1
|
Zhou SY, Du JM, Li WJ, Liu QY, Zhang QY, Su GH, Li Y. The roles and regulatory mechanisms of cigarette smoke constituents in vascular remodeling. Int Immunopharmacol 2024; 140:112784. [PMID: 39083928 DOI: 10.1016/j.intimp.2024.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Vascular remodeling is a dynamic process involving cellular and molecular changes, including cell proliferation, migration, apoptosis and extracellular matrix (ECM) synthesis or degradation, which disrupt the homeostasis of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Cigarette smoke exposure (CSE) is thought to promote vascular remodeling, but the components are complex and the mechanisms are unclear. In this review, we overview the progression of major components of cigarette smoke (CS), such as nicotine and acrolein, involved in vascular remodeling in terms of ECs injury, VSMCs proliferation, migration, apoptosis, and ECM disruption. The aim was to elucidate the effects of different components of CS on different cells of the vascular system, to discover the relevance of their actions, and to provide new references for future studies.
Collapse
Affiliation(s)
- Si-Yuan Zhou
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jia-Min Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Wen-Jing Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qi-Yun Liu
- Department of Cardiology, Shandong Second Medical University, Weifang, China
| | - Qun-Ye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Guo-Hai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
2
|
Wang C, Yang X, Guo Z, Zhu G, Fan L. Circadian gene CLOCK accelerates atherosclerosis by promoting endothelial autophagy. Biotechnol Genet Eng Rev 2024; 40:1230-1245. [PMID: 36946412 DOI: 10.1080/02648725.2023.2193061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease which gives rise to life-threatening complications like ischemic stroke. Rupture of carotid atherosclerotic plaque is the main cause of ischemic stroke. Emerging evidence has demonstrated that disturbed circadian rhythms could accelerate the progression of atherosclerosis by regulating endothelial function. Moreover, our previous study implicated the circadian gene circadian locomotor output cycles kaput (CLOCK) in the pathogenesis of unstable plaques. In this study, we explored the underlying mechanism that CLOCK mediates endothelial cell autophagy involved in the progression of AS. Circadian and autophagy gene expression was analyzed in the GSE41571 dataset and human carotid atherosclerotic plaque samples. Then we used ox-LDL to treat HUVECs, and analyzed CLOCK and autophagy gene in endothelial cells. Besides that, we comprehensively analyzed in vivo experiments to explore the function of CLOCK in autophagy and atherosclerosis using different staining including HE, MT and IF staining. In the dataset and patient samples, CLOCK expression and autophagy were decreased in the unstable plaque group compared with the stable group. Decreased Beclin1, ATG5, LC3, and CLOCK were also observed in HUVECs under oxidative stress condition which also enhances cell proliferation. In vivo, we also found decreasing level of CLOCK, Beclin1, LC3 and ATG5 in ApoE-/- mice compared with WT mice. Silencing of CLOCK in ApoE-/- mice may further aggravate atherosclerosis including decreased cap thickness and collagens. Our findings implicated that downregulation CLOCK would impair endothelial cell autophagy and accelerate atherosclerotic plaque, which provides a novel strategy for treatment of progression in AS.
Collapse
Affiliation(s)
- Chen Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaohu Yang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital Fudan University, Shanghai, China
| | - Zhenyu Guo
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital Fudan University, Shanghai, China
| | - Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital Fudan University, Shanghai, China
| | - Longhua Fan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
3
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2024:S2090-1232(24)00133-4. [PMID: 38631431 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
4
|
Yundung Y, Mohammed S, Paneni F, Reutersberg B, Rössler F, Zimmermann A, Pelisek J. Transcriptomics analysis of long non-coding RNAs in smooth muscle cells from patients with peripheral artery disease and diabetes mellitus. Sci Rep 2024; 14:8615. [PMID: 38616192 PMCID: PMC11016542 DOI: 10.1038/s41598-024-59164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for peripheral arterial disease (PAD), and PAD is an independent predictor of cardiovascular disorders (CVDs). Growing evidence suggests that long non-coding RNAs (lncRNAs) significantly contribute to disease development and underlying complications, particularly affecting smooth muscle cells (SMCs). So far, no study has focused on transcriptome analysis of lncRNAs in PAD patients with and without DM. Tissue samples were obtained from our Vascular Biobank. Due to the sample's heterogeneity, expression analysis of lncRNAs in whole tissue detected only ACTA2-AS1 with a 4.9-fold increase in PAD patients with DM. In contrast, transcriptomics of SMCs revealed 28 lncRNAs significantly differentially expressed between PAD with and without DM (FDR < 0.1). Sixteen lncRNAs were of unknown function, six were described in cancer, one connected with macrophages polarisation, and four were associated with CVDs, mainly with SMC function and phenotypic switch (NEAT1, MIR100HG, HIF1A-AS3, and MRI29B2CHG). The enrichment analysis detected additional lncRNAs H19, CARMN, FTX, and MEG3 linked with DM. Our study revealed several lncRNAs in diabetic PAD patients associated with the physiological function of SMCs. These lncRNAs might serve as potential therapeutic targets to improve the function of SMCs within the diseased tissue and, thus, the clinical outcome.
