1
|
Zhou X, Liu S, Wang T, Li Z. Seawater quality criteria derivation and ecological risk assessment for dichlorvos in China. MARINE POLLUTION BULLETIN 2024; 206:116669. [PMID: 38991609 DOI: 10.1016/j.marpolbul.2024.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Dichlorvos (DDVP) is a widely used organophosphorus pesticide (OPP) that has been frequently detected in the marine environment of China. Water quality criteria (WQC) is however not available for this emergent pollutant in the marine environment, which hinders its ecological risk assessment. This study, therefore, screened toxicity values of DDVP and conducted toxicity tests on six marine species to supplement toxicity data. The WQC for DDVP was derived with the species sensitivity distribution (SSD) methodology, based on which the ecological risk of DDVP in the seawater of China was assessed. The results showed that the recommended short-term (SWQC) and long-term water quality criteria (LWQC) for DDVP were 1.47 and 0.0521 μg/L, respectively. Most marine waters of China showed low or negligible risk (HQ < 1, ORP < 2 %), whereas some estuarine waters warrant further concern due to higher risk. This study provides the scientific basis for seawater quality standard formulation and ecological risk management for DDVP.
Collapse
Affiliation(s)
- Xingzheng Zhou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuai Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Teng Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhengyan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Sah R, Talukdar G, Khanduri M, Chaudhary P, Badola R, Hussain SA. Do dietary exposures to multi-class endocrine disrupting chemicals translate into health risks for Gangetic dolphins? An assessment and way forward. Heliyon 2024; 10:e35130. [PMID: 39170170 PMCID: PMC11336425 DOI: 10.1016/j.heliyon.2024.e35130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Dietary exposure risks of 39 multi-class Endocrine Disrupting Chemicals (EDCs) to the threatened Gangetic dolphins (Platanista gangetica) were investigated in a conservation-priority segment of the Ganga River. Elevated EDCs bioaccumulation was observed across prey fish species, with di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) significantly contributing to the EDC burden. The concentrations of persistent organochlorines in prey revealed a shift from dioxin-like polychlorinated biphenyls (PCBs) to non-dioxin-like PCBs. The prevalence of regulated p,p' DDT (Dichlorodiphenyltrichloroethane) and γ-HCH (Lindane) residues suggests regional non-compliance with regulatory standards. The concentration of some EDCs is dependent on the habitat, foraging behavior, trophic level and fish growth. The potential drivers of EDCs contamination in catchment includes agriculture, vehicular emissions, poor solid waste management, textile industry, and high tourist influx. Risk quotients (RQs) based on toxicity reference value were generally below 1, while the RQ derived from the reference dose highlighted a high risk to Gangetic dolphins from DEHP, DDT, DnBP, arsenic, PCBs, mercury, and cadmium, emphasizing the need for their prioritization within monitoring programs. The study also proposes a monitoring framework to provide guidance on monitoring and assessment of chemical contamination in Gangetic dolphin and habitats.
Collapse
Affiliation(s)
- Ruchika Sah
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Gautam Talukdar
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Megha Khanduri
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Pooja Chaudhary
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Ruchi Badola
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | | |
Collapse
|
3
|
Wang Y, Jiang L, Ali MM, Jiang J, Xu Y, Liu Z. Aquatic life criteria of hydrothermal liquefaction wastewater via ecotoxicity test and modeling. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134289. [PMID: 38663294 DOI: 10.1016/j.jhazmat.2024.134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Abstract
Wastewater resulting from hydrothermal liquefaction (HTL-AP) of biowaste is gaining attention as an emerging hazardous material. However, there is a lack of specific and systematic ecotoxicity studies on HTL-AP. This study addresses this gap by conducting acute toxicity tests on HTL-AP using typical aquatic species and integrating these results with predicted toxicity values from interspecies correlation estimation models to establish aquatic life criteria. HTL-AP exhibited significant toxicity with LC50 of 956.12-3645.4 mg/L, but demonstrated moderate toxicity compared to common freshwater pollutants like commercial microbicides, personal care products, and insect repellents. The resulting hazardous concentration for 5 % of species (HC5), the criterion maximum concentration, and the short-term water quality criteria for aquatic were 506.0, 253.0, and 168.7 mg/L, respectively. Notably, certain organisms like Misgurnus anguillicaudatus and Cipangopaludina chinensis showed high tolerance to HTL-AP, likely due to their metabolic capabilities on HTL-AP components. The significant decrease in HC5 values for some HTL-AP substances compared to pure compounds could indicate the synergistic inhibition effects among HTL-AP compositions. Furthermore, according to the established criteria, HTL-AP required significantly less diluted water (13 t) than carbendazim (1009 t) to achieve biosafety, indicating a safer release. This research establishes a preliminary water quality criterion for HTL-AP, offering a valuable reference for risk assessment and prediction in the utilization of HTL-AP within environmental contexts.
Collapse
Affiliation(s)
- Yueyao Wang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Lei Jiang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Mahmoud M Ali
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; Agricultural Engineering Research Institute, Agricultural Research Center, Giza 12311, Egypt
| | - Jinyue Jiang
- Water & Energy Technologies (WET) Lab, Department of Civil and Environmental Engineering, Princeton University, Princeton 08544, United States
| | - Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; Water & Energy Technologies (WET) Lab, Department of Civil and Environmental Engineering, Princeton University, Princeton 08544, United States.
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.
| |
Collapse
|
4
|
Sun Z, Liang C, Ling Y, Chen Y, Ma Z, Xu Y, Liu Z. A study on the subchronic toxicity of triclocarban to the early-life development of oryzias melastigma and focused on the analysis of osmoregulatory regulation mechanisms. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109882. [PMID: 38437996 DOI: 10.1016/j.cbpc.2024.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Triclocarban (TCC), a novel antimicrobial agent found in personal care products, has been extensively detected in marine environments. However, research on the toxic effects of TCC on marine organisms remains inadequate. This study delved into the subchronic toxic effects of TCC on the early life stages of marine medaka (Oryzias melastigma, O. melastigma), revealing that TCC could reduce embryo heart rate and hatching rate while diminishing the survival rate of larvae. Biomarker assays indicated that TCC could inflict damage on the embryos' antioxidant and nervous systems. Transcriptomic analysis suggested that TCC could impact cell growth, reproduction, and various life processes, activating cancer signaling pathways, increasing the likelihood of cancer, and exerting toxic effects on the immune and osmoregulatory systems. To validate and enhance our understanding of TCC's unique toxic impact on the osmoregulatory system of O. melastigma, we conducted homology modeling and molecular docking analyses on the protein involved in osmoregulation. The study intuitively revealed the potential binding affinity of TCC to sodium/potassium-transporting ATPase subunit alph (ATP1A1), indicating its ability to disrupt osmotic balance in marine fish by affecting this target protein. In summary, the results of this study will further enhance our comprehension of the potential toxic effects and mechanisms of TCC on the early stages of marine fish, with a specific focus on its unique toxic effects in osmoregulation.
