1
|
Hu LL, Liu YX, Yu XT, Sun SC, Yang FL. Deoxynivalenol exposure disturbs the cytoplasmic maturation in porcine oocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117137. [PMID: 39353374 DOI: 10.1016/j.ecoenv.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Deoxynivalenol (DON) is a secondary metabolite of Fusarium fungi and belonged to trichothecenes, and it widely presents in various food commodities. Previous studies have highlighted its potent toxicity, adversely affecting the growth, development, and reproductive in both humans and animals. However, the potential impact of DON on porcine oocyte organelles remains elusive. In present study, we delved into the toxic effects of DON on mitochondria, endoplasmic reticulum, Golgi during the porcine oocyte maturation. Our findings revealed that DON exposure significantly impeded granulosa cell diffusion and the expulsion of the first polar body. Additionally, mitochondrial fluorescence intensity and membrane potential underwent notable alterations under DON exposure. Notably, lysosomal fluorescence intensity decreased significantly, suggesting protein degradation and potential autophagy, which was further corroborated by the enhanced fluorescence intensity of LC3. Furthermore, endoplasmic reticulum fluorescence intensity declined, and DON exposure elevated endoplasmic reticulum stress levels, evident from the upregulated expression of GRP78. Concurrently, we observed disruption in the fusiform cortex distribution of the Golgi apparatus, characterized by reduced Golgi apparatus fluorescence intensity and GM130 expression. Collectively, our results indicate that DON exposure profoundly affects the fundamental functions of porcine oocyte organelles during meiosis and maturation.
Collapse
Affiliation(s)
- Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Ya-Xi Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Ting Yu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng-Lian Yang
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
2
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Oocyte maturation, blastocyst and embryonic development are mediated and enhanced via hormesis. Food Chem Toxicol 2024; 192:114941. [PMID: 39153727 DOI: 10.1016/j.fct.2024.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The present paper provides the first integrative assessment of the capacity of dietary, endogenous and other agents to induce hormetic dose responses in oocytes, their supportive cells such as granulosa cells, blastocyst formation and early stage embryo development with the goal of improving fertility and reproductive success. The analysis showed that numerous agents enhance oocyte maturation and blastocyst/embryonic development in an hormetic fashion. These findings indicate that numerous agents improve oocyte-related biological functioning under normal conditions as well as enhancing its capacity to prevent damage from numerous chemical toxins and related stressor agents, including heat and age-related processes in pre-post conditioning and concurrent exposures. The present assessment suggests that hormetic-based lifestyles and dietary interventions may offer the potential to enhance healthy reproductive performance with applications to animal husbandry and human biology. The present findings also significantly extend the generality of the hormesis dose response concept to multiple fundamental biological processes (i.e., oocyte maturation, fertilization and blastocyst/embryo development).
Collapse
Affiliation(s)
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
3
|
Zhao R, Bai Y, Yang F. Melatonin in animal husbandry: functions and applications. Front Vet Sci 2024; 11:1444578. [PMID: 39286597 PMCID: PMC11402905 DOI: 10.3389/fvets.2024.1444578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an essential small molecule with diverse biological functions. It plays several key roles, including regulating the secretion of reproductive hormones and the reproductive cycle, enhancing the functionality of reproductive organs, improving the quality of sperm and eggs, and mitigating oxidative stress in the reproductive system. Melatonin effectively inhibits and scavenges excess free radicals while activating the antioxidant enzyme system and reduces the production of inflammatory factors and alleviates tissue damage caused by inflammation by regulating inflammatory pathways. Additionally, melatonin contributes to repairing the intestinal barrier and regulating the gut microbiota, thereby reducing bacterial and toxin permeation. The use of melatonin as an endogenous hormone in animal husbandry has garnered considerable attention because of its positive effects on animal production performance, reproductive outcomes, stress adaptation, disease treatment, and environmental sustainability. This review explores the characteristics and biological functions of melatonin, along with its current applications in animal production. Our findings may serve as a reference for the use of melatonin in animal farming and future developmental directions.
Collapse
Affiliation(s)
- Ruohan Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yicheng Bai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fangxiao Yang
- College of Animal Science and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| |
Collapse
|
4
|
Wang J, Lu F, Gu S, Cao C, Xiao Y, Bao W, Wang H. Lycopene alleviates Deoxynivalenol-induced toxicity in Porcine intestinal epithelial cells by mediating mitochondrial function. Toxicology 2024; 506:153880. [PMID: 38960307 DOI: 10.1016/j.tox.2024.153880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Deoxynivalenol (DON) is widely found in food and feed, posing a threat to human and animal health. Lycopene (Lyc) is a natural plant extracts with significant antioxidant properties. This study was conducted to investigate the protective effects of Lyc on IPEC-J2 cells upon DON exposure. The detection of cell viability and trypan blue staining showed that Lyc alleviated cell damage and decreased cell apoptotic rate induced by DON. The analysis of reactive oxygen species (ROS) level and antioxidant parameter measurements showed that Lyc significantly down-regulated the content of ROS and restored antioxidant enzyme activity. Furthermore, mitochondrial membrane potential (ΔΨm) detection, mitochondrial DNA copy number (mtDNAcn) assay and adenosine triphosphate (ATP) concentration detection showed Lyc improved mitochondrial function after DON exposure. The results of transcriptome analysis, ROS detection and CCK8 assay suggested that Lyc may activated the oxidative phosphorylation (OXPHOS) to improve mitochondrial function. Conclusively, our results suggested that Lyc alleviated DON-induced oxidative stress by improving mitochondrial function through OXPHOS signaling pathway.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Fan Lu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shanshen Gu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Changfu Cao
- Wens Foodstuff Group Co., Ltd., Xinxing 527400, China
| | - Yeyi Xiao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
5
|
Son Y, Lee HJ, Ryu D, Kim JR, Kim HY. Ochratoxin A induces hepatic and renal toxicity in mice through increased oxidative stress, mitochondrial damage, and multiple cell death mechanisms. Arch Toxicol 2024; 98:2281-2295. [PMID: 38546835 DOI: 10.1007/s00204-024-03732-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/07/2024] [Indexed: 06/13/2024]
Abstract
Ochratoxin A (OTA) is a widespread food toxin produced by Aspergillus ochraceus and other molds. In this study, we developed and established acute OTA toxicity conditions in mice, which received daily oral doses of OTA between 0.5 up to 8 mg/kg body weight up to 7 days and were subjected to histological and biochemical analysis to characterize renal and hepatic damage. Oral administration of OTA for 7 days resulted in loss of body weight in a dose-dependent manner and increased the levels of serum biomarkers of hepatic and renal damage. The kidney was more sensitive to OTA-induced damage than the liver. In addition to necrosis, OTA induced hepatic and renal apoptosis in dose- and time-dependent manners. Especially, a high dose of OTA (8 mg/kg body weight) administered for 7 days led to necroptosis in both liver and kidney tissues. OTA dose-dependently increased the oxidative stress levels, including lipid peroxidation, in the liver and kidneys. OTA disrupted mitochondrial dynamics and structure in hepatic and renal cells, leading to the dysregulation of mitochondrial homeostasis. OTA increased transferrin receptor 1 and decreased glutathione peroxidase 4 levels in a dose- and time-dependent manner. These results suggest the induction of ferroptosis. Collectively, this study highlighted the characteristics of acute OTA-induced hepatic and renal toxicity in mice in terms of oxidative stress, mitochondrial damage, and multiple cell death mechanisms, including necroptosis and ferroptosis.
Collapse
Affiliation(s)
- Youlim Son
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, 42415, Republic of Korea
- Senotherapy-Based Metabolic Disease Control Research Center, Yeungnam University College of Medicine, Daegu, 42415, Republic of Korea
| | - Hyun Jung Lee
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Dojin Ryu
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, 42415, Republic of Korea.
- Senotherapy-Based Metabolic Disease Control Research Center, Yeungnam University College of Medicine, Daegu, 42415, Republic of Korea.
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, 42415, Republic of Korea.
| |
Collapse
|
6
|
Chen H, Lu M, Lyu Q, Shi L, Zhou C, Li M, Feng S, Liang X, Zhou X, Ren L. Mitochondrial dynamics dysfunction: Unraveling the hidden link to depression. Biomed Pharmacother 2024; 175:116656. [PMID: 38678964 DOI: 10.1016/j.biopha.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Depression is a common mental disorder and its pathogenesis is not fully understood. However, more and more evidence shows that mitochondrial dynamics dysfunction may play an important role in the occurrence and development of depression. Mitochondria are the centre of energy production in cells, and are also involved in important processes such as apoptosis and oxidative stress. Studies have found that there are abnormalities in mitochondrial function in patients with depression, including mitochondrial morphological changes, mitochondrial dynamics disorders, mitochondrial DNA damage, and impaired mitochondrial respiratory chain function. These abnormalities may cause excessive free radicals and oxidative stress in mitochondria, which further damage cells and affect the balance of neurotransmitters, causing or aggravating depressive symptoms. Studies have shown that mitochondrial dynamics dysfunction may participate in the occurrence and development of depression by affecting neuroplasticity, inflammation and neurotransmitters. This article reviews the effects of mitochondrial dynamics dysfunction on the pathogenesis of depression and its potential molecular pathway. The restorers for the treatment of depression by regulating the function of mitochondrial dynamics were summarized and the possibility of using mitochondrial dynamics as a biomarker of depression was discussed.
Collapse
Affiliation(s)
- Haiyang Chen
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Mei Lu
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Qin Lyu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Liuqing Shi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Chuntong Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Mingjie Li
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Shiyu Feng
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Xicai Liang
- Experimental Animal Center of Liaoning University of traditional Chinese Medicine, Shenyang 110847, China
| | - Xin Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Lu Ren
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Mental disorders research laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| |
Collapse
|
7
|
Duan H, Yang S, Yang S, Zeng J, Yan Z, Zhang L, Ma X, Dong W, Zhang Y, Zhao X, Hu J, Xiao L. The mechanism of curcumin to protect mouse ovaries from oxidative damage by regulating AMPK/mTOR mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155468. [PMID: 38471315 DOI: 10.1016/j.phymed.2024.155468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Oxidative stress is considered the main cause of granulosa cell apoptosis in ovarian disease. Curcumin has various biological roles, but its potential role in protecting granulosa cells from oxidative damage remains unidentified. PURPOSE The study revealed the protective effect of curcumin on granulosa cell survival under oxidative stress, and explored its mode of action. STUDY DESIGN The protective effect of curcumin on oxidative stress-induced ovarian cell apoptosis was evaluated in vivo and in vitro, and the role of autophagy and AMPK/mTOR signaling pathway in this process was also demonstrated. METHODS First, mice were injected to 3-nitropropionic acid (3-NPA, 20 mg/kg/day) for 14 consecutive days to establish the ovarian oxidative stress model, at same time, curcumin (50, 100, 200 mg/kg/day) was given orally. Thereafter, functional changes, cell apoptosis, and autophagy in ovarian tissue were evaluated by hematoxylin-eosin staining, enzyme-linked immunosorbent assay, western blotting, TUNEL assays, and transmission electron microscopy. Finally, oxidative stress model of granulosa cells was established with H2O2in vitro and treated with curcumin. The underlying mechanisms of curcumin to protect the apoptosis under oxidative stress in vitro were determined using western blotting and TUNEL assays. RESULTS In our study, after curcumin treatment, the mouse ovarian function disorder under 3-nitropropionic acid-induced oxidative stress recovered significantly, and ovarian cell apoptosis decreased. H2O2 induced granulosa cell apoptosis in vitro, and curcumin antagonized this process. Autophagy contributes to tissue and cell survival under stress. We therefore examined the role of autophagy in this process. According to the in vivo and in vitro results, curcumin restored autophagy under oxidative stress. The autophagy inhibitor (chloroquine) exhibited the same effect as curcumin, whereas the autophagy activator (rapamycin) antagonized the effect of curcumin. In addition, the study found that the AMPK/mTOR pathway plays a crucial role in curcumin- mediated autophagy to protect against oxidative stress-induced apoptosis. CONCLUSION Our findings for the first time systematically revealed a new mechanism through which curcumin protects ovarian granulosa cells from oxidative stress-induced damage through AMPK/mTOR-mediated autophagy and suggested that it can be a new therapeutic direction for female ovarian diseases.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China.
