1
|
Chang B, He B, Cao G, Zhou Z, Liu X, Yang Y, Xu C, Hu F, Lv J, Du W. Co-transport of polystyrene microplastics and kaolinite colloids in goethite-coated quartz sand: Joint effects of heteropolymerization and surface charge modification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163832. [PMID: 37121313 DOI: 10.1016/j.scitotenv.2023.163832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
This study investigated the transport behavior of polystyrene microplastics (MPs) in saturated quartz sand and goethite-coated sand in the presence of coexisting kaolinite colloids. Column experiments were conducted under a wide range of solution chemistry conditions, including pH levels of 6.0, 7.0, and 9.0, as well as background Na+ concentrations of 5 mM and 25 mM. We found that: (1) The individual transport of MPs in porous media diminished both with increasing background ion strength and decreasing pH, and its transport ability was significantly dominated by the interactions between MPs and porous media rather than the interplay between MPs, which has been further corroborated by the aggregation stability experiments of MPs particles. (2) MPs had a much lower ability to move through goethite-coated sand columns than quartz sand columns. This is because goethite coating reduces the repulsion energy barriers between porous media and MPs. The increased specific surface area and surface complexity of sand columns after goethite coating should also account for this difference. (3) MPs transport would be subjected to the differentiated impact of co-transported kaolinite colloids in the two types of porous media. The promotion effect of kaolinite colloid on MPs' transport capacity is not significantly affected by background ionic strength changes when quartz sand is served as the porous medium; however, the promotion effect is highly correlated with the background ionic strength when goethite-coated sand is served as the porous medium. In comparison with low background ionic strength conditions, kaolinite colloids under high background ionic strength conditions significantly facilitated MPs transport. This is mainly because under high background ionic conditions, kaolinite colloids are more likely to be deposited on the surface of goethite-covered sand, competing with MPs for the limited deposition sites. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory is applicable to describe the transport behavior of MPs.
Collapse
Affiliation(s)
- Bokun Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Bing He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Gang Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Zhiying Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiaoqi Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Feinan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Zhang R, Tu C, Zhang H, Luo Y. Enhancing effects of dissolved and media surface-bound organic matter on titanium dioxide nanoparticles transport in iron oxide-coated porous media under acidic conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129421. [PMID: 35779396 DOI: 10.1016/j.jhazmat.2022.129421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Natural organic matter (NOM) and iron oxides have been proved to be crucial factors controlling the behaviors of nanoparticles in heterogenous environment. Here, we conducted experimental and modeling study on the transport of titanium dioxide nanoparticles (TiO2 NPs) in iron oxide-coated quartz in the presence of NOM under acidic conditions. Results showed the antagonistic effects of iron oxides and NOM on TiO2 NPs mobility. The inhibition of iron oxides coated on quartz was crystal form-dependent other than quantity-dependent. Amorphous ferric oxyhydroxide with higher specific surface area brought more positive charge and favorable deposition sites onto quartz, and induced more retention of nanoparticles than two crystalline iron oxides, goethite and hematite. Dissolved organic matter (DOM) facilitated TiO2 NPs transport in iron oxide-coated quartz. In comparation with the limited enhancing effects of DOM, the NOM coatings on media surface partially or largely offset the inhibition of goethite on nanoparticles mobility through direct occupation of attachment sites and sites screening due to the steric repulsion of the macromolecules. Owing to the higher steric hindrance, humic acid, both in dissolved and media surface-bound states, exerted stronger facilitating effects on TiO2 NPs mobility relative to fulvic acid.
Collapse
Affiliation(s)
- Ruichang Zhang
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471023, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, PR China; Luoyang Key Laboratory of Soil Pollution Remediation Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Chen Tu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Haibo Zhang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|