Collapse
Affiliation(s)
- Zhecheng Sun
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Chuan Liang
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yunzhe Ling
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yang Chen
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhengzhuo Ma
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yanhua Xu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhiying Liu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China.
| |
Collapse
|
5
|
Li B, Huang Y, Pi D, Li X, Guo Y, Liang Z, Song X, Wang J, Wang X. Effects of Acute and Developmental Exposure to Bisphenol S on Chinese Medaka ( Oryzias sinensis). J Xenobiot 2024; 14:452-466. [PMID: 38525695 PMCID: PMC10961820 DOI: 10.3390/jox14020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Bisphenol S (BPS), one of the substitutes for bisphenol A (BPA), is widely used in various commodities. The BPS concentrations in surface water have gradually increased in recent years, making it a predominant bisphenol analogue in the aquatic environment and raising concerns about its health and ecological effects on aquatic organisms. For this study, we conducted a 96 h acute toxicity test and a 15-day developmental exposure test to assess the adverse effects of BPS exposure in Chinese medaka (Oryzias sinensis), a new local aquatic animal model. The results indicate that the acute exposure of Chinese medaka embryos to BPS led to relatively low toxicity. However, developmental exposure to BPS was found to cause developmental abnormalities, such as decreased hatching rate and body length, at 15 dpf. A transcriptome analysis showed that exposure to different concentrations of bisphenol S often induced different reactions. In summary, environmental concentrations of BPS can have adverse effects on the hatching and physical development of Chinese medaka, and further attention needs to be paid to the potential toxicity of environmental BPS.
Collapse
Affiliation(s)
- Bingying Li
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Yongsi Huang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Duan Pi
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Xiang Li
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Yafen Guo
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Zhiying Liang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Xiaohong Song
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541000, China;
| | - Junjie Wang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| | - Xuegeng Wang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou 510631, China; (B.L.); (Y.H.); (D.P.); (Y.G.); (Z.L.)
| |
Collapse
|
6
|
Zhang J, Wang X, Li J, Luo J, Wang X, Ai S, Cheng H, Liu Z. Bioavailability (BA)-based risk assessment of soil heavy metals in provinces of China through the predictive BA-models. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133327. [PMID: 38141317 DOI: 10.1016/j.jhazmat.2023.133327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The real biological effect is not generated by the total content of heavy metals (HMs), but rather by bioavailable content. A new bioavailability-based ecological risk assessment (BA-based ERA) framework was developed for deriving bioavailability-based soil quality criteria (BA-based SQC) and accurately assessing the ecological risk of soil HMs at a multi-regional scale in this study. Through the random forest (RF) models and BA-based ERA framework, the 217 BA-based SQC for HMs in 31 Chinese provinces were derived and the BA-based ERA was comprehensively assessed. This study found that bioavailable HMs extraction methods (BHEMs) and total HMs content play the predominant role in affecting HMs (As, Cd, Cr, Cu, Ni, Pb, and Zn) bioavailability by explaining 27.55-56.11% and 9.20-62.09% of the variation, respectively. The RF model had accurate and stable prediction ability for the bioavailability of soil HMs with the mean R2 and RMSE of 0.83 and 0.43 for the test set, respectively. The results of BA-based ERA showed that bioavailability could avoid the overestimation of ecological risks to some extent after reducing the uncertainty of soil differences. This study confirmed the feasibility of using bioavailability for ERA and will utilised to revise the soil environmental standards based on bioavailability for HMs.
Collapse
Affiliation(s)
- Jiawen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jingjing Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
7
|
Ai S, Li J, Wang X, Zhao S, Ge G, Liu Z. Derivation of aquatic predicted no-effect concentration and ecological risk assessment for triphenyl phosphate and tris(1,3-dichloro-2-propyl) phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169756. [PMID: 38171460 DOI: 10.1016/j.scitotenv.2023.169756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) are common organophosphate esters (OPEs), which are used as additives in various industries. These compounds have been widely detected in aquatic environment, raising concerns about their adverse effects on aquatic organisms. In order to protect aquatic ecosystems, a total of 7 species were selected for acute and chronic toxicity tests in this study. The results indicated that TPhP and TDCIPP exhibited varying degrees of toxicity to aquatic organisms. The 96-h LC50 values ranged from 1.088 mg/L to 1.574 mg/L for TPhP and from 2.027 mg/L to 17.855 mg/L for TDCIPP. The 28-d LC10 values ranged from 0.023 mg/L to 0.177 mg/L for TPhP and from 0.300 mg/L to 1.102 mg/L for TDCIPP. The tested toxicity data, combined with collected toxicity data, were used to investigate the predicted no-effect concentration in water (PNECwater) of TPhP and TDCIPP by species sensitivity distribution (SSD) method. The results revealed PNECwater values of 6.35 and 38.0 μg/L for TPhP and TDCIPP, respectively. Furthermore, the predicted no-effect concentrations in sediment (PNECsed) were derived as 110 μg/kg dry weight (dw) for TPhP and 424 μg/kg dw for TDCIPP using the equilibrium partitioning (EqP) approach. Based on the toxicity data and PNECs, the ecological risk of these two chemicals in surface waters and sediments worldwide over the last decade were evaluated. The results indicated that TDCIPP posed negligible risk in aquatic ecosystems. However, TPhP showed potential risk in sediments, as indicated by the hazard quotients (HQs) exceeding 0.1. The results of joint probability curves (JPC) indicated that the probabilities of exceeding hazardous concentration for 1 % of species for TPhP in water and sediment were 0.33 % and 5.2 %, respectively. Overall, these findings highlight the need for continued monitoring and assessment of the presence and potential impacts of TPhP and TDCIPP in aquatic ecosystems.