Collapse
Affiliation(s)
- Yankey Yundung
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Shafeeq Mohammed
- Department of Cardiology/Center for Translational and Experimental Cardiology (CTEC), University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Francesco Paneni
- Department of Cardiology/Center for Translational and Experimental Cardiology (CTEC), University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Benedikt Reutersberg
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Fabian Rössler
- Department of Surgery and Transplantation, University Hospital Zurich, Zürich, Switzerland
| | - Alexander Zimmermann
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Jaroslav Pelisek
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
5
|
Jiang X, Zhang M. The roles of long noncoding RNA NEAT1 in cardiovascular diseases. Hypertens Res 2024; 47:735-746. [PMID: 38177287 DOI: 10.1038/s41440-023-01551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
The morbidity of cardiovascular diseases (CVDs) gradually increases worldwide. Long noncoding RNAs (lncRNAs) are a large class of non-(protein)-coding RNAs with lengths beyond 200 nucleotides. Increasing evidence suggests that lncRNA NEAT1 plays important roles in the pathogenesis of CVDs, such as myocardial infarction, heart failure, myocardial ischemia-reperfusion (I/R) injury, atherosclerosis, hypertension, cardiomyopathy, and others. We summarized the current studies of NEAT1 in CVDs, which shed light on the understanding of the molecular mechanisms of CVDs and understanding the therapeutic potential of NEAT1.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Mingjuan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
6
|
Ni D, Lei C, Liu M, Peng J, Yi G, Mo Z. Cell death in atherosclerosis. Cell Cycle 2024; 23:495-518. [PMID: 38678316 PMCID: PMC11135874 DOI: 10.1080/15384101.2024.2344943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
A complex and evolutionary process that involves the buildup of lipids in the arterial wall and the invasion of inflammatory cells results in atherosclerosis. Cell death is a fundamental biological process that is essential to the growth and dynamic equilibrium of all living things. Serious cell damage can cause a number of metabolic processes to stop, cell structure to be destroyed, or other irreversible changes that result in cell death. It is important to note that studies have shown that the two types of programmed cell death, apoptosis and autophagy, influence the onset and progression of atherosclerosis by controlling these cells. This could serve as a foundation for the creation of fresh atherosclerosis prevention and treatment strategies. Therefore, in this review, we summarized the molecular mechanisms of cell death, including apoptosis, pyroptosis, autophagy, necroptosis, ferroptosis and necrosis, and discussed their effects on endothelial cells, vascular smooth muscle cells and macrophages in the process of atherosclerosis, so as to provide reference for the next step to reveal the mechanism of atherosclerosis.
