frontal Pollution. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long-range transport (LRT) can carry air pollutants to downwind areas. However, studies about the impacts of LRT on bacterial communities are few. This study investigated the influence of Asian dust storms (ADS) and frontal pollution (FP) on bacterial communities in ambient air using next-generation sequencing (NGS) and Terminal Restriction Fragment Length Polymorphism (T-RFLP). Air samples were collected at Cape Fugui (CF) and National Taiwan University (NTU) in northern Taiwan before (or background days), during, and after LRTs from November 2013 to March 2015. The richness, H index, and evenness increased during FPs and then decreased after FPs. During and after ADS and FP, the prevalence of the phylum Proteobacteria decreased, but that of Firmicutes increased. The dominant class of Proteobacteria changed from Alphaproteobacteria on background days to Betaproteobacteria during LRTs. At the genus level, the high abundance of Ralstonia and Bacillus during FP and Clostridium during ADS were detected at both locations. Additionally, Ralstonia was dominant at CF during ADS. In conclusion, FP and ADS both changed the bacterial community. The indicator genus was Clostridium and Ralstonia for ADS as well as Bacillus and Ralstonia for FP. Given the potential health threats posed by the bioaerosols transported, people should avoid outdoor activities during LRTs.
Collapse
|
13
|
Grewling Ł, Magyar D, Chłopek K, Grinn-Gofroń A, Gwiazdowska J, Siddiquee A, Ianovici N, Kasprzyk I, Wójcik M, Lafférsová J, Majkowska-Wojciechowska B, Myszkowska D, Rodinkova V, Bortnyk M, Malkiewicz M, Piotrowska-Weryszko K, Sulborska-Różycka A, Rybniček O, Ščevková J, Šikoparija B, Skjøth CA, Smith M, Bogawski P. Bioaerosols on the atmospheric super highway: An example of long distance transport of Alternaria spores from the Pannonian Plain to Poland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153148. [PMID: 35041944 DOI: 10.1016/j.scitotenv.2022.153148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Alternaria spores are pathogenic to agricultural crops, and the longest and the most severe sporulation seasons are predominantly recorded in rural areas, e.g. the Pannonian Plain (PP) in South-Central Europe. In Poland (Central Europe), airborne Alternaria spore concentrations peak between July and August. In this study, we test the hypothesis that the PP is the source of Alternaria spores recorded in Poland after the main sporulation season (September-October). Airborne Alternaria spores (2005-2019) were collected using volumetric Hirst spore traps located in 38 locations along the potential pathways of air masses, i.e. from Serbia, Romania and Hungary, through the Czech Republic, Slovakia and Ukraine, to Northern Poland. Three potential episodes of Long Distance Transport (LDT) were selected and characterized in detail, including the analysis of Alternaria spore data, back trajectory analysis, dispersal modelling, and description of local weather and mesoscale synoptic conditions. During selected episodes, increases in Alternaria spore concentrations in Poznań were recorded at unusual times that deviated from the typical diurnal pattern, i.e. at night or during morning hours. Alternaria spore concentrations on the PP were very high (>1000 spores/m3) at that time. The presence of non-local Ambrosia pollen, common to the PP, were also observed in the air. Air mass trajectory analysis and dispersal modelling showed that the northwest part of the PP, north of the Transdanubian Mountains, was the potential source area of Alternaria spores. Our results show that Alternaria spores are transported over long distances from the PP to Poland. These spores may markedly increase local exposure to Alternaria spores in the receptor area and pose a risk to both human and plant health. Alternaria spores followed the same atmospheric route as previously described LDT ragweed pollen, revealing the existence of an atmospheric super highway that transports bioaerosols from the south to the north of Europe.