Collapse
Affiliation(s)
- Shunhao Ai
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shiqing Zhao
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Ge
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhengtao Liu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
8
|
Nan Y, Zhu X, Huang J, Zhang Z, Xing Y, Yang Y, Xiao M, Duan Y. Toxic effects of triclocarban on the histological morphology, physiological and immune response in the gills of the black tiger shrimp Penaeus monodon. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106245. [PMID: 37926588 DOI: 10.1016/j.marenvres.2023.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Triclocarban (TCC) is a widely used broad-spectrum antimicrobial agent that has become a pollutant threatening the health of aquatic animals. However, the toxic effects of TCC on Penaeus monodon are still lacking. In this study, we exposed P. monodon to 1 μg/L (TCC-1) and 10 μg/L TCC (TCC-10) for 14 days, and the changes of histological morphology, physiological and immune responses in the gills were investigated. The results showed that TCC exposure caused the deformation of the gill vessels and the disordered arrangement of the gill filaments. Oxidative stress biochemical indexes such as H2O2 content, CAT and GPx activity and the relative expression levels of antioxidant-related genes (SOD, GPx and Nrf2) were increased in the TCC-1 and TCC-10 groups; the levels of CAT and HSP70 genes were increased but POD activity was decreased in the TCC-10 group. The relative expression levels of endoplasmic reticulum (ER) stress indexes such as ERP15 and ATF-6 genes were increased in the TCC-10 group, while the level of GRP78 gene was decreased in the TCC-1 and TCC-10 groups. The relative expression levels of apoptosis indexes such as p53 and JNK genes were increased, but CytC and Casp-3 genes were decreased in the TCC-1 and TCC-10 groups. Furthermore, the relative expression levels of detoxification metabolism-related genes (cytP450 and GST) and osmotic regulation-related genes (NKA-α, NKA-β, CA, AQP, CLC and CCP) were increased in the TCC-10 group. The results showed that TCC exposure could affect the physiological homeostasis in the gills of P. monodon, probably via damaging histological morphology, inducing oxidative stress, and disordering ER stress, apoptosis, detoxification and osmotic regulation.
Collapse
Affiliation(s)
- Yuxiu Nan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; College of Marine Science, Hebei Agricultural University, Qinhuangdao, 066000, PR China
| | - Xuanyi Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Jianhua Huang
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China
| | - Zhe Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Yifu Xing
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China
| | - Meng Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; College of Marine Science, Hebei Agricultural University, Qinhuangdao, 066000, PR China
| | - Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China.
| |
Collapse
|
9
|
Li X, Wang W, Wang X, Wang H. Differential immunotoxicity effects of triclosan and triclocarban on larval zebrafish based on RNA-Seq and bioinformatics analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106665. [PMID: 37611455 DOI: 10.1016/j.aquatox.2023.106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Herein, we demonstrated that sublethal-dose exposure to triclosan (TCS) and triclocarban (TCC) triggered larval zebrafish immunotoxicity. Acute exposure to TCS induced significant increases in larval neutrophils and macrophages and a prominent decrease in thymic T cells. In contrast, three kinds of cells (neutrophils, macrophages, and thymic T cells) were significantly reduced under TCC exposure, suggesting that both TCS and TCC suppress thymus development and mature T-cell differentiation. TCC was confirmed to have more severe immunotoxicity than TCS. Using Illumina RNA-Seq, 581 and 738 differentially expressed genes (DEGs) were identified in the TCS and TCC treatments, respectively. GO function and KEGG pathway enrichment analyses revealed that the DEGs were not identical in terms of biological processes, cellular components and molecular functions, but were primarily involved in immune response. KEGG analysis showed that approximately 47% and 11% of DEGs were mainly enriched in the immune system of the TCC and TCS treatments, respectively. Protein-protein interaction (PPI) network analysis confirmed that the hub genes enriched in the immune-related pathways differed between TCS and TCC exposure. The hub genes were fynb, mapk12b, scarb1, pik3r2, prkg3, srfa, arhgef2, cldn15la, and cldn15lb in the TCS treatment, and plg, serping1, masp2, fgg, vtnb, mmp9, serpine1, il1b, sb:cb37 and stat3 in the TCC treatment. Molecular docking simulation demonstrated that both TCS and TCC were stably docked with their target hub genes, and that their target molecules for inducing immunotoxicity were different. The differential target molecules and action pathways induced by TCS and TCC exposure provide us with diagnostic targets and toxicological endpoints.
Collapse
Affiliation(s)
- Xin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weiwei Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
10
|
Qin M, Lei H, Song Y, Wu M, Chen C, Cao Z, Zhang C, Du R, Zhang C, Wang X, Zhang L. Triclocarban exposure aggravates dextran sulfate sodium-induced colitis by deteriorating the gut barrier function and microbial community in mice. Food Chem Toxicol 2023; 178:113908. [PMID: 37385329 DOI: 10.1016/j.fct.2023.113908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
Triclocarban (TCC) is an antibacterial component widely used in personal care products with potential toxicity possessing public health issues. Unfortunately, enterotoxicity mechanisms of TCC exposure remain largely unknown. Using a combination of 16S rRNA gene sequencing, metabolomics, histopathological and biological examinations, this study systematically explored the deteriorating effects of TCC exposure on a dextran sulfate sodium (DSS)-induced colitis mouse model. We found that TCC exposure at different doses significantly aggravated colitis phenotypes including shortened colon length and altered colonic histopathology. Mechanically, TCC exposure further disrupted intestinal barrier function, manifested by significant downregulation of the number of goblet cells, mucus layer thickness and expression of junction proteins (MUC-2, ZO-1, E-cadherin and Occludin). The gut microbiota composition and its metabolites such as short-chain fatty acids (SCFAs) and tryptophan metabolites were also markedly altered in DSS-induced colitis mice. Consequently, TCC exposure markedly exacerbated colonic inflammatory status of DSS-treated mice by activating NF-κB pathway. These findings provided new evidence that TCC could be an environmental hazards for development of IBD or even colon cancer.