Collapse
Affiliation(s)
- Dan Ni
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
| | - Cai Lei
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Minqi Liu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children’s Medical Center), Yueyang, China
| | - Jinfu Peng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children’s Medical Center), Yueyang, China
| |
Collapse
|
7
|
Zhu G, Gao H, Li Y, Li X, Yang X, Wang C, Guo Z, Fan H, Fan L. Suppression of endoplasmic reticulum stress by 4-PBA enhanced atherosclerotic plaque stability via up-regulating CLOCK expression. Pathol Res Pract 2024; 253:154969. [PMID: 38029715 DOI: 10.1016/j.prp.2023.154969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Endoplasmic reticulum (ER) stress refers to a condition where the normal functioning of the ER is disrupted due to a variety of cellular stress factors. As a result, there is an accumulation of unfolded and misfolded proteins within the ER. Numerous studies have shown that ER stress can exacerbate inflammatory reactions and contribute to the development of various inflammatory diseases. However, the role of ER stress in the stability of atherosclerotic plaques remains poorly understood. In this study, we aimed to explore the potential impact of a specific ER stress inhibitor known as 4-phenyl butyric acid (4-PBA) on atherosclerosis in mice. The mice were fed a high-fat diet, and treatment with 4-PBA significantly improved the stability of the atherosclerotic plaques. This was evidenced by a reduction in oxidative stress and an increase in circadian locomotor output cycles kaput (CLOCK) protein and mRNA expression within the plaques. Additionally, 4-PBA reduced the expression of ER stress-related proteins and decreased apoptosis in the atherosclerotic plaques. In vitro investigation, we observed the effect of 4-PBA on vascular smooth muscle cells (VSMCs) that were exposed to oxidized low-density lipoprotein (ox-LDL), a significant contributor to the development of atherosclerosis. 4-PBA reduced reactive oxygen species (ROS) production and attenuated apoptosis, GRP78 and CHOP protein expression in ox-LDL-Induced VSMCs via up-regulating CLOCK expression. However, when the short hairpin RNA against CLOCK (sh-CLOCK) was introduced to the VSMCs, the protective effect of 4-PBA was abolished. This suggests that the up-regulation of CLOCK expression is crucial for the beneficial effects of 4-PBA on atherosclerotic plaque stability. This finding suggests that targeting ER stress and modulating CLOCK protein levels might be a promising way to enhance the stability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongxia Gao
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaohu Yang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Guo
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heyu Fan
- School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Longhua Fan
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China; Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Petkovic A, Erceg S, Munjas J, Ninic A, Vladimirov S, Davidovic A, Vukmirovic L, Milanov M, Cvijanovic D, Mitic T, Sopic M. LncRNAs as Regulators of Atherosclerotic Plaque Stability. Cells 2023; 12:1832. [PMID: 37508497 PMCID: PMC10378138 DOI: 10.3390/cells12141832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Current clinical data show that, despite constant efforts to develop novel therapies and clinical approaches, atherosclerotic cardiovascular diseases (ASCVD) are still one of the leading causes of death worldwide. Advanced and unstable atherosclerotic plaques most often trigger acute coronary events that can lead to fatal outcomes. However, despite the fact that different plaque phenotypes may require different treatments, current approaches to prognosis, diagnosis, and classification of acute coronary syndrome do not consider the diversity of plaque phenotypes. Long non-coding RNAs (lncRNAs) represent an important class of molecules that are implicated in epigenetic control of numerous cellular processes. Here we review the latest knowledge about lncRNAs' influence on plaque development and stability through regulation of immune response, lipid metabolism, extracellular matrix remodelling, endothelial cell function, and vascular smooth muscle function, with special emphasis on pro-atherogenic and anti-atherogenic lncRNA functions. In addition, we present current challenges in the research of lncRNAs' role in atherosclerosis and translation of the findings from animal models to humans. Finally, we present the directions for future lncRNA-oriented research, which may ultimately result in patient-oriented therapeutic strategies for ASCVD.