| | - Longfei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Animal Science and Technology College, Beijing University of Agriculture, 102206, Beijing, China.
| |
Collapse
|
8
|
Li Q, Zheng T, Chen J, Li B, Zhang Q, Yang S, Shao J, Guan W, Zhang S. Exploring melatonin's multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J Adv Res 2024:S2090-1232(24)00168-1. [PMID: 38692429 DOI: 10.1016/j.jare.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Melatonin is mainly secreted by the pineal gland during darkness and regulates biological rhythms through its receptors in the suprachiasmatic nucleus of the hypothalamus. In addition, it also plays a role in the reproductive system by affecting the function of the hypothalamic-pituitary-gonadal axis, and by acting as a free radical scavenger thus contributing to the maintenance of the optimal physiological state of the gonads. Besides, melatonin can freely cross the placenta to influence fetal development. However, there is still a lack of overall understanding of the role of melatonin in the reproductive cycle of female mammals. AIM OF REVIEW Here we focus the role of melatonin in female reproduction from follicular development to delivery as well as the relationship between melatonin and lactation. We further summarize the potential role of melatonin in the treatment of preeclampsia, polycystic ovary syndrome, endometriosis, and ovarian aging. KEY SCIENTIFIC CONCEPTS OF REVIEW Understanding the physiological role of melatonin in female reproductive processes will contribute to the advancement of human fertility and reproductive medicine research.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
9
|
Hu LL, Liao MH, Liu YX, Xing CH, Nong LL, Yang FL, Sun SC. Loss of AMPK activity induces organelle dysfunction and oxidative stress during oocyte aging. Biol Direct 2024; 19:29. [PMID: 38654312 PMCID: PMC11036640 DOI: 10.1186/s13062-024-00471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Oocyte quality is critical for the mammalian reproduction due to its necessity on fertilization and early development. During aging, the declined oocytes showing with organelle dysfunction and oxidative stress lead to infertility. AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase which is important for energy homeostasis for metabolism. Little is known about the potential relationship between AMPK with oocyte aging. RESULTS In present study we reported that AMPK was related with low quality of oocytes under post ovulatory aging and the potential mechanism. We showed the altered AMPK level during aging and inhibition of AMPK activity induced mouse oocyte maturation defect. Further analysis indicated that similar with its upstream regulator PKD1, AMPK could reduce ROS level to avoid oxidative stress in oocytes, and this might be due to its regulation on mitochondria function, since loss of AMPK activity induced abnormal distribution, reduced ATP production and mtDNA copy number of mitochondria. Besides, we also found that the ER and Golgi apparatus distribution was aberrant after AMPK inhibition, and enhanced lysosome function was also observed. CONCLUSIONS Taken together, these data indicated that AMPK is important for the organelle function to reduce oxidative stress during oocyte meiotic maturation.
Collapse
Affiliation(s)
- Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Mei-Hua Liao
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ya-Xi Liu
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lan-Lan Nong
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Feng-Lian Yang
- Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, 533000, Baise, Guangxi, China.
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
- Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, 533000, Baise, Guangxi, China.
| |
Collapse
|
10
|
Wang G, Zhang S, Lan H, Zheng X. Ochratoxin A (OTA) causes intestinal aging damage through the NLRP3 signaling pathway mediated by calcium overload and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27864-27882. [PMID: 38526719 DOI: 10.1007/s11356-024-32696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Ochratoxin A (OTA) is a widespread environmental toxin that poses a serious threat to human and animal health. OTA has been shown to cause cellular and tissue damage and is a global public health problem. However, the effects of OTA on gastrointestinal aging have not been reported. The aim of this study was to investigate the effects of OTA on intestinal aging in vitro and in vivo. In vitro experiments showed that OTA induced cellular inflammation through calcium overload and oxidative stress, significantly up-regulated the expression of P16, P21, and P53 proteins, markedly increased senescence-associated β-galactosidase activity (SA-β-gal) positive cells, and obviously decreased the expression of proliferating cell nuclear antigen (PCNA) proteins, which led to intestinal cell senescence. Meanwhile, we found that treatment with β-carotene ameliorated OTA-induced intestinal cell senescence. Consistent with the results of the in vitro experiments, in vivo studies showed that the intestinal aging of mice fed OTA was significantly higher than that of the control group. In conclusion, OTA may induce intestinal aging through calcium overload, oxidative stress and inflammation. This study lays a foundation for further research on the toxicological effects of OTA.
Collapse
Affiliation(s)
- Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Shuai Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
11
|
Wang L, Liu HR, Wang T, Feng ML, Jiang ZY, Yang Q, Sun D, Song CR, Zhang XJ, Liang CG. C-phycocyanin improves the developmental potential of cryopreserved human oocytes by minimizing ROS production and cell apoptosis. PLoS One 2024; 19:e0300538. [PMID: 38558076 PMCID: PMC10984518 DOI: 10.1371/journal.pone.0300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE The cryopreservation process damages oocytes and impairs development potential. As a potent antioxidant, C-phycocyanin (PC) regulates reproductive performance. However, its beneficial effects on vitrified human oocytes remain unknown. METHODS In this study, human GV-stage oocytes obtained from controlled ovarian hyperstimulation (COH) cycles were randomly allocated to three groups: fresh oocyte without freezing (F group), vitrification in medium supplemented with PC (P group), and vitrification in medium without PC as control group (C group). After warming, viable oocytes underwent in vitro maturation. RESULTS Our results showed that 3 μg/mL PC treatment increased the oocyte maturation rate after cryopreservation. We also found that PC treatment maintains the regular morphological features of oocytes. After PC treatment, confocal fluorescence staining showed a significant increase in the mitochondrial membrane potential of the vitrified oocytes, along with a notable decrease in intracellular reactive oxygen species and the early apoptosis rate. Finally, after in vitro maturation and parthenogenetic activation, vitrified oocytes had a higher potential for cleavage and blastocyst formation after PC treatment. CONCLUSION Our results suggest that PC improves the developmental potential of cryopreserved human GV-stage oocytes by attenuating oxidative stress and early apoptosis and increasing the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Hao-Ran Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Teng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Meng-Lei Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Zhao-Yu Jiang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Qi Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Dui Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Chun-Ru Song
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiu-Juan Zhang
- Inner Mongolia Academy of Science and Technology, Hohhot, Inner Mongolia, People’s Republic of China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
12
|
Zhi X, Lu H, Ma D, Liu J, Luo L, Wang L, Qin Y. Melatonin protects photoreceptor cells against ferroptosis in dry AMD disorder by inhibiting GSK-3B/Fyn-dependent Nrf2 nuclear translocation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166969. [PMID: 38008231 DOI: 10.1016/j.bbadis.2023.166969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Ferroptosis is a type of non-apoptotic cell death that relies on iron ions and reactive oxygen species to induce lipid peroxidation. This study aimed to determine whether ferroptosis exists in the pathogenesis of dry age-related macular degeneration (AMD) and to confirm that melatonin (MLT) suppresses the photoreceptor cell ferroptosis signaling pathway. METHODS We exposed 661W cells to sodium iodate (NaIO3) in vitro and treated them with different concentrations of MLT. In vivo, C57BL/6 mice were given a single caudal vein injection of NaIO3, followed by an intraperitoneal injection of MLT, and eyeballs were taken for subsequent trials. RESULTS We found that NaIO3 could induce photoreceptor cell death and lipid peroxide accumulation, and result in changes in the expression of ferroptosis-related factors and iron maintenance proteins, which were treated by MLT. We further demonstrated that MLT can block Fyn-dependent Nrf2 nuclear translocation by suppressing the GSK-3β signaling pathway. In addition, the therapeutic effect of MLT was significantly inhibited when Nrf2 was silenced. CONCLUSIONS Our findings provide a novel insight that NaIO3 induces photoreceptor cell ferroptosis in dry AMD and suggest that MLT has therapeutic effects by suppressing GSK-3β/Fyn-dependent Nrf2 nuclear translocation.
Collapse
Affiliation(s)
- Xinyu Zhi
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Haojie Lu
- Cooperation of Chinese and Western medicine branch, Jiangsu Rongjun Hospital, Wuxi, Jiangsu, PR China
| | - Dongyue Ma
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jinxia Liu
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Li Luo
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Ludi Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Yu Qin
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China.
| |
Collapse
|
13
|
Woo SM, Yang SG, Kim YW, Koo DB, Park HJ. Ochratoxin A triggers endoplasmic reticulum stress through PERK/NRF2 signaling and DNA damage during early embryonic developmental competence in pigs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115757. [PMID: 38064788 DOI: 10.1016/j.ecoenv.2023.115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/12/2024]
Abstract
Ochratoxin A (OTA), a mycotoxin found in foods, has a deleterious effect on female reproduction owing to its endocrine-disrupting activity mediated through endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production. However, the mechanisms of OTA-induced ER stress in pig embryos during in vitro culture (IVC) are not yet fully understood. In the present study, porcine embryos were cultured for two days in an IVC medium supplemented with 0.5, 1.0, and 5.0 μM OTA, which led to an OTA-induced reduction in the developmental rate of blastocysts. The mRNA-seq transcriptome analysis revealed that the reduced blastocyst development ability of OTA-exposed porcine embryos was caused by ER stress, ultimately resulting in the accumulation of ROS and the occurrence of apoptosis. The expression levels of some UPR/PERK signaling-related genes (DDIT3, EIF2AK3, EIF2S1, NFE2L2, ATF4, EIF2A, and KEAP1) were found to differ in OTA-exposed pig embryos. OTA induces DNA damage by triggering an increase in RAD51/γ-H2AX levels and suppressing p-NRF2 activity. This effect is mediated through intracellular ROS and superoxide accumulation in the nuclei of porcine embryos. The cytotoxicity of OTA increased the activation of the PERK signal pathways (p-PERK, PERK, p-eIF2α, eIF2α, ATF4, and CHOP) in porcine embryos, with abnormal distribution of the ER observed around the nucleus. Collectively, our findings indicate that ER stress is a major cause of decline in the development of porcine embryos exposed to OTA. Therefore, OTA exposure induces ER stress and DNA damage via oxidative stress by disrupting PERK/NRF2 signaling activity in the developmental competence of porcine embryos during IVC.