Collapse
Affiliation(s)
- Mengyu Qin
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wu
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Wang
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Korkmaz N, Uğurer O, Örün İ. Toxic effects of the synthetic pyrethroid permethrin on the hematological parameters and antioxidant enzyme systems of the freshwater fish Cyprinus carpio L. ECOTOXICOLOGY (LONDON, ENGLAND) 2023:10.1007/s10646-023-02675-2. [PMID: 37300635 DOI: 10.1007/s10646-023-02675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
This study investigated changes in hematological and antioxidant parameters of carp exposed to two different doses of synthetic pyrethroid permethrin (control, vehicle, 10 ppm, and 20 ppm) for two different periods (4 days and 21 days). Hematological analyses were then performed on a veterinary Ms4 (Melet Schloesing, France) blood counter using commercially available kits (Cat. No. WD1153). Buege and Aust for MDA, Luck for CAT, McCord and Frivovich for SOD, Lawrence and Burk methods for GSH-Px were used to determine antioxidant parameters. Decreases in RBC count, Hb amount, Hct value, granulocyte ratios, and increases in total WBC and lymphocyte ratios were statistically significant in both dose groups treated with permethrin compared to the control group (p < 0.05). However, there was no statistically significant difference in monocyte ratios (p > 0.05). Overall, permethrin exposure caused an increase in MDA levels in the liver and gill tissues of carp in both dose and duration groups compared to the control group. Also, no statistically significant difference between the two dose groups in the liver tissue was observed in terms of duration (p > 0.05). Nonetheless, the increase in MDA levels in PERM10 and PERM20 dose groups in the gill tissues over 21 days was statistically significant (p < 0.05). Furthermore, permethrin exposure increased CAT, SOD, and GSH-Px enzyme activities in the gill tissue, while impacting in the opposite direction the liver tissue. Finally, regarding MDA, CAT, SOD, and GSH-Px levels, the control, and control acetone dose groups of all experimental groups were observed to be similar (p > 0.05). As a result, permethrin produced a toxic effect on Cyprinus carpio, triggering changes in blood parameters and inducing the antioxidant enzyme system.
Collapse
Affiliation(s)
- Nuh Korkmaz
- Department of Biology, Faculty of Arts and Sciences, Osmaniye Korkut Ata University, Osmaniye, Turkey.
| | - Orhan Uğurer
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | - İbrahim Örün
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| |
Collapse
|
12
|
Cui L, Gao X, Wang Y, Zhang H, Lv X, Lei K. Salinity-dependent aquatic life criteria of inorganic mercury in coastal water and its ecological risk assessment. ENVIRONMENTAL RESEARCH 2023; 217:114957. [PMID: 36457239 DOI: 10.1016/j.envres.2022.114957] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) is one of the most toxic pollutants to aquatic organisms. The influence of salinity on Hg toxicity, an important factor restricting the development of global marine aquatic life criteria (ALC), is unclear. Therefore, mercury toxicity data were corrected based on salinity using the aggregate slope method, and the ALC values were derived. Short-term aquatic life criteria (SALC) and long-term aquatic life criteria (LALC) were derived using the species sensitivity distribution method based on Log-logistic, Log-normal, Burr III, Gumbel, and Weibull models. The hazard quotient (HQ) and joint probability curve (JPC) methods were used to evaluate the ecological risk of Hg in the coastal waters of China. The results showed that the SALC and LALC of Hg in the coastal waters of China were 2.21 and 0.54 μg/L. The toxicity data and salinity were positively correlated for Chordate and Arthropoda and negatively correlated for Mollusca. The SALC values increased by approximately 75%, with salinities ranging from 10 to 20 ppt. A slight peak in the SALC at mid-salinities was also observed. The ecological risk assessment of Hg in China's coastal waters showed that attention should be paid to Hg pollution in the Bohai Sea and East China Sea, especially the ecological risk of Hg to crustacean organisms. This study could promote the development of water quality criteria for coastal waters and provide a technical reference for mercury management in the coastal waters of China.
Collapse
Affiliation(s)
- Liang Cui
- Institute of Water Ecology and Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiangyun Gao
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Wang
- Institute of Water Ecology and Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hua Zhang
- Institute of Water Ecology and Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xubo Lv
- Institute of Water Ecology and Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kun Lei
- Institute of Water Ecology and Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
13
|
Wang ZJ, Zheng QF, Liu SS, Huang P, Ding TT, Xu YQ. New methods of top-to-down mixture toxicity prediction: A case study of eliminating of the effects of cosolvent from binary mixtures. CHEMOSPHERE 2022; 289:133190. [PMID: 34883133 DOI: 10.1016/j.chemosphere.2021.133190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
At present, the toxicity prediction of mixtures mainly focuses on the concentration addition (CA) and independent action (IA) based on individual toxicants to predict the toxicity of multicomponent mixtures. This process of predicting the toxicity of multicomponent mixtures based on single substances or low component mixtures is called down-to-top method in this study. However, due to the particularity of some toxicants, we have to use the top-to-down idea to obtain or eliminate the toxicity of some components from mixtures. For example, the toxicity of toxicants is obtained from the toxicity of a mixture with, especially toxic, cosolvent added. In the study, two top-to-down methods, the inverse CA (ICA) and inverse IA (IIA) models, were proposed to eliminate the effects of a certain component from multicomponent mixtures. Furthermore, taking the eight binary mixtures consisting of different shapes of cosolvents (isopropyl alcohol (IPA) having hormesis and dimethyl sulfoxide (DMSO)) and toxicants (two ionic liquids and two pesticides) as an example, combined with the interaction evaluated by CA and IA model, the influence of different shapes of components on top-to-down toxicity prediction was explored. The results showed that cosolvent IPA having hormesis may cause unpredictable effects, even at low concentrations, and should be used with caution. For DMSO, most of the toxicant's toxicity obtained by ICA and IIA models were almost in accordance with those observed experimentally, which showed that ICA and IIA could effectively eliminate the effects of cosolvent, even if toxic cosolvent, from the mixture. Ultimately, a frame of cosolvent use and toxicity correction for the hydrophobic toxicant were suggested based on the top-to-down toxicity prediction method. The proposed methods improve the existing framework of mixture toxicity prediction and provide a new idea for mixture toxicity evaluation and risk assessment.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Qiao-Feng Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Peng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
14
|
Phillips J, Haimbaugh AS, Akemann C, Shields JN, Wu CC, Meyer DN, Baker BB, Siddiqua Z, Pitts DK, Baker TR. Developmental Phenotypic and Transcriptomic Effects of Exposure to Nanomolar Levels of 4-Nonylphenol, Triclosan, and Triclocarban in Zebrafish (Danio rerio). TOXICS 2022; 10:toxics10020053. [PMID: 35202241 PMCID: PMC8877790 DOI: 10.3390/toxics10020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023]
Abstract
Triclosan, triclocarban and 4-nonylphenol are all chemicals of emerging concern found in a wide variety of consumer products that have exhibited a wide range of endocrine-disrupting effects and are present in increasing amounts in groundwater worldwide. Results of the present study indicate that exposure to these chemicals at critical developmental periods, whether long-term or short-term in duration, leads to significant mortality, morphologic, behavioral and transcriptomic effects in zebrafish (Danio rerio). These effects range from total mortality with either long- or short-term exposure at 100 and 1000 nM of triclosan, to abnormalities in uninflated swim bladder seen with long-term exposure to triclocarban and short-term exposure to 4-nonylphenol, and cardiac edema seen with short-term 4-nonylphenol exposure. Additionally, a significant number of genes involved in neurological and cardiovascular development were differentially expressed after the exposures, as well as lipid metabolism genes and metabolic pathways after exposure to each chemical. Such changes in behavior, gene expression, and pathway abnormalities caused by these three known endocrine disruptors have the potential to impact not only the local ecosystem, but human health as well.