Collapse
Affiliation(s)
- Łukasz Grewling
- Laboratory of Aerobiology, Department of Systematic and Environmental Botany, Adam Mickiewicz University, Poznań, Poland.
| | - Donat Magyar
- National Public Health Institute, Budapest, Hungary
| | | | | | - Julia Gwiazdowska
- Laboratory of Aerobiology, Department of Systematic and Environmental Botany, Adam Mickiewicz University, Poznań, Poland
| | - Asad Siddiquee
- Laboratory of Aerobiology, Department of Systematic and Environmental Botany, Adam Mickiewicz University, Poznań, Poland
| | - Nicoleta Ianovici
- Faculty of Chemistry, Biology, and Geography, West University of Timisoara, Romania
| | - Idalia Kasprzyk
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, Rzeszów, Poland
| | - Magdalena Wójcik
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, Rzeszów, Poland
| | - Janka Lafférsová
- Department of Environmental Biology, Public Health Office, Banská Bystrica, Slovakia
| | | | - Dorota Myszkowska
- Jagiellonian University Medical College, Department of Clinical and Environmental Allergology, Kraków, Poland
| | | | - Mykyta Bortnyk
- National Pirogov Memorial Medical University, Vinnytsya, Ukraine; Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine
| | | | | | | | - Ondrej Rybniček
- Paediatric Department, Allergy Unit, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jana Ščevková
- Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Branko Šikoparija
- BioSense Institute - Research Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, Serbia
| | - Carsten Ambelas Skjøth
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Matt Smith
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Paweł Bogawski
- Laboratory of Biological Spatial Information, Department of Systematic and Environmental Botany, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
14
|
Air Pollution Affecting Pollen Concentrations through Radiative Feedback in the Atmosphere. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Episodes with high air pollution and large amounts of aeroallergens expose sensitive individuals to a health damaging cocktail of atmospheric particles. Particulate matter (PM) affects the radiative balance and atmospheric dynamics, hence affecting concentrations of pollutants. The aim of the study is to estimate feedback between meteorology and particles on concentrations of aeroallergens using an extended version of the atmospheric model WRF-Chem. The extension, originally designed for PM and dust, concerns common aeroallergens. We study a birch pollen episode coinciding with an air pollution event containing Saharan dust (late March to early April 2014), using the model results, pollen records from Southern UK and vertical profiles of meteorological observations. During the episode, increased concentrations of birch pollen were calculated over the European continent, causing plumes transported towards the UK. The arrival of these plumes matched well with observations. The lowest parts of the atmospheric boundary layer demonstrate a vertical profile that favours long distance transport, while the pollen record shows pollen types that typically flower at another time. The model calculations show that feedback between meteorology and particles changes pollen concentrations by ±30% and in some cases up to 100%. The atmospheric conditions favoured meteorological feedback mechanisms that changed long distance transport of air pollution and aeroallergens.
Collapse
|
15
|
Magyar D, Tischner Z, Páldy A, Kocsubé S, Dancsházy Z, Halász Á, Kredics L. Impact of global megatrends on the spread of microscopic fungi in the Pannonian Biogeographical Region. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Rojo J, Moreno JM, Romero-Morte J, Lara B, Elvira-Rendueles B, Negral L, Fernández-González F, Moreno-Grau S, Pérez-Badia R. Causes of increased pollen exposure during Saharan-Sahel dust intrusions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117441. [PMID: 34062432 DOI: 10.1016/j.envpol.2021.117441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Airborne particulate matter such as mineral dust comes mainly from natural sources, and the African regions of Sahara and Sahel originate large amounts of the aerosols dispersed worldwide. There is little knowledge about the influence of dust episodes on airborne pollen concentrations, and although the centre and southeast of the Iberian Peninsula are frequently affected by dust intrusions, until now, no specific works have analysed the effect of these episodes on airborne pollen concentrations in these areas. The aims of this study were to analyse the simultaneous occurrence of airborne pollen peaks and Saharan-Sahel dust intrusions in the central and south-eastern Iberian Peninsula, and to study the weather conditions - air mass pathways and conditions of air temperature, relative humidity and atmospheric pressure - that influence the airborne pollen concentrations during dust episodes. The results showed that the rise in airborne pollen concentrations during dust episodes is apparent in inland Iberian areas, although not in coastal areas in the southeast where pollen concentrations are even observed to decrease, coinciding with prevailing easterly winds from the sea. Total pollen concentrations and specific pollen types such as Olea, Poaceae and Quercus showed an increase in the central Iberian Peninsula during dust episodes when two meteorological phenomena concur: 1) prevailing winds from extensive areas of major wind-pollinated pollen sources over a medium or short distance (mainly from western and southwestern areas); and 2) optimal meteorological conditions that favour pollen release and dispersal into the atmosphere (mainly high temperatures and subsequently low humidity in central areas). Both conditions often occur during the Saharan-Sahel dust intrusions in the centre. Maximum pollen peaks are therefore most likely to occur during dust episodes in the central Iberian Peninsula, thus dramatically increasing the risk of outbreaks of pollinosis and other respiratory diseases in the population.