Collapse
Affiliation(s)
- Seong-Min Woo
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Seul-Gi Yang
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Ye-Won Kim
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Department of Companion Animal Industry, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| | - Hyo-Jin Park
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
14
|
Rajabi-Toustani R, Hu Q, Wang S, Qiao H. How Do Environmental Toxicants Affect Oocyte Maturation Via Oxidative Stress? ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:69-95. [PMID: 39030355 DOI: 10.1007/978-3-031-55163-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In mammals, oogenesis initiates before birth and pauses at the dictyate stage of meiotic prophase I until luteinizing hormone (LH) surges to resume meiosis. Oocyte maturation refers to the resumption of meiosis that directs oocytes to advance from prophase I to metaphase II of meiosis. This process is carefully modulated to ensure a normal ovulation and successful fertilization. By generating excessive amounts of oxidative stress, environmental toxicants can disrupt the oocyte maturation. In this review, we categorized these environmental toxicants that induce mitochondrial dysfunction and abnormal spindle formation. Further, we discussed the underlying mechanisms that hinder oocyte maturation, including mitochondrial function, spindle formation, and DNA damage response.
Collapse
Affiliation(s)
- Reza Rajabi-Toustani
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qinan Hu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuangqi Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.
| |
Collapse
|
15
|
Qu J, Hu H, Niu H, Sun X, Li Y. Melatonin restores the declining maturation quality and early embryonic development of oocytes in aged mice. Theriogenology 2023; 210:110-118. [PMID: 37490796 DOI: 10.1016/j.theriogenology.2023.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
With increase in women's age, the reproductive capability of female mammals decreases dramatically caused by age-related oxidative stress, coinciding with the decline in the ovarian reserve, and the quality and quantity of oocytes, which is the main determinant of female fertility. Melatonin, as an effective antioxidant and antiaging substance, is secreted by the pineal gland and been found in the follicular fluid as well, which has been turned out to enable to protect oocytes from oxidative stress during ovulation. However, the beneficial effects of melatonin on meiotic maturation in vitro and early embryo development of aged oocytes are still not fully understood. Thus, the aim of this study is to explore the potential mechanism of melatonin to improve the oocytes maturation and early embryonic development. The results suggested that oocyte quality decreased with age, whereas 10-6 M melatonin supplementation can significantly prompt the maturation quality of oocytes, the rate of fertilization and the formation rate of blastocyst. Mechanistic investigation indicated that melatonin supplementation not only restored the function of mitochondria by reducing reactive oxygen species (ROS) generation and early apoptosis, but also increased the level of ATP and total GSH through enhancing the mRNA expression levels of SIRT1, SIRT3, GPX4, SOD1 and SOD2. In conclusion, melatonin could alleviate the impairment of age-related oxidative stress to meiotic maturation and early embryonic development of oocytes. This study may provide a potential remediation strategy to improve the quality of oocytes from aged women and the efficiency of assisted reproductive technologies.
Collapse
Affiliation(s)
- Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; The Department of Animal and Veterinary Science, University of Vermont, Burlington, VT, 05405, USA.
| | - Huiru Hu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Haoyuan Niu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
16
|
Tang J, Zeng J, Chen L, Wang M, He S, Muhmood A, Chen X, Huang K, Gan F. Farnesoid X Receptor Plays a Key Role in Ochratoxin A-Induced Nephrotoxicity by Targeting Ferroptosis In Vivo and In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14365-14378. [PMID: 37750412 DOI: 10.1021/acs.jafc.3c04560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The mycotoxin ochratoxin A (OTA) causes nephrotoxicity, hepatotoxicity, and immunotoxicity in animals and humans. The farnesoid X receptor (FXR) is a member of the NR family and is highly expressed in the kidney, which has an antilipid production function. Ferroptosis is an iron-dependent form of regulated cell death involved in several pathophysiological cell death and kidney injury. The present study aims to evaluate the role of FXR and ferroptosis in OTA-induced nephrotoxicity in mice and HK-2 cells. Results showed that OTA induced nephrotoxicity as demonstrated by inducing the histopathological lesions and neutrophil infiltration of the kidney, increasing serum BUN, CRE, and UA levels, increasing Ntn-1, Kim-1, and pro-inflammatory cytokine expression, and decreasing IL-10 expression and the cell viability of HK-2 cells. OTA treatment also induced FXR deficiency, ROS release, MDA level increase, GSH content decrease, and 4-HNE production in the kidney and HK-2 cells. OTA treatment induced ferroptosis as demonstrated by increasing labile iron pool and lipid peroxidation levels as well as Acsl4, TFR1, and HO-1 mRNA and protein levels, decreasing GPX4 and FTH mRNA and protein expressions, and inducing mitochondrial injury. The FXR activator (GW4064) rescued the accumulation of lipid peroxides, intracellular ROS, and Fe2+, inhibited ferroptosis, and alleviated OTA-induced nephrotoxicity. The ferroptosis inhibitor (Fer-1) prevented ferroptosis and attenuated nephrotoxicity. Collectively, this study elucidates that FXR played a critical role in OTA-induced nephrotoxicity via regulation of ferroptosis, which provides a novel strategy against OTA-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jiangyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Junya Zeng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Li Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Mengmeng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Suibin He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Animal Husbandry and Aquatic Products Technology Promotion Center of Pudong New Area, Shanghai 201299, China
| | - Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
17
|
Silva BR, Barrozo LG, Nascimento DR, Costa FC, Azevedo VAN, Paulino LRFM, Lopes EPF, Batista ALPS, Aguiar FLN, Peixoto CA, Donato MAM, Rodrigues APR, Silva JRV. Effects of cyclic adenosine monophosphate modulating agents during oocyte pre-maturation and the role of melatonin on in vitro maturation of bovine cumulus-oocyte complexes. Anim Reprod Sci 2023; 257:107327. [PMID: 37696223 DOI: 10.1016/j.anireprosci.2023.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
This study investigated the effects of cyclic adenosine monophosphate modulating during cumulus-oocyte complexes (COCs) pre-maturation and the role of melatonin on in vitro maturation (IVM) of bovine COCs. In experiment one, COCs were pre-matured for 8 h in control medium or with 3-isobutyl-1-methylxanthine (IBMX) and forskolin, IBMX and C-type natriuretic peptide, c-type natriuretic peptide and forskolin or IBMX, forskolin and c-type natriuretic peptide. Then, meiotic progression was evaluated. In experiment two, COCs were pre-matured, followed by IVM in control medium alone or with 10-6, 10-7 or 10-8 M melatonin. After IVM, chromatin configuration, transzonal projections (TZPs), reactive oxygen species, mitochondrial distribution, ultrastructure and mRNA expression for antioxidant enzymes were evaluated. In experiment 1, COCs pre-matured with both C-type natriuretic peptide and forskolin or C-type natriuretic peptide, forskolin and IBMX had lower meiotic resumption rate when compared to control. Considering that IBMX had not an additional effect to potentiate inhibition of meiotic resumption, a combination of C-type natriuretic peptide and forskolin was chosen. In experiment 2, COCs matured with 10-8 M melatonin had greater rates of meiotic resumption when compared to the other treatments (P < 0.05). The COCs matured with 10-7 or 10-8 M melatonin had greater mitochondrial activity (P < 0.05), while those matured with 10-6 or 10-8 M of melatonin had greater levels of TZPs. Ultrastructure of oocyte and cumulus cells after IVM with melatonin was relatively well preserved. COCs matured with 10-8 M melatonin increased mRNA expression for superoxide dismutase (SOD) and catalase (CAT) (P < 0.05), when compared to non-cultured and pre-matured COCs, respectively. In conclusion, bovine COC pre-maturation with C-type natriuretic peptide and forskolin, followed by IVM with 10-8 M melatonin improves meiotic resumption rates, TZPs, mitochondrial distribution and mRNA expression for SOD and CAT.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Laryssa G Barrozo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Danisvânia R Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Francisco C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Everton P F Lopes
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, Ceará, Brazil
| | - Ana L P S Batista
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil
| | - Francisco L N Aguiar
- Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraíba, Sousa, Paraíba, Brazil
| | - Christina A Peixoto
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Mariana A M Donato
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana P R Rodrigues
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, Ceará, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, Sobral 62041-040, Ceará, Brazil.
| |
Collapse
|
18
|
Wang J, Wang XQ, Liu RP, Li YH, Yao XR, Kim NH, Xu YN. Melatonin Supplementation during In Vitro Maturation of Porcine Oocytes Alleviates Oxidative Stress and Endoplasmic Reticulum Stress Induced by Imidacloprid Exposure. Animals (Basel) 2023; 13:2596. [PMID: 37627386 PMCID: PMC10451172 DOI: 10.3390/ani13162596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Imidacloprid (IMI) is an endogenous neonicotinoid insecticide widely used in agriculture and has attracted researchers' attention because of its risks to the environment and human health. Melatonin (MT) is an antioxidant hormone produced by the pineal gland of the brain. Studies have shown that it has a variety of physiological functions and plays a crucial role in the development of animal germ cells and embryos. The potential protective effects of MT against oocyte damage caused by neonicotinoid pesticide toxicity remain unclear. In this study, we report the toxicity of IMI against, and its effects on the quality of, porcine oocytes and the protective effect of MT on IMI-exposed oocytes. The results show that IMI exposure adversely affected oocyte maturation, while MT supplementation ameliorated its toxic effects. Specifically, IMI exposure increased oxidative stress (OS), endoplasmic reticulum stress (ERS), and apoptosis, which may affect polar body expulsion rates and blastocyst formation. Also, IMI exposure reduced oocyte cleavage rates and the number of cells in blastocysts. However, all of these toxic effects can be restored after a melatonin supplementation treatment. In conclusion, these results suggest that melatonin has a protective effect on IMI-induced defects during porcine oocyte maturation.
Collapse
Affiliation(s)
- Jing Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (Y.-H.L.)
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Xin-Qin Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (Y.-H.L.)
| | - Rong-Ping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (Y.-H.L.)
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (Y.-H.L.)
| | - Xue-Rui Yao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (Y.-H.L.)
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (Y.-H.L.)
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (Y.-H.L.)
| |
Collapse
|
19
|
Yao X, Liu W, Xie Y, Xi M, Xiao L. Fertility loss: negative effects of environmental toxicants on oogenesis. Front Physiol 2023; 14:1219045. [PMID: 37601637 PMCID: PMC10436557 DOI: 10.3389/fphys.2023.1219045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
There has been a global decline in fertility rates, with ovulatory disorders emerging as the leading cause, contributing to a global lifetime infertility prevalence of 17.5%. Formation of the primordial follicle pool during early and further development of oocytes after puberty is crucial in determining female fertility and reproductive quality. However, the increasing exposure to environmental toxins (through occupational exposure and ubiquitous chemicals) in daily life is a growing concern; these toxins have been identified as significant risk factors for oogenesis in women. In light of this concern, this review aims to enhance our understanding of female reproductive system diseases and their implications. Specifically, we summarized and categorized the environmental toxins that can affect oogenesis. Here, we provide an overview of oogenesis, highlighting specific stages that may be susceptible to the influence of environmental toxins. Furthermore, we discuss the genetic and molecular mechanisms by which various environmental toxins, including metals, cigarette smoke, and agricultural and industrial toxins, affect female oogenesis. Raising awareness about the potential risks associated with toxin exposure is crucial. However, further research is needed to fully comprehend the mechanisms underlying these effects, including the identification of biomarkers to assess exposure levels and predict reproductive outcomes. By providing a comprehensive overview, this review aims to contribute to a better understanding of the impact of environmental toxins on female oogenesis and guide future research in this field.