Collapse
Affiliation(s)
- Jessica Phillips
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
| | - Alex S. Haimbaugh
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
| | - Jeremiah N. Shields
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
| | - Chia-Chen Wu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
| | - Danielle N. Meyer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
| | - Bridget B. Baker
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32610, USA
| | - Zoha Siddiqua
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA; (Z.S.); (D.K.P.)
| | - David K. Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA; (Z.S.); (D.K.P.)
| | - Tracie R. Baker
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
15
|
Li W, Wang L, Wang X, Liu R. Derivation of predicted no effect concentration and ecological risk assessment of polycyclic musks tonalide and galaxolide in sediment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113093. [PMID: 34942419 DOI: 10.1016/j.ecoenv.2021.113093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic musks (PMs) have drawn increased attention in recent years because of their persistence, bioaccumulation and toxicity. As two typical PMs contaminants, tonalide (AHTN) and galaxolide (HHCB) are widely detected in sediment worldwide. Acute and chronic toxicity data of AHTN and HHCB to freshwater and seawater organisms in water and sediments are collected and screened. The predicted no effect concentrations (PNECsediment) for AHTN and HHCB is derived according to the equilibrium partitioning method recommended by the EU technical guidance document (TGD) and the species sensitivity distribution (SSD) method based on the measured sediment toxicity data. The concentration levels of AHTN and HHCB are investigated and evaluated in freshwater and seawater sediments. Results show the difference between native and non-native freshwater species is not statistically significant. AHTN is more toxic to freshwater and seawater organisms than HHCB, and seawater organisms are more sensitive to 2 musks than freshwater organisms. The chronic PNECsediment values of AHTN and HHCB are 194.48 and 416.47 ng/g in freshwater sediment, 88.93 and 128.34 ng/g in seawater sediment respectively. The AHTN and HHCB linear correlation analysis exhibited a strong positive linear correlation in both domestic (R2=0.9054) and foreign (R2 = 0.9645) sediment. Preliminary risk assessment shows that the risks posed by AHTN and HHCB in sediment based on individual or combined concentrations of two musks are at medium to high levels in some regions. Further risk assessment results indicate that, for HHCB, 1.72% of foreign freshwater sediment may pose an ecological risk to 5% species; for AHTN, 8.06% of foreign freshwater sediment and 1.02% of domestic freshwater sediment may pose an ecological risk to 5% species, and 5.86% of seawater sediment may pose an ecological risk to 5% species. The above results indicate that there are some negligible risks in domestic and foreign sediments posed by these two musks, we should continue to pay attention to the toxic effects and pollution level of both musks in environment.
Collapse
Affiliation(s)
- Wenwen Li
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liping Wang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaonan Wang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ruizhi Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
16
|
Li WL, Zhang ZF, Li YF, Hung H, Yuan YX. Assessing the distributions and fate of household and personal care chemicals (HPCCs) in the Songhua Catchment, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147484. [PMID: 33984702 DOI: 10.1016/j.scitotenv.2021.147484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Many household and personal care chemicals (HPCCs) are of environmental concern due to their potential toxicity to humans and wildlife. However, few studies investigate the spatiotemporal variations and fate of HPCCs in large-scale river systems. Here, river water and sediment samples from the Songhua River in Northeast China were analyzed for seven classes of HPCCs. Correlation analysis suggested similar sources and environmental behavior for compounds from the same HPCC classes. In the river water, the concentrations of most HPCCs in the cold season were significantly higher than that of the warm season (p < 0.01). Significantly higher levels of target compounds were found in the downstream water samples of a city, suggesting the influence of human activities on the distributions of HPCCs. The concentrations and distributions of most HPCCs were controlled by primary emission sources. The derived dissolved concentrations of HPCCs suggested that small amounts of caffeine and parabens were partitioned onto particles, while large amounts of many other HPCCs were bound to the particle phase. Water-sediment distribution coefficients (log Kd) ranged from 1.59 for caffeine to 3.95 for benzalkonium chloride-C14. This work presents new insights into the environmental behavior of HPCCs and the factors affecting their fate in river systems.
Collapse
Affiliation(s)
- Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Yi-Xing Yuan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Yang Y, Chen Z, Zhang J, Wu S, Yang L, Chen L, Shao Y. The challenge of micropollutants in surface water of the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146537. [PMID: 33774309 DOI: 10.1016/j.scitotenv.2021.146537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The Yangtze River, the third largest river and supporting nearly one-third of Chinese population, has been severely polluted in recent decades. Among the numerous pollutants, organic micropollutants, as one kind of important emerging contaminants, are currently key contaminants of concern. However, few studies have focused on their mixture environmental impacts, especially for the complex environmental mixtures. In the current study, four categories of organic micropollutants, including 16 polycyclic aromatic hydrocarbons (PAHs), 32 polychlorinated biphenyls (PCBs), 27 organochlorine pesticides (OCPs) and 20 pharmaceutical and personal care products (PPCPs) are analyzed in 10 study sites on the Yangtze River. Subsequently, comprehensive risk assessment for micropollutant mixtures was conducted by risk quotient based on the sum of PEC/PNEC values (RQMEC/PNEC) and risk quotient based on the toxic units (RQSTU). The mixture risk evaluation based on the detected environmental concentrations indicates that micropollutant mixtures in surface water of the Yangtze River exhibited relative high risks for aquatic organisms. The observed results revealed that mixture risk assessments have to consider the complexity of environmental samples; PCBs dominated main mixture risks in the upper stream; PAHs contributed major comprehensive risks in the middle stream; and OCPs were the key micropollutants in the downstream. The outcomes of the present study here can serve for pollution control in the Yangtze River, which provide the scientific underpinnings and regulatory reference for risk management and river protection.