Collapse
Affiliation(s)
- Jesús Rojo
- University of Castilla-La Mancha. Institute of Environmental Sciences, Toledo, Spain; Department of Pharmacology, Pharmacognosy and Botany, Complutense University. Madrid, Spain.
| | - José María Moreno
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Jorge Romero-Morte
- University of Castilla-La Mancha. Institute of Environmental Sciences, Toledo, Spain
| | - Beatriz Lara
- University of Castilla-La Mancha. Institute of Environmental Sciences, Toledo, Spain
| | - Belén Elvira-Rendueles
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Luis Negral
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | | | - Stella Moreno-Grau
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Rosa Pérez-Badia
- University of Castilla-La Mancha. Institute of Environmental Sciences, Toledo, Spain
| |
Collapse
|
17
|
Tummon F, Arboledas LA, Bonini M, Guinot B, Hicke M, Jacob C, Kendrovski V, McCairns W, Petermann E, Peuch VH, Pfaar O, Sicard M, Sikoparija B, Clot B. The need for Pan-European automatic pollen and fungal spore monitoring: A stakeholder workshop position paper. Clin Transl Allergy 2021; 11:e12015. [PMID: 33934521 PMCID: PMC8120382 DOI: 10.1002/clt2.12015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/21/2021] [Indexed: 01/21/2023] Open
Abstract
Background Information about airborne pollen concentrations is required by a range of end users, particularly from the health sector who use both observations and forecasts to diagnose and treat allergic patients. Manual methods are the standard for such measurements but, despite the range of pollen taxa that can be identified, these techniques suffer from a range of drawbacks. This includes being available at low temporal resolution (usually daily averages) and with a delay (usually 3–9 days from the measurement). Recent technological developments have made possible automatic pollen measurements, which are available at high temporal resolution and in real time, although currently only scattered in a few locations across Europe. Materials & Methods To promote the development of an extensive network across Europe and to ensure that this network will respond to end user needs, a stakeholder workshop was organised under the auspices of the EUMETNET AutoPollen Programme. Participants discussed requirements for the groups they represented, ranging from the need for information at various spatial scales, at high temporal resolution, and for targeted services to be developed. Results The provision of real‐time information is likely to lead to a notable decrease in the direct and indirect health costs associated with allergy in Europe, currently estimated between €50–150 billion/year.1 Discussion & Conclusion A European measurement network to meet end user requirements would thus more than pay for itself in terms of potential annual savings and provide significant impetus to research across a range of disciplines from climate science and public health to agriculture and environmental management.