Collapse
Affiliation(s)
- Aleksa Petkovic
- Clinical-Hospital Centre "Dr Dragiša Mišović-Dedinje", 11000 Belgrade, Serbia
| | - Sanja Erceg
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Ninic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Davidovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
- Department for Internal Medicine, Faculty of Dentistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Luka Vukmirovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Marko Milanov
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Dane Cvijanovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Tijana Mitic
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Wang J, Luo J, Du L, Shu X, Guo C, Li T. Nuclear paraspeckle assembly transcript 1 promotes the podocyte injury via targeting miR-23b-3p/B-cell lymphoma-2 interacting protein 3 like axis. Ren Fail 2022; 44:1961-1975. [DOI: 10.1080/0886022x.2022.2091998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jing Wang
- Department of Emergency, The First Medical Center to Chinese People's Liberation Army General Hospital, Beijing, China
| | - Junpeng Luo
- Department of Minimally Invasive Interventional Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Cancer for Cancer Medicine, Guangzhou, China
| | - Li Du
- The Institute of Radiation Medicine, The Academy of Military Medical Science, Beijing, China
| | - Xin Shu
- Department of Dermatology, Third Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Chengyu Guo
- Department of Emergency, The First Medical Center to Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tanshi Li
- Department of Emergency, The First Medical Center to Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
10
|
Acrolein evokes inflammation and autophagy-dependent apoptosis through oxidative stress in vascular endothelial cells and its protection by 6-C-(E-2-fluorostyryl)naringenin. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Zhang XH, Li Y, Zhou L, Tian GP. Interleukin-38 in atherosclerosis. Clin Chim Acta 2022; 536:86-93. [PMID: 36150521 DOI: 10.1016/j.cca.2022.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
Chronic inflammation caused by immune cells and their mediators is a characteristic of atherosclerosis. Interleukin-38 (IL-38), a member of the IL-1 family, exerts multiple anti-inflammatory effects via specific ligand-receptor interactions. Upon recognizing a specific receptor, IL-38 restrains mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NK-κB), or other inflammation-related signaling pathways in inflammatory disease. Further research has shown that IL-38 also displays anti-atherosclerotic effects and reduces the occurrence and risk of cardiovascular events. On the one hand, IL-38 can regulate innate and adaptive immunity to inhibit inflammation, reduce pathological neovascularization, and inhibit apoptosis. On the other hand, it can curb obesity, reduce hyperlipidemia, and restrain insulin resistance to reduce cardiovascular disease risk. Therefore, this article expounds on the vital function of IL-38 in the development of atherosclerosis to provide a theoretical basis for further in-depth studies of IL-38 and insights on the prophylaxis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu Li
- Department of Orthopaedics, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Li Zhou
- Department of Pathology, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China.
| | - Guo-Ping Tian
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
12
|
Shen Y, Xu LR, Yan D, Zhou M, Han TL, Lu C, Tang X, Lin CP, Qian RZ, Guo DQ. BMAL1 modulates smooth muscle cells phenotypic switch towards fibroblast-like cells and stabilizes atherosclerotic plaques by upregulating YAP1. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166450. [PMID: 35598770 DOI: 10.1016/j.bbadis.2022.166450] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Ischemic heart diseases and ischemic stroke are closely related to circadian clock and unstable atherosclerotic plaques. Vascular smooth muscle cells (VSMCs) can stabilize or destabilize an atherosclerotic lesion through phenotypic switch. BMAL1 is not only an indispensable core component in circadian clock but also an important regulator in atherosclerosis and VSMCs proliferation. However, little is known about the modulation mechanisms of BMAL1 in VSMCs phenotypic switch and atherosclerotic plaque stability. METHODS We integrated histological analysis of human plaques, in vivo experiments of VSMC-specific Bmal1-/- mice, in vitro experiments, and gene set enrichment analysis (GSEA) of public datasets of human plaques to explore the function of BMAL1 in VSMCs phonotypic switch and plaque stability. FINDINGS Comparing to human unstable plaques, BMAL1 was higher in stable plaques, accompanied by elevated YAP1 and fibroblast maker FSP1 which were positively correlated with BMAL1. In response to Methyl-β-cyclodextrin-cholesterol, oxidized-low-density-lipoprotein and platelet-derived-growth-factor-BB, VSMCs embarked on phenotypic switch and upregulated BMAL, YAP1 and FSP1. Besides, BMAL1 overexpression promoted VSMCs phonotypic switch towards fibroblast-like cells by transcriptionally upregulating the expression of YAP1. BMAL1 or YAP1 knock-down inhibited VSMCs phonotypic switch and downregulated FSP1. Furthermore, VSMC-specific Bmal1-/- mice exhibited VSMCs with lower YAP1 and FSP1 levels, and more vulnerable plaques with less collagen content. In addition, BMAL1 suppressed the migration of VSMCs. The GSEA results of public datasets were consistent with our laboratory findings. INTERPRETATION Our results highlight the importance of BMAL1 as a major regulator in VSMCs phenotypic switch towards fibroblast-like cells which stabilize an atherosclerotic plaque.