Collapse
Affiliation(s)
- Xiaoxi Yao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Weijing Liu
- Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yidong Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Mingrong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Zhang JY, Zhang MY, Xiao SY, Zheng MF, Wang JL, Sun SC, Qin L. Nivalenol disrupts mitochondria functions during porcine oocyte meiotic maturation. Toxicon 2023:107223. [PMID: 37437783 DOI: 10.1016/j.toxicon.2023.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Oocyte maturation is important for fertility in mammals, since the quality of oocytes directly affects fertilization, embryo attachment and survival. Nivalenol is widely present in nature as a common toxin that contaminates grain and feed, and it has been reported to cause acute toxicity, immunotoxicity, reproductive toxicity and carcinogenic effects. In this study, we explored the impact of nivalenol on the porcine oocyte maturation and its possible mechanisms. The extrusion of the first polar body was significantly inhibited after incubating oocytes with nivalenol. Meanwhile, nivalenol exposure led to the abnormal distribution of mitochondria, aberrant calcium concentration and the reduction of membrane potential caused a significant decrease in the capacity of mitochondria to generate ATP. In addition, nivalenol induced oxidative stress, and the level of ROS was significantly increased in the nivalenol-treated group, which was confirmed by the perturbation of oxidative stress-related genes. We found that nivalenol-treated oocytes showed positive Annexin-V and γH2A.X signals, indicating the occurrence of apoptosis and DNA damage. In all, our data suggest that nivalenol disrupted porcine oocyte maturation through its effects on mitochondria-related oxidative stress, apoptosis and DNA damage.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Yao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shi-Yi Xiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mei-Feng Zheng
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Jun-Li Wang
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Li Qin
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| |
Collapse
|
21
|
Zhang J, Li F, Zhang X, Xie T, Qin H, Lv J, Gao Y, Li M, Gao Y, Jia Y. Melatonin Improves Turbot Oocyte Meiotic Maturation and Antioxidant Capacity, Inhibits Apoptosis-Related Genes mRNAs In Vitro. Antioxidants (Basel) 2023; 12:1389. [PMID: 37507927 PMCID: PMC10376768 DOI: 10.3390/antiox12071389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
High-quality eggs are essential for the sustainability of commercial aquaculture production. Melatonin is a potent candidate for regulating the growth and maturation of oocytes. Therefore, research on the effect of melatonin on marine fish oocytes in vitro has been conducted. The present study successfully established a culture system of turbot (Scophthalmus maximus) oocytes in vitro and investigated the effect of melatonin on oocyte meiotic maturation, antioxidant capacity, and the expression of apoptosis-related genes. The cultures showed that turbot Scophthalmus maximus late-vitellogenic denuded oocytes, with diameters of 0.5-0.7 mm, had a low spontaneous maturation rate and exhibited a sensitive response to 17α, 20β-dihydroxyprogesterone (DHP) treatment in vitro. Melatonin increased by four times the rate of oocyte germinal vesicle breakdown (GVBD) in a concentration- and time-dependent manner. The mRNA of melatonin receptor 1 (mtnr1) was significantly upregulated in the oocyte and follicle after treatment with melatonin (4.3 × 10-9 M) for 24 h in vitro, whereas melatonin receptor 2 (mtnr2) and melatonin receptor 3 (mtnr3) remained unchanged. In addition, melatonin significantly increased the activities of catalase, glutathione peroxidase, and superoxide dismutase, as well as the levels of glutathione, while decreasing the levels of malondialdehyde and reactive oxygen species (ROS) levels in turbot oocytes and follicles cultures in vitro. p53, caspase3, and bax mRNAs were significantly downregulated in oocytes and follicles, whereas bcl2 mRNAs were significantly upregulated. In conclusion, the use of turbot late-vitellogenesis oocytes (0.5-0.7 mm) is suitable for establishing a culture system in vitro. Melatonin promotes oocyte meiotic maturation and antioxidative capacity and inhibits apoptosis via the p53-bax-bcl2 and caspase-dependent pathways, which have important potential to improve the maturation and quality of oocytes.
Collapse
Affiliation(s)
- Jiarong Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Feixia Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyu Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ting Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hongyu Qin
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Junxian Lv
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yunhong Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mingyue Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yuntao Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
22
|
Wang X, Li H, Mu H, Zhang S, Li Y, Han X, Zhang L, Xiang W. Melatonin improves the quality of rotenone-exposed mouse oocytes through association with histone modifications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115186. [PMID: 37393821 DOI: 10.1016/j.ecoenv.2023.115186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/17/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Rotenone, an insecticide that inhibits mitochondrial complex I and generates oxidative stress, is responsible for neurological disorders and affects the female reproductive system. However, the underlying mechanism is not fully understood. Melatonin, a potential free-radical scavenger, has been shown to protect the reproductive system from oxidative damage. In this study, we investigated the impact of rotenone on mouse oocyte quality and evaluated the protective effect of melatonin on oocytes exposed to rotenone. Our results showed that rotenone impaired mouse oocyte maturation and early embryo cleavage. However, melatonin prevented these negative effects by ameliorating rotenone-induced mitochondrial dysfunction and dynamic imbalance, intracellular Ca2+ homeostasis damage, ER stress, early apoptosis, meiotic spindle formation disruption, and aneuploidy in oocytes. Additionally, RNA sequencing analysis showed that rotenone exposure changed the expression of multiple genes involved in histone methylation and acetylation modifications that result in mouse meiotic defects. However, melatonin partially rescued these defects. These findings suggest that melatonin has protective effects against rotenone-induced mouse oocyte defects.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Huiying Li
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Hongbei Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaozhe Zhang
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaotao Han
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China.
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
23
|
Yao Y, Zhu W, Han D, Shi X, Xu S. New Insights into How Melatonin Ameliorates Bisphenol A-Induced Colon Damage: Inhibition of NADPH Oxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2566-2578. [PMID: 36633214 DOI: 10.1021/acs.jafc.2c07236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor, widely employed, and detected in many consumer products and food items. Oral intake poses a great threat to intestinal health. Melatonin (MT) stands out as an endogenous, dietary, and therapeutic molecule with potent antioxidant capacity. To explore the protective effect of MT against BPA-induced colon damage and the role of NADPH oxidase (NOX) in this process, we established mice and colonic epithelial cell (NCM460) models of BPA exposure and treated with MT. In vitro and in vivo results showed that MT ameliorated BPA-induced oxidative stress, DNA damage, and the G2/M cell cycle arrest. MT also downregulated the expression of NOX family-related genes, reversed the inhibition of the base excision repair (BER) pathway, promoted the activation of non-homologous end-joining (NHEJ) pathway, and suppressed the mRNA and protein expression of ATM, Chk1/2, and p53. Diphenyleneiodonium chloride (DPI), a NOX-specific inhibitor, also attenuated the toxic effects of BPA on NCM460 cells. Furthermore, molecular docking revealed that MT could bind to NOX. Conclusively, our finding suggested that MT can ameliorate BPA-induced colonic DNA damage by scavenging NOX-derived ROS, which further attenuates G2/M cell cycle arrest dependent on the ATM-Chk1/2-p53 axis.
Collapse
Affiliation(s)
- Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenjing Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
24
|
Qu J, Liu K, Liu S, Yue D, Zhang P, Mao X, He W, Huang K, Chen X. Taurine alleviates ochratoxin A-induced pyroptosis in PK-15 cells by inhibiting oxidative stress. J Biochem Mol Toxicol 2023; 37:e23249. [PMID: 36281498 DOI: 10.1002/jbt.23249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Ochratoxin A (OTA) is one of the most harmful mycotoxins, which can cause multiple toxicological effects, especially nephrotoxicity in animals and humans. Taurine is an essential amino acid with various biological functions such as anti-inflammatory and anti-oxidation. However, the protective effect of taurine on OTA-induced nephrotoxicity and pyroptosis had not been reported. Our results showed that OTA exposure induced cytotoxicity and oxidative stress in PK-15 cells, including reactive oxygen species (ROS) accumulation, increased mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), and decreased mRNA levels of catalase (CAT), glutathione peroxidase 1 (GPx1), and glutathione peroxidase 4 (GPx4). In addition, OTA treatment induced pyroptosis by increasing the expressions of pyroptosis-related proteins NLRP3, GSDMD, Caspase-1 P20, ASC, Pro-caspase-1, and IL-1β. Meanwhile, taurine could alleviate OTA-induced pyroptosis and cytotoxicity, as well as reduce ROS level, COX-2, and iNOS mRNA levels, and increase the mRNA levels of the antioxidant enzyme in PK-15 cells. Taken together, taurine alleviated OTA-induced pyroptosis in PK-15 cells by inhibiting ROS generation and altering the activity of antioxidant enzymes, thereby attenuating its nephrotoxicity.
Collapse
Affiliation(s)
- Jie Qu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kai Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dongmei Yue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ping Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenmiao He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Liu Y, Tan YQ, Zhou G. Melatonin: a potential therapeutic approach for the management of primary Sjögren's syndrome. Immunol Res 2023; 71:373-387. [PMID: 36715831 DOI: 10.1007/s12026-023-09360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that primarily affects the exocrine glands and is mainly characterized by sicca symptoms of the eyes and mouth. Approximately 30-50% of pSS patients develop systemic multi-organ disorders including malignant lymphoma. The etiology of pSS is not well understood; growing evidence suggests that uncontrolled immune/inflammatory responses, excessive oxidative stress, defected apoptosis, dysregulated autophagy, exosomes, and exogenous virus infections may participate in the pathogenesis of pSS. There is no ideal therapeutic method for pSS; the management of pSS is mainly palliative, which aims to alleviate sicca symptoms. Melatonin, as the main secretory product of the pineal gland, has been evidenced to show various physiological functions, including effects of immunoregulation, capability of antioxidation, moderation of autophagy, suppressive activities of apoptosis, regulative capacity of exosomes, properties of anti-infection, and improvement of sleep. The beneficial effects of melatonin have been already validated in some autoimmune diseases such as multiple sclerosis (MS), type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD). However, our previous research firstly revealed that melatonin might inhibit pathogenic responses of peripheral Th17 and double-negative (DN) T cells in pSS. More importantly, melatonin administration alleviated the development of pSS in animal models with reduced infiltrating lymphocytes, improved functional activity of salivary gland, and decreased production of inflammatory factors as well as autoantibodies. Owing to the important biological properties reported in melatonin are characteristics closely related to the treatment of pSS; the potential role and underlying mechanisms of melatonin in the administration of pSS are certainly worth further investigations. Consequently, the aim of this review is to give a deep insight to the therapeutic potency of melatonin for pSS.