Collapse
Affiliation(s)
- Fiona Tummon
- Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland
| | | | - Maira Bonini
- Agency for Health Protection of Metropolitan Area of Milan (ATS), Milan, Italy
| | - Benjamin Guinot
- Laboratoire d'Aérologie, CNRS, UPS-Université Toulouse III, Toulouse, France.,Réseau National de Surveillance Aérobiologique, Brussieu, France
| | - Martin Hicke
- Bavarian State Ministry of Health and Care, Munich, Germany
| | | | | | | | | | - Vincent-Henri Peuch
- Copernicus Atmospheric Monitoring Services, European Centre for Medium-Range Weather Forecasts, Reading, UK
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Michaël Sicard
- CommSensLab, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain.,Ciències i Tecnologies de l'Espai-Centre de Recerca de l'Aeronàutica i de l'Espai/Institut d'Estudis Epacials de Catalunya (CTE-CRAE/IEEC), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Branko Sikoparija
- BioSensе Institute-Research Institute for Information Technologies in Biosystems, University of Novi Sad, Serbia
| | - Bernard Clot
- Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland
| |
Collapse
|
18
|
Ortega-Rosas CI, Meza-Figueroa D, Vidal-Solano JR, González-Grijalva B, Schiavo B. Association of airborne particulate matter with pollen, fungal spores, and allergic symptoms in an arid urbanized area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1761-1782. [PMID: 33090369 DOI: 10.1007/s10653-020-00752-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Studies focused on the seasonal distribution of pollen and spores in semiarid cities are scarce. At these sites, climate change potentiates the emission and transport of fine (PM10) to ultrafine particles (PM2.5), easily attached to pollen surfaces, causing allergen's release. This study examines the potential correlation of seasonal variations of pollen, fungal spores, PM10, and meteorological parameters with allergic reactions of 150 people living in a Sonoran desert city. We collected PM10, airborne pollen, and spores during a year. We also studied topsoil and road dust samples as potential PM-emission sources. We obtained dust-mineralogy, chemistry, and particle size attached to pollen by X-ray diffraction and scanning electron microscope. Results show that seasonal high PM-loading in the urban atmosphere coincides with aeroallergens promoting micro- to nanoparticles' attachment to pollen's surface. A collapsed membrane was observed in several samples after individual grains show the following maximum wall coverage: Poaceae 28%, Asteraceae 40%, Chenopodiaceae-Amaranthacea 29%, Fabaceae 18%. Most of the particles covering pollen's surface have a geogenic origin mixed with metals linked to traffic (bromide, chlorine, and antimony). Mineralogical, granulometric analysis, and main wind-direction show that two local soil-types are the main contributors to PM. A high frequency of positive sensitization to pollen with high particle loading was detected. These results suggest that climate-driven dust emissions may alter pollen and spore surfaces' physicochemical characteristics with the further consequences in their allergenic potential.
Collapse
Affiliation(s)
- C I Ortega-Rosas
- Licenciatura en Ecología, Universidad Estatal de Sonora, Unidad Académica Hermosillo, Ley Federal del Trabajo SN, Col. Apolo, C.P.83100, Hermosillo, Sonora, Mexico.
| | - D Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Blvd. Luis Encinas Y Rosales, Col. Centro, C.P.83000, Hermosillo, Sonora, Mexico
| | - J R Vidal-Solano
- Departamento de Geología, Universidad de Sonora, Blvd. Luis Encinas Y Rosales, Col. Centro, C.P.83000, Hermosillo, Sonora, Mexico
| | - B González-Grijalva
- Licenciatura en Ecología, Universidad Estatal de Sonora, Unidad Académica Hermosillo, Ley Federal del Trabajo SN, Col. Apolo, C.P.83100, Hermosillo, Sonora, Mexico
- Departamento de Geología, Universidad de Sonora, Blvd. Luis Encinas Y Rosales, Col. Centro, C.P.83000, Hermosillo, Sonora, Mexico
| | - B Schiavo
- Departamento de Geología, Universidad de Sonora, Blvd. Luis Encinas Y Rosales, Col. Centro, C.P.83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
19
|
The Impact of Climate Change on Pollen Season and Allergic Sensitization to Pollens. Immunol Allergy Clin North Am 2020; 41:97-109. [PMID: 33228876 DOI: 10.1016/j.iac.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pollens are a major cause of seasonal allergic diseases. Weather may alter the production of pollens. Increased atmospheric temperatures lead to earlier pollination of many plants and longer duration of pollination, resulting in extended pollen seasons, with early spring or late winter. Longer pollen seasons increase duration of exposure, resulting in more sensitization, and higher pollen concentrations may lead to more severe symptoms. Climate changes in contact to pollens may affect both allergic sensitization and symptom prevalence with severity. The future consequences of climate change, however, are speculative, because the influence on humans, is complex.