Collapse
Affiliation(s)
- Yinjie Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Jialing Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Siqi Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Li Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Lin Chen
- Department of Otorhinolaryngology, The first Hospital Affiliated to Army Medical University (Southwest Hospital), Chongqing 400038, PR China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
18
|
Fan B, Wang X, Xie Z, Li J, Gao X, Cui L, Gao S, Liu Z. Aquatic life criteria & human health ambient water quality criteria derivations and probabilistic risk assessments of 7 benzenes in China. CHEMOSPHERE 2021; 274:129784. [PMID: 33548643 DOI: 10.1016/j.chemosphere.2021.129784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The benzenes have attracted worldwide attention due to their high biological toxicity in the environment. In this study, using species sensitivity distribution method to derive the aquatic life criteria of 7 benzenes (carbazole, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 1,2,4-Trichlorobenzene, phenol, 2,4-Dichlorophenol and nitrobenzene), then risk quotient method (RQ), potentially affected fraction (PAF) method and joint probability curve (JPC) method were applied for multilevel ecological risk assessment for 7 benzenes in Tai Lake Basin. In addition, the human health ambient water quality criteria (AWQC) of 7 benzenes were derived according to USEPA guidelines, and the probability distributions of human health AWQC for 7 benzenes in China were simulated by Monte Carlo simulation combined with crystal ball software. Finally, the health risks of 7 benzenes in Tai Lake were assessed by RQ method assisted by Monte Carlo simulation. The results showed that nitrobenzene had the maximum aquatic life criteria value, followed by phenol, chlorobenzenes, 2,4-Dichlorophenol and carbazole. All recommended human health AWQC values of 7 benzenes were found at a position of 27th-55th percentiles in the output criteria distributions, indicating that recommended national human health AWQC values could provide effective protection for most of the population in China. Furthermore, the consumption of aquatic products was found to be the most influential parameter of human health AWQC for benzenes with higher Kow values. The risk assessments showed that noncarcinogenic 2,4-Dichlorophenol had potential ecological risk, carcinogenic carbazole and 1,2,4-Trichlorobenzene had significant human health risk in Tai Lake.
Collapse
Affiliation(s)
- Bo Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zheyu Xie
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, 361102, Xiamen, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiangyun Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liang Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
19
|
Wang X, Cui L, Li J, Zhang C, Gao X, Fan B, Liu Z. Water quality criteria for the protection of human health of 15 toxic metals and their human risk in surface water, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116628. [PMID: 33601198 DOI: 10.1016/j.envpol.2021.116628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 05/26/2023]
Abstract
In the absence of water quality criteria (WQC) support for the current water quality standard (WQS), systematic WQC studies have been carried out in recent years in China. WQC for the protection of human health is established to reflect long-term consumption safety of aquatic products and water. Human health WQC for 15 toxic metals and metalloids based on exposure factors of the Chinese population and 40 field bioaccumulation factors (BAFs) were developed and analyzed in this study. Moreover, age-specific (age 2-5, 6-8, 9-11, 12-14, 15-17, and adult) and region-specific (east, central and west China) WQC were analyzed to better understanding of the impact of specific parameter values on WQC. Human health WQC with consumption of fishes and water, consumption of fishes only, and consumption of water only were derived separately. WQC with consumption of water and organism for Hg, Cd, As, Sb, Se, Zn, Co, Cu, Ni, Pb, Mn, Sn, Ba, and Sr were 0.0264, 0.710, 0.827, 3.48, 22.1, 25.7, 32.2, 32.9, 35.5, 41.8, 72.1, 97.1, 206 and 2.20 × 103 μg/L, and were 13.3 and 6.67 × 103 μg/L for Cr(VI) and Cr(III) with consumption of water only. Comparison of age-specific and region-specific WQC showed that the protection for a specific population should be considered in the development of WQC and WQS, as well as cancer effect for carcinogenic metals. Health risk analysis showed that Cd, Cu, Zn, As, Hg and Mn average concentrations in 7, 5, 9, 22, 11 and 5 provinces exceeded the WQC values with consumption of water and aquatic product, showing potential long-term health risk (HQ ≥ 1) to the local population. Therefore, health risks posed by these metals from dietary intake related to surface water should be paying more attention.
Collapse
Affiliation(s)
- Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Liang Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Cong Zhang
- China Offshore Environmental Services Co. Ltd., Tianjin, 300452, China
| | - Xiangyun Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bo Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
20
|
Xu J, Qian Q, Xia M, Wang X, Wang H. Trichlorocarban induces developmental and immune toxicity to zebrafish (Danio rerio) by targeting TLR4/MyD88/NF-κB signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116479. [PMID: 33460871 DOI: 10.1016/j.envpol.2021.116479] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Trichlorocarban (TCC) is ubiquitously detected in environmental matrices, while there is a paucity of information regarding its systemic toxicity. In the present study, we observed that TCC exposure led to high embryo mortality, delayed hatching and yolk absorption, as well as increased malformations, such as closure of swim sac and yolk sac edema. Meanwhile, TCC affected the formation and branch of subintestinal veins (SIVs), intersegmental vessels and posterior cardinal veins. Especially, the SIVs were shrunk, and their branches were reduced or even broken along with reduced coverage area. TCC-induced oxidative stress and excessive apoptosis resulted from abnormal expression of the anti/pro-apoptotic genes. Significant reduction in the number and aggregation function of immune cells proved that TCC had prominent immunotoxicity to zebrafish. TCC-targeted TLR4 signaling pathway was demonstrated by abnormal expression of the marker genes (tlr4, MyD88 and nf-κb) and release of the downstream inflammatory factors (TNF-α, IL-6, etc.). Inhibition of TLR4/MyD88/NF-κB pathway by an inhibitor (CA-4948) rescued the decreasing trend of the immune cells induced by TCC. Molecular docking results demonstrated that TCC could stably bind to TLR4 receptor to form hydrogen bonds and hydrophobic interactions with amino acids. Overall, these findings reveal the underlying molecular mechanisms on TCC-induced developmental and immune toxicity to zebrafish.