Collapse
Affiliation(s)
- Yi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China.
| |
Collapse
|
26
|
Zhang M, Sun L, Zhang Z, Shentu L, Zhang Y, Li Z, Zhang Y, Zhang Y. Alpha-lipoic acid supplementation restores the meiotic competency and fertilization capacity of porcine oocytes induced by arsenite. Front Cell Dev Biol 2022; 10:943757. [PMID: 36263016 PMCID: PMC9574060 DOI: 10.3389/fcell.2022.943757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Arsenite is known as a well-known endocrine disrupting chemicals, and reported to be associated with an increased incidence of negative health effects, including reproductive disorders and dysfunction of the endocrine system. However, it still lacks of the research regarding the beneficial effects of ALA on arsenite exposed oocytes, and the underlying mechanisms have not been determined. Here, we report that supplementation of alpha-lipoic acid (ALA), a strong antioxidant naturally present in all cells of the humans, is able to restore the declined meiotic competency and fertilization capacity of porcine oocytes induced by arsenite. Notably, ALA recovers the defective nuclear and cytoplasmic maturation of porcine oocytes caused by arsenite exposure, including the impaired spindle formation and actin polymerization, the defective mitochondrion integrity and cortical granules distribution. Also, ALA recovers the compromised sperm binding ability to maintain the fertilization potential of arsenite-exposed oocytes. Importantly, ALA suppresses the oxidative stress by reducing the levels of ROS and inhibits the occurrence of DNA damage along with apoptosis. Above all, we provide a new perspective for the application of ALA in effectively preventing the declined oocyte quality induced by environmental EDCs.
Collapse
|
27
|
Morán-Serradilla C, Angulo-Elizari E, Henriquez-Figuereo A, Sanmartín C, Sharma AK, Plano D. Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses? Metabolites 2022; 12:874. [PMID: 36144278 PMCID: PMC9504997 DOI: 10.3390/metabo12090874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se activity is related to multiple factors, such as its chemical form, dose, and its metabolism. The understanding of its complex biochemistry is necessary as it has been demonstrated that the metabolites of the Se molecules used to be the ones that exert the biological activity. Therefore, the aim of this review is to summarize the recent information about its most remarkable metabolites of acknowledged biological effects: hydrogen selenide (HSe-/H2Se) and methylselenol (CH3SeH). In addition, special attention is paid to the main seleno-containing precursors of these derivatives and their role in different pathologies.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Eduardo Angulo-Elizari
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
28
|
Song Y, Zhao J, Qiao T, Li L, Shi D, Sun Y, Shen W, Sun X. Maternal ochratoxin A exposure impairs meiosis progression and primordial follicle formation of F1 offspring. Food Chem Toxicol 2022; 168:113386. [PMID: 36007852 DOI: 10.1016/j.fct.2022.113386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Ochratoxin A (OTA), a mycotoxin produced by Aspergillus and Penicillium fungi, widely contaminates feed, food and their raw materials. OTA has been proved to have hepatotoxicity and nephrotoxicity. Its reproductive toxicity needs to be further explored. We found that OTA inhibited the progression of meiosis, keeping more germ cells at leptotene and zygotene. Furthermore, OTA impaired primordial follicle formation, keeping more germ cells in cysts. Increased γH2AX suggested that DNA damage occurred both at the stages of meiosis and primordial follicle formation. The expression of RAD51 increased with the concentration of OTA at the stage of meiosis, while decreased later, suggesting the activated DNA repair induced by DNA damage then inhibited by persistent and excessive stress of DNA damage, which further induced apoptosis. DEGs caused by OTA were also mainly enriched in DNA damage and repair through RNA-seq analysis. Higher level of reactive oxygen species (ROS) and increased degree of oxidative damage marker 8-OHdG were both found in the ovaries exposed to OTA. We concluded that maternal OTA exposure affected meiosis progression and primordial follicle formation via oxidative damage and DNA repair. Clarification of the mechanism of OTA will contribute to the development of more effective detoxification strategies.
Collapse
Affiliation(s)
- Yue Song
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinxin Zhao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dachuan Shi
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Yonghong Sun
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xiaofeng Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
29
|
Zhao P, Liu X, Jiang WD, Wu P, Liu Y, Jiang J, Zhang L, Mi HF, Kuang SY, Tang L, Zhou XQ, Feng L. The multiple biotoxicity integrated study in grass carp (Ctenopharyngodon idella) caused by Ochratoxin A: Oxidative damage, apoptosis and immunosuppression. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129268. [PMID: 35739783 DOI: 10.1016/j.jhazmat.2022.129268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Ochratoxin A (OTA) is a common hazardous food contaminant that seriously endangers human and animal health. However, limited study is focused on aquatic animal. This research investigated the multiple biotoxicity of OTA on spleen (SP) and head kidney (HK) in grass carp and its related mechanism. Our data showed that, dietary supplemented with OTA above 1209 μg/kg caused histopathological damages by decreasing the number of lymphocytes and necrotizing renal parenchymal cells. Meanwhile, OTA caused oxidative damage and reduced the isoforms mRNAs transcripts of antioxidant enzymes (e.g., GPX1, GPX4, GSTO) partly due to suppressing NF-E2-related factor 2 (Nrf2). OTA triggered apoptosis through mitochondria and death receptor pathway potentially by p38 mitogen-activated protein kinase (p38MAPK) activation. Besides, OTA exacerbated inflammation by down-regulation of anti-inflammatory factor (e.g., IL-10, IL-4) and up-regulations of pro-inflammatory factors (e.g., TNF-α, IL-6), which could be ascribed to signaling meditation of Janus kinase / signal transducer and activator of transcription (JAK/STAT). Additionally, the safe upper limits of OTA were estimated to be 677.6 and 695.08 μg/kg based on the immune-related indexes (C3 contents in the SP and LZ activities in the HK, respectively). Our study has provided a wide insight for toxicological assessment of feed pollutant in aquatic animals.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xin Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
30
|
Chi F, Zhang G, Ren N, Zhang J, Du F, Zheng X, Zhang C, Lin Z, Li R, Shi X, Zhu Y. The anti-alcoholism drug disulfiram effectively ameliorates ulcerative colitis through suppressing oxidative stresses-associated pyroptotic cell death and cellular inflammation in colonic cells. Int Immunopharmacol 2022; 111:109117. [PMID: 35969897 DOI: 10.1016/j.intimp.2022.109117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Oxidative stress, cell pyroptosis and inflammation are considered as important pathogenic factors for ulcerative colitis (UC) development, and the traditional anti-alcoholism drug disulfiram (DSF) has recently been reported to exert its regulating effects on all the above cellular functions, which makes DSF as ideal therapeutic agent for UC treatment, but this issue has not been fully studied. METHODS Dextran sulfate sodium (DSS)-induced animal models in C57BL/6J mice and lipopolysaccharide (LPS)-induced cellular models in colonic cell lines (HT-29 and Caco-2) for UC were respectively established. Cytokine secretion was determined by ELISA. Cell viability and proliferation were evaluated by MTT assay and EdU assay. Real-Time qPCR, Western Blot, immunofluorescent staining assay and immunohistochemistry (IHC) were employed to evaluate gene expressions. The correlations of the genes in the clinical tissues were analyzed by using the Pearson Correlation analysis. RESULTS DSF restrained oxidative stress, pyroptotic cell death and cellular inflammation in UC models in vitro and in vivo, and elimination of Reactive Oxygen Species (ROS) by N-acetyl-l-cysteine (NAC) rescued cell viability in LPS-treated colonic cells (HT-29 and Caco-2). Further experiments suggested that a glycogen synthase kinase-3β (GSK-3β)/Nrf2/NLRP3 signaling cascade played critical role in this process. Mechanistically, DSF downregulated GSK-3β and NLRP3, whereas upregulated Nrf2 in LPS-treated colonic cells. Also, the regulating effects of DSF on Nrf2 and NLRP3 were abrogated by upregulating GSK-3β. Moreover, upregulation of GSK-3β abolished the protective effects of DSF on LPS-treated colonic cells. CONCLUSIONS Taken together, data of this study indicated that DSF restrained oxidative damages-related pyroptotic cell death and inflammation via regulating the GSK-3β/Nrf2/NLRP3 pathway, leading to the suppression of LPS-induced UC development.
Collapse
Affiliation(s)
- Fengxu Chi
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Qunli Seventh Street No. 2075, Daoli District, Harbin 150001, Heilongjiang, China
| | - Guangquan Zhang
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shennan Middle Road No. 3025, Shenzhen 518033, China.
| | - Niansheng Ren
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Qunli Seventh Street No. 2075, Daoli District, Harbin 150001, Heilongjiang, China.
| | - Jian Zhang
- Department of Tumor Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Road No. 23, Nangang District, Harbin 150001, Heilongjiang, China.
| | - Fei Du
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shennan Middle Road No. 3025, Shenzhen 518033, China
| | - Xiyan Zheng
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shennan Middle Road No. 3025, Shenzhen 518033, China
| | - Cong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Qunli Seventh Street No. 2075, Daoli District, Harbin 150001, Heilongjiang, China
| | - Zhiqun Lin
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shennan Middle Road No. 3025, Shenzhen 518033, China
| | - Ruixi Li
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shennan Middle Road No. 3025, Shenzhen 518033, China.
| | - Xianjie Shi
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shennan Middle Road No. 3025, Shenzhen 518033, China.
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Qunli Seventh Street No. 2075, Daoli District, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
31
|
Chen X, Yang J, Li M, Zhu S, Zhao M, Yang C, Liu B, Gao H, Lu A, Ge L, Mo L, Gu Z, Xu H. Fullerenol protects cornea from ultraviolet B exposure. Redox Biol 2022; 54:102360. [PMID: 35690049 PMCID: PMC9190064 DOI: 10.1016/j.redox.2022.102360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023] Open
Abstract
The eyes are highly susceptible to the oxidative stress induced by ultraviolet B (UVB, wavelength between 280 ∼ 320 nm), which could cause severe damage to the cornea. Fullerenols are effective antioxidants to alleviate UVB-induced injury, while their application for the eyes is still rare. In present study, we investigated the protective performance and mechanism of fullerenols on cornea under UVB radiation in vivo and in vitro. The synthesized fullerenols exhibited broad-spectrum free radical scavenging properties (applicable to both reactive oxygen species (ROS) and reactive nitrogen species (RNS)) and photo-stability. When compared with another widely used antioxidant glutathione (GSH), the administration of fullerenols markedly decreased the injured area, corneal edema, cell death, and increased the cell proliferation in UVB-induced rat cornea. The effects of fullerenols were confirmed in UVB-exposed human corneal epithelial cells (hCECs), where elevated cell viability and proliferation, decreased oxidative free radical production, repaired mitochondrial dysfunction and DNA lesions were observed. RNA sequencing (RNA-Seq) analysis demonstrated that fullerenol alleviated UVB-induced corneal injury through down-regulation of oxidative stress-related genes and up-regulation of proliferation-associated genes. Our results demonstrate the suitability of fullerenols as a potential exogenous treatment in ameliorating UVB-induced cornea damage.