Collapse
|
20
|
Bohdálková L, Novák M, Krachler M, Míková J, Chrastný V, Veselovský F, Voldřichová P, Pacherová P, Komárek A, Přechová E. Cadmium contents of vertically and horizontally deposited winter precipitation in Central Europe: Spatial distribution and long-term trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114949. [PMID: 32563118 DOI: 10.1016/j.envpol.2020.114949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) and its forms has recently been a focus of attention due to its toxic effects on human health and the environment. We evaluated the atmospheric deposition of Cd during three consecutive winter seasons (2009-2011) at 10 mountain-top locations in the Czech Republic along the borders with Poland, Germany, Austria and Slovakia. Cadmium concentrations of soluble and insoluble forms in both horizontal (rime) and vertical (snow) deposition were determined using sector-field ICP-MS. Across the sites, 94% of the total winter Cd deposition occurred in the soluble (environmentally available) Cd form. Mean concentrations of soluble Cd in rime were six times higher than in snow (398 vs. 66 ng L-1). Vertical deposition contributed as much as 41% to the total winter Cd input. Between-site variability in Cd deposition was large, ranging between 13 and 108 μg m-2 winter-1. Overall, Cd concentrations in winter deposition did not reach the drinking water limits and did not pose a direct threat for human health. Long-term trends (1996-2017) in winter Cd deposition were evaluated at six GEOMON sites (a monitoring network of small forested catchments). Since 1996, Cd input in winter atmospheric deposition decreased by 73-93%. Simultaneously, we found declines in between-site variability in winter Cd inputs. The highest recent winter Cd inputs were found at sites located in the northeast of the country. A north-south pollution gradient, which has frequently been mentioned in the literature, was not observed, with both northwestern sites and southern sites being among those with the lowest Cd pollution. Backward trajectories of the HYSPLIT model for fresh snow samples identified Poland and Germany as major transboundary Cd pollution sources for the Czech Republic.
Collapse
Affiliation(s)
- Leona Bohdálková
- Czech Geological Survey, Geologická 6, 152 00, Prague 5, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic.
| | - Martin Novák
- Czech Geological Survey, Geologická 6, 152 00, Prague 5, Czech Republic
| | - Michael Krachler
- European Commission, Joint Research Centre, P.O. Box 2340, D-76125, Karlsruhe, Germany
| | - Jitka Míková
- Czech Geological Survey, Geologická 6, 152 00, Prague 5, Czech Republic
| | - Vladislav Chrastný
- Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague-Suchdol, Czech Republic
| | | | - Petra Voldřichová
- Czech Geological Survey, Geologická 6, 152 00, Prague 5, Czech Republic
| | - Petra Pacherová
- Czech Geological Survey, Geologická 6, 152 00, Prague 5, Czech Republic
| | - Arnošt Komárek
- Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75, Prague 8, Czech Republic
| | - Eva Přechová
- Czech Geological Survey, Geologická 6, 152 00, Prague 5, Czech Republic
| |
Collapse
|
21
|
Stępalska D, Myszkowska D, Piotrowicz K, Kluska K, Chłopek K, Grewling Ł, Lafférsová J, Majkowska-Wojciechowska B, Malkiewicz M, Piotrowska-Weryszko K, Puc M, Rodinkova V, Rybníček O, Ščevková J, Voloshchuk K. High Ambrosia pollen concentrations in Poland respecting the long distance transport (LDT). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139615. [PMID: 32474278 DOI: 10.1016/j.scitotenv.2020.139615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