Collapse
Affiliation(s)
- Jiaqi Xu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Min Xia
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
21
|
Fan B, Li J, Wang X, Chen J, Gao X, Li W, Ai S, Cui L, Gao S, Liu Z. Ammonia spatiotemporal distribution and risk assessment for freshwater species in aquatic ecosystem in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111541. [PMID: 33254401 DOI: 10.1016/j.ecoenv.2020.111541] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Ammonia has been of concern for its high toxicity to aquatic species and frequent detection in waters worldwide. This study calculated the national aquatic life criteria for ammonia in China. The temporal and spatial distributions were investigated and the multi-tier ecological risks were assessed for ammonia and un-ionized ammonia (NH3) during 2014-2018 based on a total of 18989 ammonia monitoring data from 110 monitoring sites in seven river basins. The sensitivity comparison of different species taxa to ammonia showed that Perciformes fish should be listed as a priority protected species in the derivation of ammonia criteria. The participation of introduced aquaculture species have no significant impact on the final criteria values (t-test, p > 0.05). The final criterion maximum concentration (CMC) and criterion continuous concentration (CCC) were 10.24 and 3.31 mg/L for ammonia (pH 7.0 and 20 °C). The interannual variation showed that decreasing trends were observed for ammonia and NH3 pollutions in the past five years. However, the increasing trends were observed for ammonia in Liao River basin, for NH3 in Yangtze River and Pearl River basins (2014-2018). The significant seasonal and geographical differences of ammonia and NH3 pollution were found. Moreover, the pollutions of ammonia and NH3 in some monitoring points of Huai River, Yellow River and Songhua River basins at the provincial borders were significant. The result of ecological risk assessment showed that the average exceedance probability for 5% affected species by NH3 in long-term exposure was 28.96% in the past five years.
Collapse
Affiliation(s)
- Bo Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jin Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangyun Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenwen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Liang Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
22
|
Zhong Q, Deng Y, Qin H, Ou H, Qu Y, Ye J. Metabolic network and recovery mechanism of Escherichia coli associated with triclocarban stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111140. [PMID: 32858325 DOI: 10.1016/j.ecoenv.2020.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Although the toxicity of triclocarban at molecular level has been investigated, the metabolic networks involved in regulating the stress processes are not clear. Whether the cells would maintain specific phenotypic characteristics after triclocarban stress is also needed to be clarified. In this study, Escherichia coli was selected as a model to elucidate the cellular metabolism response associated with triclocarban stress and the recovery metabolic network of the triclocarban-treated cells using the proteomics and metabolomics approaches. Results showed that triclocarban caused systematic metabolic remodeling. The adaptive pathways, glyoxylate shunt and acetate-switch were activated. These arrangements allowed cells to use more acetyl-CoA and to reduce carbon atom loss. The upregulation of NH3-dependent NAD+ synthetase complemented the NAD+ consumption by catabolism, maintaining the redox balance. The synthesis of 1-deoxy-D-xylulose-5-phosphate was suppressed, which would affect the accumulation of end products of its downstream pathway of isoprenoid synthesis. After recovery culture for 12 h, the state of cells returned to stability and the main impacts on metabolic network triggered by triclocarban have disappeared. However, drug resistance caused by long-term exposure to environmentally relevant concentration of triclocarban is still worthy of attention. The present study revealed the molecular events under triclocarban stress and clarified how triclocarban influence the metabolic networks.
Collapse
Affiliation(s)
- Qiao Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Huaming Qin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yanfen Qu
- Zhongji Ecological Science & Technology Co., Ltd. Guangzhou, 511443, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
23
|
Abbott T, Kor-Bicakci G, Islam MS, Eskicioglu C. A Review on the Fate of Legacy and Alternative Antimicrobials and Their Metabolites during Wastewater and Sludge Treatment. Int J Mol Sci 2020; 21:ijms21239241. [PMID: 33287448 PMCID: PMC7729486 DOI: 10.3390/ijms21239241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial compounds are used in a broad range of personal care, consumer and healthcare products and are frequently encountered in modern life. The use of these compounds is being reexamined as their safety, effectiveness and necessity are increasingly being questioned by regulators and consumers alike. Wastewater often contains significant amounts of these chemicals, much of which ends up being released into the environment as existing wastewater and sludge treatment processes are simply not designed to treat many of these contaminants. Furthermore, many biotic and abiotic processes during wastewater treatment can generate significant quantities of potentially toxic and persistent antimicrobial metabolites and byproducts, many of which may be even more concerning than their parent antimicrobials. This review article explores the occurrence and fate of two of the most common legacy antimicrobials, triclosan and triclocarban, their metabolites/byproducts during wastewater and sludge treatment and their potential impacts on the environment. This article also explores the fate and transformation of emerging alternative antimicrobials and addresses some of the growing concerns regarding these compounds. This is becoming increasingly important as consumers and regulators alike shift away from legacy antimicrobials to alternative chemicals which may have similar environmental and human health concerns.
Collapse
Affiliation(s)
- Timothy Abbott
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
| | - Gokce Kor-Bicakci
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
- Institute of Environmental Sciences, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Mohammad S. Islam
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
- Correspondence: ; Tel.: +1-250-807-8544 (C.E)
| |
Collapse
|
24
|
Cui L, Fan M, Belanger S, Li J, Wang X, Fan B, Li W, Gao X, Chen J, Liu Z. Oryzias sinensis, a new model organism in the application of eco-toxicity and water quality criteria (WQC). CHEMOSPHERE 2020; 261:127813. [PMID: 32768750 DOI: 10.1016/j.chemosphere.2020.127813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Fish play an important role as a primary eco-toxicity test organism in environmental hazard assessment. Toxicity data of native species are often sought for use in the derivation of water quality criteria (WQC). The Chinese medaka, Oryzias sinensis, is an endemic species of China. The acute toxicity of 6 chemicals on O. sinensis was tested in this work, and toxicity effect of 10 chemicals to O. sinensis was compared with 4 commonly used species globally. A total of 9 robust interspecies correlation estimation (ICE) models using O. sinensis as the surrogate species were constructed and used to derive predicted no effect concentration and hazardous concentrations of 5% species (HC5) values based on species sensitivity distribution. Results showed that the 96 h median lethal concentration of Hg2+, Cr6+, linear alkylbenzene sulfonates, triclosan, 3,4-dchloroaniline, sodium chloride to O. sinensis were 0.29, 50, 6.0, 0.63, 9.2 and 14,400 mg/L, respectively. The sensitivity of O. sinensis and other 4 testing organisms were statistically indistinguishable (P > 0.05). No significant difference among HC5-ICE, HC5-measured and HC5 from published literatures was identified. All results indicated the O. sinensis is a potential model organism in the application of eco-toxicity and WQC in China and other Asian countries.