Collapse
Affiliation(s)
- Xia Chen
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China; Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Junling Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Minghui Li
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cao Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Bo Liu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Hui Gao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Ao Lu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Lingyue Mo
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China.
| |
Collapse
|
32
|
Hu LL, Li HG, Li XM, Xu Y, Pang YQ, Wang B, Wang JL, Sun SC. Nonylphenol exposure-induced oocyte quality deterioration could be reversed by melatonin supplementation in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119317. [PMID: 35439602 DOI: 10.1016/j.envpol.2022.119317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Nonylphenol (NP) belongs to the metabolites of commercial detergents, which acts as an environmental endocrine disruptor. NP is reported to have multiple toxicity including reproductive toxicity. In present study, we reported the protective effects of melatonin on the NP-exposed oocyte quality. We set up a mouse in vivo model of NP exposure (500 μg/L), by daily drinking and continued feeding for 4 weeks; and we gave a daily dose of melatonin (30 mg/kg) to the NP-exposed mice. Melatonin supplementation restores the development ability of oocytes exposed to NP, and this was due to the reduction of ROS level and DNA damage by melatonin. Melatonin could rescue aberrant mitochondria distribution, mitochondria membrane potential, which also was reflected by ATP content and mtDNA copy number. Moreover, melatonin could restore the RPS3 expression to ensure the ribosome function for protein synthesis, and reduced GRP78 protein level to protect against ER stress and ER distribution defects. We also found that vesicle protein Rab11 from Golgi apparatus was protected by melatonin at the spindle periphery of oocytes of NP-exposed mice, which further moderated LAMP2 for lysosome function. Our results indicate that melatonin protects oocytes from NP exposure through its effects on the reduction of oxidative stress and DNA damage, which might be through its amelioration on the organelles in mice.
Collapse
Affiliation(s)
- Lin-Lin Hu
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Hong-Ge Li
- School of Medical Laboratory, Youjiang Medical University for Nationalities, Baise, 533000, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Mei Li
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Qin Pang
- School of Medical Laboratory, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Bin Wang
- School of Public Health, Peking University, Beijing, 100191, China
| | - Jun-Li Wang
- School of Medical Laboratory, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Xing C, Chen S, Wang Y, Pan Z, Zou Y, Sun S, Ren Z, Zhang Y. Glyphosate exposure deteriorates oocyte meiotic maturation via induction of organelle dysfunctions in pigs. J Anim Sci Biotechnol 2022; 13:80. [PMID: 35799248 PMCID: PMC9264682 DOI: 10.1186/s40104-022-00732-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Recently, defects in mammalian oocytes maturation induced by environmental pollution results in the decreasing animal reproduction. Animal exposed to glyphosate is largely unavoidable because glyphosate is one of the most widely used herbicide worldwide due to its high-efficiency and broad-spectrum effects, which causes glyphosate an environmental contaminant found in soil, water and food. During the last few years, the growing and wider use of glyphosate has raised great concerns about its effects of reproductive toxicity. In this study, using porcine models, we investigated effects of glyphosate on organelle functions during oocyte meiosis. Results The results showed glyphosate exposure disrupted porcine oocyte maturation. Expression levels of cumulus expansion-related genes were interfered, further indicating the meiotic defects. The damaging effects were mediated by destruction of mitochondrial distribution and functions, which induced ROS accumulation and oxidative stress, also indicated by the decreased mRNA expression of related antioxidant enzyme genes. We also found an interference of endoplasmic reticulum (ER) distribution, disturbance of Ca2+ homeostasis, as well as fluctuation of ER stress, showing with the reduced ER stress-related mRNA or protein expression, which could indicate the dysfunction of ER for protein processing and signal transduction in glyphosate-exposed oocytes. Moreover, glyphosate exposure induced the disruption of lysosome function for autophagy, showing with the decrease of LAMP2 expression and autophagy-related genes mRNA expression. Additionally, our data showed the distribution of Golgi apparatus and the functions of ribosome were disturbed after glyphosate exposure, which might affect protein synthesis and transport. Conclusions Collectively, our study showed that exposed to glyphosate could affect animal reproduction by compromising the quality of oocytes through its wide toxic effects on organelle functions.
Collapse
Affiliation(s)
- Chunhua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhennan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanjing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaochen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zili Ren
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, Tibet, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
34
|
Li Z, Duan J, Chen L, Wang Y, Qin Q, Dang X, Zhou Z. Melatonin enhances the antioxidant capacity to rescue the honey bee Apis mellifera from the ecotoxicological effects caused by environmental imidacloprid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113622. [PMID: 35617898 DOI: 10.1016/j.ecoenv.2022.113622] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Imidacloprid severely poisons the nontarget insect honey bee Apis mellifera. Few treatments are available to mitigate the adverse effects of imidacloprid. The primary concern is that the molecular understanding of imidacloprid toxicity is not comprehensive enough. Oxidative stress is the primary pathophysiological mechanism by which pesticides cause high mortality. Our pilot study found for the first time that imidacloprid stimulates bee brains to secrete melatonin, a free radical scavenger. However, the molecular basis for imidacloprid toxicity and the role of melatonin in coping with imidacloprid have not been systematically investigated in bees. This study administered an environmental dose of imidacloprid (36 ng/bee) orally to A. mellifera. The detoxification gene cytochrome P450 CYP4G11 was significantly induced. However, potent cytotoxicity of imidacloprid suppressed the expression of the antioxidants catalase (CAT) and thioredoxin reductase (TrxR), and the activity of guaiacol peroxidase (GPX), superoxide dismutase (SOD), and reduced glutathione (GSH) was not induced. The levels of reactive oxygen species (ROS) and the lipid peroxidation marker malondialdehyde (MDA) were increased. The expression of the apoptotic genes cysteinyl aspartate specific proteinase (Caspase-3) and apoptosis inducing factor (AIF) increased, and the apoptotic features of midgut cells were prominently apparent. These results suggest that imidacloprid disrupts the bee antioxidant system, causing severe oxidative stress and tissue damage and ultimately leading to apoptosis. Significantly, however, imidacloprid exposure also stimulated bee brains to continuously secrete melatonin. Further preadministration of exogenous melatonin (200 ng/bee) orally to bees significantly reversed and enhanced the activity of the imidacloprid-suppressed antioxidants CAT, SOD, and GSH, which allowed imidacloprid-induced ROS accumulation to be effectively alleviated. The MDA content, apoptotic genes Caspase-3 and AIF, and detoxification gene CYPG411 expression were restored to normalization; midgut cell damage, apoptosis, and mortality were significantly reduced. These findings strongly suggest that melatonin enhanced bee antioxidant capacity, thus attenuating oxidative stress and apoptosis to confer imidacloprid tolerance to honey bees. Melatonin secretion may be a defense mechanism to mitigate imidacloprid toxicity.
Collapse
Affiliation(s)
- Zhi Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China; Chongqing Key Laboratory of Animal Biology, China.
| | - Jiaxin Duan
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Lanchun Chen
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuedi Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qiqian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaoqun Dang
- College of Life Sciences, Chongqing Normal University, Chongqing, China; Chongqing Key Laboratory of Animal Biology, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, China; The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
35
|
Zhao S, Zhang J, Sun X, Yangzom C, Shang P. Mitochondrial calcium uniporter involved in foodborne mycotoxin-induced hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113535. [PMID: 35461028 DOI: 10.1016/j.ecoenv.2022.113535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Foodborne mycotoxins are toxic metabolites that are produced by fungi. The widespread contamination of food and its by-products by mycotoxins is a global food safety problem that potentially threatens public health and other exposed animals. Most foodborne mycotoxins induce hepatotoxicity. However, only few studies have investigated the regulatory mechanisms of mitochondrial calcium transport monomers in mycotoxin-induced hepatotoxicity. Therefore, according to relevant studies and reports, this review suggests that intracellular Ca(2 +) homeostasis and mitochondrial Ca(2 +) uniporter are involved in the regulation of mycotoxin-induced hepatotoxicity. This review provides some ideas for future research involving mitochondrial Ca(2 +) uniporter in the molecular targets of mycotoxin-induced hepatotoxicity, as well as a reference for the research and development of related drugs and the treatment of related diseases.
Collapse
Affiliation(s)
- Shunwang Zhao
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Jian Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Xueqian Sun
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Chamba Yangzom
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China.
| |
Collapse
|
36
|
Involvement of NLRP3/Caspase-1/GSDMD-Dependent Pyroptosis in BPA-Induced Apoptosis of Human Neuroblastoma Cells. Biochem Pharmacol 2022; 200:115042. [DOI: 10.1016/j.bcp.2022.115042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
|
37
|
Melatonin Rescues Dimethoate Exposure-Induced Meiotic and Developmental Defects of Porcine Oocytes. Animals (Basel) 2022; 12:ani12070832. [PMID: 35405822 PMCID: PMC8997005 DOI: 10.3390/ani12070832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Environmental pollution poses concerns for public health. Dimethoate is a pesticide widely used in agricultural fields and home gardens. Recent studies have shown that dimethoate exposure impaired reproductive functions in male and female animals. However, whether dimethoate exposure affects oocyte maturation and how to reduce the toxicity of dimethoate remain unclear. Here, we showed that dimethoate exposure impaired nuclear and cytoplasmic maturation of porcine oocytes. Melatonin supplementation restored the meiotic maturation of dimethoate-exposed oocytes by suppressing the generation of excessive reactive oxygen species and autophagy and DNA damage accumulation. Therefore, melatonin counteracts the toxic effects of dimethoate exposure on porcine oocyte maturation. These findings imply that melatonin could be a promising agent in improving the quality of dimethoate-exposed oocytes from humans and animals. Abstract Dimethoate (DT) is an environmental pollutant widely used in agricultural fields and home gardens. Studies have shown that exposure to DT causes reproductive defects in both male and female animals. However, the effects of DT exposure on oocyte maturation and the approach to counteract it are not yet known. Here, we investigated the toxicity of DT on porcine oocyte maturation and the protective effects of melatonin (MT) on DT-exposed oocytes. DT exposure with 1.5 mM partially inhibited cumulus cell expansion and significantly reduced the rate of first polar body extrusion (pb1) during oocyte maturation. Parthenogenetically activated embryos derived from DT-exposed oocytes could not develop to the 2-cell and blastocyst stage. Furthermore, DT exposure led to a significant increase in the rates of misaligned chromosomes, disorganized spindles, and abnormal actin assembly. DT exposure severely disrupted the distribution patterns of mitochondria in oocytes but did not change the subcellular localizations of cortical granules. Importantly, MT supplementation rescued the meiotic and developmental defects of DT-exposed oocytes through repressing the generation of excessive reactive oxygen species (ROS) and autophagy, and DNA damage accumulation. These results demonstrate that melatonin protects against meiotic defects induced by DT during porcine oocyte maturation.
Collapse
|
38
|
Luan P, Zhang H, Chen X, Zhu Y, Hu G, Cai J, Zhang Z. Melatonin relieves 2,2,4,4-tetrabromodiphenyl ether (BDE-47)-induced apoptosis and mitochondrial dysfunction through the AMPK-Sirt1-PGC-1α axis in fish kidney cells (CIK). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113276. [PMID: 35123185 DOI: 10.1016/j.ecoenv.2022.113276] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) exist in aquatic environments with nephrotoxicity to non-target aquatic species. Melatonin (MT) exhibits an inhibitory effect of oxidative stress and apoptosis in various diseases. 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) is the main homolog of PBDE samples. Therefore, we investigated the toxic mechanism of BDE-47 and the alleviation effect of MT, the ctenopharyngodon idellus kidney (CIK) cells were treated with BDE-47 (100 μM) and/or MT (60 μM) for 24 h. Firstly, BDE-47 exposure could inhibit oxidative stress-related antioxidant enzymes (T-AOC, SOD, CAT and GPx) and increase the content of malondialdehyde (MDA) to cause oxidative stress. Secondly, BDE-47 enhanced mitochondrial division and inhibited fusion to induce mitochondrial membrane potential in CIK cells. BDE-47 enhanced the mRNA and protein levels of mitochondrial-pathway apoptosis related genes (Cas 3, Cyt-c, and BAX). Thirdly, BDE-47 treatment decreased the expression levels of mitochondrial-related regulatory factors AMPK-Sirt1-PGC-1α signal pathway. Intriguingly, BDE-47-induced oxidative stress, mitochondrial pathway apoptosis and mitochondrial dynamics disorder could be alleviated by MT treatment. Overall, we concluded that MT could relieve BDE-47-induced oxidative stress, mitochondrial dysfunction and apoptosis through the AMPK-Sirt1-PGC-1α axis. These results enrich the mechanisms of BDE-47 poisoning and reveal that MT treatment may be a potential strategy for solving BDE-47 poisoning.