High Ambrosia pollen concentrations in Poland rather rarely come from the local sources. The aim of this study was to define the temporal and spatial differences of the high Ambrosia pollen concentrations by creating models for the pollen transport from the distant sources. This study was thought to determine the direction of the air masses inflow into Poland, carrying Ambrosia pollen, from areas of the bordering countries with the pollen concentrations higher than iSTOTEN_n Poland. Pollen and meteorological datasets at 8 monitoring sites in Poland, and daily pollen concentrations at 11 sites in the Czech Republic, 5 sites in Slovakia and 3 sites in Ukraine were analysed recently. Days with concentrations ≥10 Pollen/m3 and concurrent meteorological situations were analysed in great deal. The HYSPLIT model was applied to compute backward trajectories up to 4 days backward (96 h) and at three altitudes: 20, 500 and 1000 m above ground level (a.g.l.). High pollen concentrations occur most frequently when the air masses inflow into Poland from southerly (S, SE, SW, 44%) and easterly (E, 6%) directions and in no advection situations (25%). In years with the highest frequency of days over 10 Pollen/m3, the prevailing directions of the pollen influx into Poland were from the South (2004-2006, 2008, 2011) but in one year (2014) from the East. Trajectories for the studied period show that air masses come most frequently from Slovakia and the Czech Republic. Sometimes, the Ambrosia pollen transport happens from Ukraine.
Collapse
Affiliation(s)
- Danuta Stępalska
- Institute of Botany, Jagiellonian University, Kopernika 27, 31-531 Kraków, Poland
| | - Dorota Myszkowska
- Jagiellonian University Medical College, Department of Clinical and Environmental Allergology, Śniadeckich 10, 31-531 Kraków, Kraków, Poland.
| | - Katarzyna Piotrowicz
- Department of Climatology, Institute of Geography and Spatial Management, Jagiellonian University, Gronostajowa 7, 30-367 Kraków, Poland.
| | - Katarzyna Kluska
- Department of Environmental Monitoring, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów, Poland
| | - Kazimiera Chłopek
- Faculty of Life Sciences, University of Silesia, Będzińska, 60 41-200 Sosnowiec, Poland.
| | - Łukasz Grewling
- Laboratory of Aerobiology, Department of Systematic and Environmental Botany, Faculty of Biology, Adam Mickiewicz University, Poznańskiego 6, 61-614, Poznań, Poland
| | - Janka Lafférsová
- Department of Environmental Biology, Public Health Office, Cesta k/nemocnici 25, 975-56 Banská Bystrica, Slovakia
| | | | - Małgorzata Malkiewicz
- Department of Stratigraphical Geology, Institute of Geological Sciences, University of Wrocław.
| | - Krystyna Piotrowska-Weryszko
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland.
| | - Małgorzata Puc
- Institute of Marine and Environmental Sciences, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland.
| | - Victoria Rodinkova
- National Pirogov Memorial Medical University, 56, Pirogov Street, Vinnytsia 21018, Ukraine
| | - Ondřej Rybníček
- Paediatric Department, Allergy Unit, Masaryk University and University Hospital Brno, Jihlavska 20, CZ-625 00 Brno, Czech Republic
| | - Jana Ščevková
- Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Révová 39, 811 02 Bratislava 1, Slovakia.