Collapse
Affiliation(s)
- Liang Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ming Fan
- Global Product Stewardship, The Procter and Gamble Company, 8700 Mason Montgomery Road, Mason, OH, 45040, United States
| | - Scott Belanger
- Global Product Stewardship, The Procter and Gamble Company, 8700 Mason Montgomery Road, Mason, OH, 45040, United States
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Bo Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenwen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiangyun Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jin Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
25
|
Moniruzzaman M, Mukherjee M, Das D, Chakraborty SB. Effectiveness of melatonin to restore fish brain activity in face of permethrin induced toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115230. [PMID: 32707355 DOI: 10.1016/j.envpol.2020.115230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Present study demonstrates permethrin induced oxidative damage in fish brain and explores effectiveness of melatonin to ameliorate brain function. Adult female Notopterus notopterus were exposed to nominal permethrin concentrations at 1/20th (0.34 μg/l) and 1/10th (0.68 μg/l) of LC50 for 15 days. The measured permethrin concentrations using gas chromatography (GC-ECD) were 0.28 μg/l and 0.57 μg/l, respectively. Some fish were sacrificed to collect brain tissue after 15 days of exposure. Remaining fish from both groups were administered exogenous melatonin (50 μg/kg, 100 μg/kg body weight) for 7 days and brain tissues were collected. Brain enzymes, ntioxidant factors, HSP70, HSP90, nuclear factor-kappa binding (NFkB), melatonin receptor (MT1R) proteins were measured. Permethrin treatment significantly (P < 0.05) decreased the levels of glutathione and brain enzymes. Malondialdehyde (MDA), xanthine oxidase (XO), HSPs increased at each concentration of permethrin. However, superoxide dismutase, glutathione s-transferase levels increased at low permethrin concentration followed by sharp decrease at higher concentration. Expression of NFkB and MT1R increased significantly (P < 0.05). Melatonin administration reinstated activity of brain enzymes, reduced MDA, XO levels and modulated HSPs. Melatonin also increased expression of NFkB and MT1R. Exogenous melatonin improves oxidative status in permethrin stressed fish brain. Melatonin modulates expression of HSPs that enables brain to become stress tolerant and survive by initiating NFkB translocation. Melatonin could act through melatonin receptor protein to induce synthesis of antioxidant proteins. Therefore the study successfully evaluates the potential of melatonin application for better culture and management of fish against pesticide toxicity.
Collapse
Affiliation(s)
- Mahammed Moniruzzaman
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Mainak Mukherjee
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Debjit Das
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Suman Bhusan Chakraborty
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, 700019, India.
| |
Collapse
|
26
|
Chen J, Fan B, Li J, Wang X, Li W, Cui L, Liu Z. Development of human health ambient water quality criteria of 12 polycyclic aromatic hydrocarbons (PAH) and risk assessment in China. CHEMOSPHERE 2020; 252:126590. [PMID: 32443271 DOI: 10.1016/j.chemosphere.2020.126590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in various environmental media and have thus attracted extensive attention worldwide. To prevent and control PAH pollution in China, the study of ambient water quality criteria (AWQC), human health risks, and aquatic ecological risk is critical. There are no reports to date on the human health AWQC of PAHs in China. Therefore, this study first derived the human health AWQC values of 12 PAHs based on exposure data and bioaccumulation factor in China. We found that local exposure parameters and other relevant factors were key during the development of AWQC in different countries and regions, which led to differences with the reference value recommended by USEPA. Based on the incremental life time cancer risk (ILCR), hazard quotients (HQ) and potentially affected fraction (PAF) methods, the health and ecological risks of 16 PAHs were assessed subsequently. And the results are as follows: the non-carcinogenic PAHs' health risks ranged from 1.01 × 10-10 to 1.60 × 10-9, and carcinogenic PAH health risks ranged from 5.03 × 10-7 to 4.74 × 10-5. The toxic effects of 8 PAHs on aquatic organisms exhibited the following order: benzo (a) pyrene (BaP) > anthracene (Ant) > pyrene (Pye) > phenanthrene (Phe) > fluoranthene (Flua) > acenaphthene (Ace) > fluorene (Flu) > naphthalene (Nap). Among these, the ecological risks posed by Ant and BaP were the highest, according to the HQ and PAF methods.
Collapse
Affiliation(s)
- Jin Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bo Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Wenwen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; The College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Liang Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
27
|
Yun H, Liang B, Kong D, Li X, Wang A. Fate, risk and removal of triclocarban: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121944. [PMID: 31901847 DOI: 10.1016/j.jhazmat.2019.121944] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/01/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
The halogenated antimicrobial triclocarban (TCC) has large production and consumption over last decades. Its extensive utilization in personal care products and insufficient treatment in conventional wastewater treatment plants (WWTPs) has led to its listing as one of emerging organic contaminants (EOCs). Due to the hydrophobicity and chemical stability of TCC, it has been omnipresent detected in terrestrial and aquatic environments, and its prolonged exposure has thrown potential pernicious threat to ecosystem and human health. Considering its recalcitrance, especially under anoxic conditions, both biological and non-biological methods have been exploited for its removal. The efficiency of advanced oxidation processes was optimistic, but complete removal can rarely be realized through a single method. The biodegradation of TCC either with microbial community or pure culture is feasible but efficient bacterial degraders and the molecular mechanism of degradation need to be further explored. This review provides comprehensive information of the occurrence, potential ecological and health effects, and biological and non-biological removal of TCC, and outlines future prospects for the risk evaluation and enhanced bioremediation of TCC in various environments.
Collapse
Affiliation(s)
- Hui Yun
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Deyong Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|