Collapse
Affiliation(s)
- Peixian Luan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 0150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150070, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guo Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 0150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150070, PR China.
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
39
|
Wang ZW, Gao YN, Huang SN, Wang JQ, Zheng N. Ex Vivo and In Vitro Studies Revealed Underlying Mechanisms of Immature Intestinal Inflammatory Responses Caused by Aflatoxin M1 Together with Ochratoxin A. Toxins (Basel) 2022; 14:toxins14030173. [PMID: 35324670 PMCID: PMC8953104 DOI: 10.3390/toxins14030173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Aflatoxin M1 (AFM1) and ochratoxin A (OTA), which are occasionally detected in milk and commercial baby foods, could easily enter and reach the gastrointestinal tract, posing impairment to the first line of defense and causing dysfunction of the tissue. The objective of this study was to investigate the immunostimulatory roles of individual and combined AFM1 and OTA on the immature intestine. Thus, we used ELISA assays to evaluate the generation of cytokines from ex vivo CD-1 fetal mouse jejunum induced by AFM1 and OTA and explored the related regulatory pathways and pivot genes using RNA-seq analysis. It was found that OTA exhibited much stronger ability in stimulating pro-inflammatory cytokine IL-6 from jejunum tissues than AFM1 (OTA of 4 μM versus AFM1 of 50 μM), whereas the combination of the two toxins seemed to exert antagonistic actions. In addition, transcriptomics also showed that most gene members in the enriched pathway ‘cytokine–cytokine receptor interaction’ were more highly expressed in OTA than the AFM1 group. By means of PPI network analysis, NFKB1 and RelB were regarded as hub genes in response to OTA but not AFM1. In the human FHs 74 Int cell line, both AFM1 and OTA enhanced the content of reactive oxygen species, and the oxidative response was more apparent in OTA-treated cells in comparison with AFM1. Furthermore, OTA and AFM1 + OTA raised the protein abundance of p50/RelB, and triggered the translocation of the dimer from cytosol to nucleus. Therefore, the experimental data ex vivo and in vitro showed that OTA-induced inflammation was thought to be bound up with the up-regulation and translocation of NF-κB, though AFM1 seemed to have no obvious impact. Since it was the first attempt to uncover the appearances and inner mechanisms regarding inflammation provoked by AFM1 and OTA on immature intestinal models, further efforts are needed to understand the detailed metabolic steps of the toxin in cells and to clarify their causal relationship with the signals proposed from current research.
Collapse
Affiliation(s)
- Zi-Wei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ya-Nan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sheng-Nan Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jia-Qi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| |
Collapse
|
40
|
Melatonin and the Programming of Stem Cells. Int J Mol Sci 2022; 23:ijms23041971. [PMID: 35216086 PMCID: PMC8879213 DOI: 10.3390/ijms23041971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Melatonin interacts with various types of stem cells, in multiple ways that comprise stimulation of proliferation, maintenance of stemness and self-renewal, protection of survival, and programming toward functionally different cell lineages. These various properties are frequently intertwined but may not be always jointly present. Melatonin typically stimulates proliferation and transition to the mature cell type. For all sufficiently studied stem or progenitor cells, melatonin’s signaling pathways leading to expression of respective morphogenetic factors are discussed. The focus of this article will be laid on the aspect of programming, particularly in pluripotent cells. This is especially but not exclusively the case in neural stem cells (NSCs) and mesenchymal stem cells (MSCs). Concerning developmental bifurcations, decisions are not exclusively made by melatonin alone. In MSCs, melatonin promotes adipogenesis in a Wnt (Wingless-Integration-1)-independent mode, but chondrogenesis and osteogenesis Wnt-dependently. Melatonin upregulates Wnt, but not in the adipogenic lineage. This decision seems to depend on microenvironment and epigenetic memory. The decision for chondrogenesis instead of osteogenesis, both being Wnt-dependent, seems to involve fibroblast growth factor receptor 3. Stem cell-specific differences in melatonin and Wnt receptors, and contributions of transcription factors and noncoding RNAs are outlined, as well as possibilities and the medical importance of re-programming for transdifferentiation.
Collapse
|
41
|
Jiang WJ, Liu W, Li YH, Jiang H, Xu YN, Kim NH. Citrinin impairs pig oocyte maturation by inducing oxidative stress and apoptosis. Toxicon 2022; 205:84-90. [PMID: 34871670 DOI: 10.1016/j.toxicon.2021.11.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Citrinin (CTN) is a polyketide mycotoxin produced by several strains of Penicillium, Monascus, and Aspergillus. While CTN poses various toxic effects on the female reproductive system in animals, its direct effects on germ cell development are unclear. This study aimed to evaluate the effects of increasing concentrations of CTN (0,20,40,80,100 μM) on porcine oocyte in vitro maturation. Our results indicate that CTN supplementation inhibited polar body extrusion in a dose-dependent manner. Actin and spindle assembly were also disrupted after treatment, indicating that CTN affects the cytoskeleton of porcine oocytes. Oxidative stress and apoptosis were observed under CTN treatment to explore the cause of meiotic maturation failure in porcine oocytes. The results showed that reactive oxygen species levels, cathepsin B activity, and caspase-3 activity were increased in the treated group, indicating that CTN induced oxidative stress and apoptosis. In conclusion, CTN exposure could reduce porcine oocyte maturation by affecting cytoskeletal dynamics, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Wen Liu
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, Guangdong, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, 130062, Jilin, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, Guangdong, China.
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, Guangdong, China.
| |
Collapse
|
42
|
Jia Y, Liu W, Bai D, Zhang Y, Li Y, Liu Y, Yin J, Chen Q, Ye M, Zhao Y, Kou X, Wang H, Gao S, Li K, Chen M. Melatonin supplementation in the culture medium rescues impaired glucose metabolism in IVF mice offspring. J Pineal Res 2022; 72:e12778. [PMID: 34726796 DOI: 10.1111/jpi.12778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/29/2022]
Abstract
Increasing evidence suggests that in vitro fertilization (IVF) may be associated with an increased risk of developing obesity and metabolic diseases later in life in the offspring. Notably, the addition of melatonin to culture medium may improve embryo development and prevent cardiovascular dysfunction in IVF adult mice. This study aimed to determine if melatonin supplementation in the culture medium can reverse impaired glucose metabolism in IVF mice offspring and the underlying mechanisms. Blastocysts used for transfer were generated by natural mating (control group) or IVF with or without melatonin (10-6 M) supplementation (mIVF and IVF group, respectively) in clinical-grade culture media. Here, we first report that IVF decreased hepatic expression of Fbxl7, which was associated with impaired glucose metabolism in mice offspring. Melatonin addition reversed the phenotype by up-regulating the expression of hepatic Fbxl7. In vitro experiments showed that Fbxl7 enhanced the insulin signaling pathway by degrading RhoA through ubiquitination and was up-regulated by transcription factor Foxa2. Specific knockout of Fbxl7 in the liver of adult mice, through tail intravenous injection of recombinant adeno-associated virus, impaired glucose tolerance, while overexpression of hepatic Fbxl7 significantly improved glucose tolerance in adult IVF mice. Thus, the data suggest that Fbxl7 plays an important role in maintaining glucose metabolism of mice, and melatonin supplementation in the culture medium may rescue the long-term risk of metabolic diseases in IVF offspring.
Collapse
Affiliation(s)
- Yanping Jia
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dandan Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yalin Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanhe Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingdong Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiqing Yin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qiaoyu Chen
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingming Ye
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kunming Li
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Miaoxin Chen
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
43
|
In vitro and in vivo evaluation of AFB1 and OTA-toxicity through immunofluorescence and flow cytometry techniques: A systematic review. Food Chem Toxicol 2021; 160:112798. [PMID: 34973406 DOI: 10.1016/j.fct.2021.112798] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 01/20/2023]
Abstract
Due to the globalization, mycotoxins have been considered a major risk to human health being the main contaminants of foodstuffs. Among them, AFB1 and OTA are the most toxic and studied. Therefore, the goal of this review is to deepen the knowledge about the toxicological effects that AFB1 and OTA can induce on human health by using flow cytometry and immunofluorescence techniques in vitro and in vivo models. The examination of the selected reports shows that the majority of them are focused on immunotoxicity while the rest are concerned about nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, neurotoxicity, embryotoxicity, reproductive system, breast, esophageal and lung toxicity. In relation to immunofluorescence analysis, biological processes related to AFB1- and OTA-toxicity were evaluated such as inflammation, neuronal differentiation, DNA damage, oxidative stress and cell death. In flow cytometry analysis, a wide range of assays have been performed across the reviewed studies being apoptosis assay, cell cycle analysis and intracellular ROS measurement the most employed. Although, the toxic effects of AFB1 and OTA have been reported, further research is needed to clarify AFB1 and OTA-mechanism of action on human health.
Collapse
|
44
|
Xing CH, Wang Y, Liu JC, Pan ZN, Zhang HL, Sun SC, Zhang Y. Melatonin reverses mitochondria dysfunction and oxidative stress-induced apoptosis of Sudan I-exposed mouse oocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112783. [PMID: 34544023 DOI: 10.1016/j.ecoenv.2021.112783] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Sudan I is one of the industry dyes and widely used in cosmetics, wax agent, solvent and textile. Sudan I has multiple toxicity such as carcinogenicity, mutagenicity, genotoxicity and oxidative damage. However, Sudan I has been illegally used as colorant in food products, triggering worldwide attention about food safety. Nevertheless, the toxicity of Sudan I on reproduction, particularly on oocyte maturation is still unclear. In the present study, using mouse in vivo models, we report the toxicity effects of Sudan I on mouse oocyte. The results reflect that Sudan I exposure disrupts spindle organization and chromosomes alignment as well as cortical actin distribution, thus leading to the failure of polar body extrusion. Based on the transcriptome results, it is found that the exposure of Sudan I leads to the change in expression of 764 genes. Moreover, it's further reflected that the damaging effects of Sudan I are mediated by the destruction of mitochondrial functions, which induces the accumulated ROS to stimulate oxidative stress-induced apoptosis. As an endogenous hormone, melatonin within the ovarian follicle plays function on improving oocyte quality and female reproduction by efficiently suppressing oxidative stress. Moreover, melatonin supplementation also improves oocyte quality and increases fertilization rate during in vitro culture. Consistent with these, we find that in vivo supplementation of melatonin efficaciously suppresses mitochondrial dysfunction and the accompanying apoptosis, thus reverses oocyte meiotic deteriorations. Collectively, our results prove the reproduction toxicity of Sudan I for the exposure of Sudan I reduces the oocyte quality, and demonstrate the protective effects of melatonin against Sudan I-induced meiotic deteriorations.