| | - Kateryna Voloshchuk
- Department of Botany, Biological Faculty Ivan Franko National University of Lviv, Kyryla Mefodiya Street, 8, Lviv, 79005, Ukraine
| |
Collapse
|
22
|
Qi C, Zhou W, Lu X, Luo H, Pham BT, Yaseen ZM. Particulate matter concentration from open-cut coal mines: A hybrid machine learning estimation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114517. [PMID: 32283465 DOI: 10.1016/j.envpol.2020.114517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Particulate matter (PM) emission is one of the leading environmental pollution issues associated with the coal mining industry. Before any control techniques can be employed, however, an accurate prediction of PM concentration is desired. Towards this end, this work aimed to provide an accurate estimation of PM concentration using a hybrid machine-learning technique. The proposed predictive model was based on the hybridazation of random forest (RF) model particle swarm optimization (PSO) for estimating PM concentration. The main objective of hybridazing the PSO was to tune the hyper-parameters of the RF model. The hybrid method was applied to PM data collected from an open-cut coal mine in northern China, the Haerwusu Coal Mine. The inputs selected were wind direction, wind speed, temperature, humidity, noise level and PM concentration at 5 min before. The outputs selected were the current concentration of PM2.5 (particles with an aerodynamic diameter smaller than 2.5 μm), PM10 (particles with an aerodynamic diameter smaller than 10 μm) and total suspended particulate (TSP). A detailed procedure for the implementation of the RF_PSO was presented and the predictive performance was analyzed. The results show that the RF_PSO could estimate PM concentration with a high degree of accuracy. The Pearson correlation coefficients among the average estimated and measured PM data were 0.91, 0.84 and 0.86 for the PM2.5, PM10 and TSP datasets, respectively. The relative importance analysis shows that the current PM concentration was mainly influenced by PM concentration at 5 min before, followed by humidity > temperature ≈ noise level > wind speed > wind direction. This study presents an efficient and accurate way to estimate PM concentration, which is fundamental to the assessment of the atmospheric quality risks emanating from open-cut mining and the design of dust removal techniques.
Collapse
Affiliation(s)
- Chongchong Qi
- School of Civil, Environmental and Mining Engineering, University of Western Australia, Perth, 6009, Australia; School of Resources and Safety Engineering, Central South University, Changsha, 410083, China.
| | - Wei Zhou
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China; State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xiang Lu
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China; State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Huaiting Luo
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China; State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Binh Thai Pham
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Zaher Mundher Yaseen
- Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
23
|
Living Environment Quality Determinants, Including PM2.5 and PM10 Dust Pollution in the Context of Spatial Issues—The Case of Radzionków. BUILDINGS 2020. [DOI: 10.3390/buildings10030058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article discusses living environment determinants in Central and Eastern Europe. It is based on a case study of the city of Radzionków, which has 16 thousand inhabitants and is located in the Silesian agglomeration in southern Poland. Hard coal has been mined in this area for almost two hundred years, and it is the main fuel used for central heating. A total of 360 buildings, divided into groups of 60 buildings each, were investigated in the selected city. Three distinct areas were distinguished in terms of living environment quality, depending on building technical condition, heating method and location. These qualities were found to be largely determined by site-specific spatial and geophysical conditions. A significant portion of the literature was found to ignore the spatial factors mentioned in this paper, instead focusing primarily on statistical data concerning pollution. This study examines site-specific variables and presents differences in air pollution levels as examined in relation to the morphological structure of development, the degree of building modernisation and heating system types.
Collapse
|
24
|
Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review. ENERGIES 2019. [DOI: 10.3390/en12183558] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The process of transformation of the Polish economy, traditionally based on coal, into an economy that uses low-carbon technologies, faces a problem associated with the diversification of energy sources, especially in rural areas. The scale of the use of conventional energy carriers in households located in rural areas in Poland has a very negative impact on the natural environment. The aim of the paper is to indicate possibilities of reducing low-altitude emissions (with emitters not exceeding 40 m in height) in rural areas in Poland, through the development of renewable energy sources. This paper provides an overview of the specific character of rural areas in Poland and the development challenges faced in these areas in the investigated scope. In order to reduce greenhouse gas emissions and improve energy efficiency, it is necessary to dynamize pro-ecological activities in agriculture and in rural areas, including the development of agricultural biogas plants, wind and photovoltaic farms. The use of renewable energy sources can be an important factor in the development and sustainable growth of rural areas in Poland.
Collapse
|