Collapse
Affiliation(s)
- Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Rajendran P, Alzahrani AM, Priya Veeraraghavan V, Ahmed EA. Anti-Apoptotic Effect of Flavokawain A on Ochratoxin-A-Induced Endothelial Cell Injury by Attenuation of Oxidative Stress via PI3K/AKT-Mediated Nrf2 Signaling Cascade. Toxins (Basel) 2021; 13:toxins13110745. [PMID: 34822529 PMCID: PMC8621493 DOI: 10.3390/toxins13110745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
This study investigates the endothelial protective activity of flavokawain A (FKA) against oxidative stress induced by ochratoxin A (OTA), which acts as a mycotoxin, and its primary mechanisms in in vitro models. Reactive oxygen species, in general, regulate oxidative stress that significantly contributes to the pathophysiology of endothelial dysfunctions. OTA exerts toxicity through inflammation and the accumulation of ROS. This research is aimed at exploring the defensive function of FKA against the endothelial injury triggered by OTA through the Nrf2 pathway regulated by PI3K/AKT. OTA exposure significantly increased the nuclear translocation of NFκB, whereas we found a reduction in inflammation via NFκB inhibition with FKA treatment. FKA increased the PI3K and AKT phosphorylation, which may lead to the stimulation of antioxidative and antiapoptotic signaling in HUVECs. It also upregulated the phosphorylation of Nrf2 and a concomitant expression of antioxidant genes, such as HO-1, NQO-1, and γGCLC, depending on the dose under the oxidative stress triggered by OTA. Knockdown of Nrf2 through small interfering RNA (siRNA) impedes the protective role of FKA against the endothelial toxicity induced by OTA. In addition, FKA enhanced Bcl2 activation while suppressing apoptosis marker proteins. Therefore, FKA is regarded as a potential agent against endothelial oxidative stress caused by the deterioration of the endothelium. The research findings showed that FKA plays a key role in activating the p-PI3K/p-AKT and Nrf2 signaling pathways, while suppressing caspase-dependent apoptosis.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; (A.M.A.); (E.A.A.)
- Correspondence: ; Tel.: +97-135-899-543
| | - Abdullah M. Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; (A.M.A.); (E.A.A.)
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 600077, India;
| | - Emad A. Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; (A.M.A.); (E.A.A.)
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
46
|
Liu X, Zhang Y, Ren Y, Li J. Melatonin prevents allergic airway inflammation in epicutaneously sensitized mice. Biosci Rep 2021; 41:BSR20210398. [PMID: 34522948 PMCID: PMC8458693 DOI: 10.1042/bsr20210398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The pathological process of atopic dermatitis (AD) progressing into other types of allergic diseases such as asthma and allergic rhinitis during the first several years of life is often referred to as the atopic march. Although the phenomenon of atopic march has been recognized for decades, how asthma stems from AD is still not fully understood, confounding a universal strategy to effectively protect people from the atopic march. METHODS We established experimental atopic march mice by first inducing allergic dermatitis with 0.5% fluorescein isothiocyante (FITC) applied to the skin, followed by an ovalbumin (OVA) airway challenge. In addition, by examining serum immunoglobulin (Ig) concentrations, airway cytokines, the levels of oxidative stress markers, histopathological changes in lung tissue and airway hyperresponsiveness (AHR), we were able to validate the successful establishment of the model. Furthermore, by detecting the attenuating effects of melatonin (MT) and the levels of oxidative stress in the atopic march mice, we explored the potential molecular mechanisms involved in the development of atopic march. RESULTS By successfully establishing an experimental atopic march mouse model, we were able to demonstrate that overproduction of oxidative stress in the lung significantly up-regulated the activation of nuclear factor-κB (NF-κB) signaling pathways causing thymic stromal lymphopoietin (TSLP) release, which further promotes the development of atopic march. CONCLUSIONS To mitigate the development of the atopic march, antioxidants such as MT may be imperative to inhibit NF-κB activation in the lung, especially after the onset of AD.
Collapse
Affiliation(s)
- Xudong Liu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China
| | - Yuchao Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China
| | - Yaolin Ren
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jinquan Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
47
|
Song Y, Liu W, Zhao Y, Zang J, Gao H. Ochratoxin A induces human kidney tubular epithelial cell apoptosis through regulating lipid raft/PTEN/AKT signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:1880-1885. [PMID: 34101318 DOI: 10.1002/tox.23308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Ochratoxin A (OTA) is a fungal toxin that causes serious threat to human health. OTA could lead to the injury of various tissues, especially kidney injury. However, the toxic effects of OTA on human kidney tubular epithelial cell (HK-2) and the possible mechanism remains poorly understood. This study was to investigate the toxic effects of OTA on HK-2 and elucidate the molecular mechanism. HK-2 cells were treated OTA to evaluate the effect of OTA on cell viability and apoptosis. OTA inhibited the growth of HK-2 in a concentration-dependent manner. With the concentration increased, OTA significantly lead to the apoptosis of HK-2. OTA could increase the levels of reactive oxygen species (ROS) and Malondialdehyde (MDA). Superoxide dismutase (SOD) and glutathione (GSH) activities were decreased by OTA. Furthermore, OTA increased Caspase-3 and Bax expression and decreased BCL2 expression. Compared to the control group, the expression of PTEN was increased and the expression of PI3K and AKT were decreased in OTA treated groups. In addition, we found OTA could disrupt the formation of lipid raft by attenuating sphingomyelin and cholesterol levels. In conclusion, our results indicated that OTA induces apoptosis in HK-2 through regulating PTEN/AKT signaling pathway via disrupting lipid raft formation.
Collapse
Affiliation(s)
- Yanyan Song
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yao Zhao
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Junting Zang
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hang Gao
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Yang X, Gao Y, Huang S, Su C, Wang J, Zheng N. Whole transcriptome-based ceRNA network analysis revealed ochratoxin A-induced compromised intestinal tight junction proteins through WNT/Ca 2+ signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112637. [PMID: 34425540 DOI: 10.1016/j.ecoenv.2021.112637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Ochratoxin A (OTA) is a widespread environmental pollutant that is a threat to humans and livestock and remains a global concern to public health. It has negative effects on both humans and animals that are in a continuously exposed environment. The compromised intestinal barrier caused by OTA has aroused widespread concern. This study aimed to investigate the mechanism of OTA-induced tight junction (TJ) protein damage and the relevant components of the intestinal barrier through in vivo whole transcriptome analysis combined with in vitro functional verification. Bioinformatics analysis in OTA-treated Balb/c mice demonstrated that regulated TJ protein related mRNAs were perturbed, and activated the WNT/Ca2+ signaling pathway possibly regulated by key lncRNAs and miRNAs. Competing endogenous RNA (ceRNA) network analysis revealed that lncRNA Zeb1 regulated FZD4 binding with WNT5a to release Ca2+ by targeting miR-1258-x and reduced the expression of TJ proteins, thus damaging the function of the intestinal barrier. An in vitro experiment with Caco-2 cells verified that an increase in Ca2+ level was involved in OTA-induced decreases in the expression of TJ proteins. Taken together, these results will help to identify targets in the intestinal barrier that are compromised by OTA, and will provide the basis for preventing the associated hazard and risk.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengnan Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuanyou Su
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
49
|
Pan B, Qazi IH, Guo S, Yang J, Qin J, Lv T, Zang S, Zhang Y, Zeng C, Meng Q, Han H, Zhou G. Melatonin improves the first cleavage of parthenogenetic embryos from vitrified-warmed mouse oocytes potentially by promoting cell cycle progression. J Anim Sci Biotechnol 2021; 12:84. [PMID: 34266479 PMCID: PMC8283938 DOI: 10.1186/s40104-021-00605-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Abstract
Background This study investigated the effect of melatonin (MT) on cell cycle (G1/S/G2/M) of parthenogenetic zygotes developed from vitrified-warmed mouse metaphase II (MII) oocytes and elucidated the potential mechanism of MT action in the first cleavage of embryos. Results After vitrification and warming, oocytes were parthenogenetically activated (PA) and in vitro cultured (IVC). Then the spindle morphology and chromosome segregation in oocytes, the maternal mRNA levels of genes including Miss, Doc1r, Setd2 and Ythdf2 in activated oocytes, pronuclear formation, the S phase duration in zygotes, mitochondrial function at G1 phase, reactive oxygen species (ROS) level at S phase, DNA damage at G2 phase, early apoptosis in 2-cell embryos, cleavage and blastocyst formation rates were evaluated. The results indicated that the vitrification/warming procedures led to following perturbations 1) spindle abnormalities and chromosome misalignment, alteration of maternal mRNAs and delay in pronucleus formation, 2) decreased mitochondrial membrane potential (MMP) and lower adenosine triphosphate (ATP) levels, increased ROS production and DNA damage, G1/S and S/G2 phase transition delay, and delayed first cleavage, and 3) increased early apoptosis and lower levels of cleavage and blastocyst formation. Our results further revealed that such negative impacts of oocyte cryopreservation could be alleviated by supplementation of warming, recovery, PA and IVC media with 10− 9 mol/L MT before the embryos moved into the 2-cell stage of development. Conclusions MT might promote cell cycle progression via regulation of MMP, ATP, ROS and maternal mRNA levels, potentially increasing the first cleavage of parthenogenetic zygotes developed from vitrified–warmed mouse oocytes and their subsequent development.
Collapse
Affiliation(s)
- Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, 67210, Pakistan
| | - Shichao Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingyu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianpeng Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianyi Lv
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengqin Zang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
50
|
You L, Wang X, Wu W, Jaćević V, Nepovimova E, Wu Q, Kuca K. Hypothesis: Long non-coding RNA is a potential target of mycotoxins. Food Chem Toxicol 2021; 155:112397. [PMID: 34246706 DOI: 10.1016/j.fct.2021.112397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
The molecular target of mycotoxins is not fully understood. Extensive data derived from cell and animal experimental studies demonstrate that long non-coding RNAs (lncRNAs) play crucial roles in mycotoxin-induced toxicities. Mycotoxins stimulate the upregulation/downregulation of lncRNA expression, which further promote apoptosis, is related to the mTOR/FoxO signaling pathway, and contributes to tumor cell growth, death, and liver and chondrocyte damage. Moreover, lncRNA can establish interactions with NF-κB and cause immune evasion. These preliminary data suggest that lncRNAs are involved in potential upstream regulatory events and further regulate downstream apoptosis, oxidative stress, and anti-apoptotic events that affect cell death and survival. Therefore, we hypothesize that lncRNAs are potential targets of mycotoxins. Investigation of the expression of the potential target lncRNAs by mycotoxin-mediated stimulation, and exploration of the upstream and downstream relationship between lncRNA and the key proteins involved in mycotoxin toxicity, should be performed. This Hypothesis provides clues for further understanding of the molecular mechanisms of mycotoxins.
Collapse
Affiliation(s)
- Li You
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic
| | - Vesna Jaćević
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic; Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, 11000, Belgrade, Serbia; Department of Pharmacological Science, Medical Faculty of the Military Medical Academy, University of Defence, 11000, Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic.
| |
Collapse
|