Collapse
Affiliation(s)
- Yang Shen
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Li-Rong Xu
- Department of Pathology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dong Yan
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Min Zhou
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Tong-Lei Han
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Chao Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Chang-Po Lin
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China.
| | - Rui-Zhe Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China.
| | - Da-Qiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China.
| |
Collapse
|
13
|
Chen P, Liu S, Yin Z, Liang P, Wang C, Zhu H, Liu Y, Ou S, Li G. Rutin alleviated acrolein-induced cytotoxicity in Caco-2 and GES-1 cells by forming a cyclic hemiacetal product. Front Nutr 2022; 9:976400. [PMID: 36051900 PMCID: PMC9424909 DOI: 10.3389/fnut.2022.976400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acrolein (ACR), an α, β-unsaturated aldehyde, is a toxic compound formed during food processing, and the use of phenolics derived from dietary materials to scavenge ACR is a hot spot. In this study, rutin, a polyphenol widely present in various dietary materials, was used to investigate its capacity to scavenge ACR. It was shown that more than 98% of ACR was eliminated under the conditions of reaction time of 2 h, temperature of 80 °C, and molar ratio of rutin/ACR of 2/1. Further structural characterization of the formed adduct revealed that the adduct of rutin to ACR to form a cyclic hemiacetal compound (RAC) was the main scavenging mechanism. Besides, the stability of RAC during simulated in vitro digestion was evaluated, which showed that more than 83.61% of RAC was remained. Furthermore, the cytotoxicity of RAC against Caco-2 and GES-1 cells was significantly reduced compared with ACR, where the IC50 values of ACR were both below 20 μM while that of RAC were both above 140 μM. And the improvement of the loss of mitochondrial membrane potential (MMP) by RAC might be one of the detoxification pathways. The present study indicated that rutin was one of the potential ACR scavengers among natural polyphenols.
Collapse
Affiliation(s)
- Peifang Chen
- Department of Food Science, Foshan University, Foshan, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Pengjie Liang
- Department of Food Science, Foshan University, Foshan, China
| | - Chunhua Wang
- Department of Food Science, Foshan University, Foshan, China
| | - Hanyue Zhu
- Department of Food Science, Foshan University, Foshan, China
| | - Yang Liu
- Department of Food Science, Foshan University, Foshan, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Shiyi Ou
| | - Guoqiang Li
- Department of Food Science, Foshan University, Foshan, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- South China National Center for Food Safety Research and Development, Foshan University, Foshan, China
- *Correspondence: Guoqiang Li
| |
Collapse
|
14
|
Crowley LN, Le BL, Cicalo C, Brown J, Li Y, Kim YJ, Lee JH, Pan JH, Lennon SL, Han BK, Kim JK. Acrolein, an environmental toxicant and its applications to in vivo and in vitro atherosclerosis models: An update. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103890. [PMID: 35613694 DOI: 10.1016/j.etap.2022.103890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 06/03/2023]
Abstract
Cardiovascular disease, the foremost cause of death worldwide, is an overarching disease term that encompasses a number of disorders involving the heart and circulatory system, including atherosclerosis. Atherosclerosis is a primary cause of cardiovascular diseases and is caused by buildup of plaque and narrowing of blood vessels. Epidemiological studies have suggested that environmental pollutants are implicated in atherosclerosis disease progression. Among many environmental pollutants, acrolein (Acr) is an abundant reactive aldehyde and is ubiquitously present in cigarette smoke as well as food products (e.g., overheated oils and wine). Despite its ubiquitous presence and potential impact on the etiology of cardiovascular disease, a limited consensus has been made in regard to Acr exposure conditions to induce atherosclerosis in vivo. This mini-review summarizes in vivo atherosclerosis models using Acr to investigate biochemical and phenotypic changes related to atherosclerosis and in vitro mechanistic studies involving Acr and atherosclerosis.
Collapse
Affiliation(s)
- Liana N Crowley
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Brandy L Le
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Cara Cicalo
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Justin Brown
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yali Li
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, South Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, South Korea
| | - Jeong Hoon Pan
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Bok Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong 30019, South Korea
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
15
|
Sun Z, Li L, Yan Z, Zhang L, Zang G, Qian Y, Wang Z. Circadian rhythm disorders elevate macrophages cytokines release and promote multiple tissues/organs dysfunction in mice. Physiol Behav 2022; 249:113772. [PMID: 35247442 DOI: 10.1016/j.physbeh.2022.113772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Circadian rhythm disorders are severe threats to human health. The negative impact of circadian rhythm disorders on tissues/organs has not been systematically analyzed. Therefore, there is an urgent need to evaluate the damage caused by circadian rhythm disorders and explore the possible mechanisms. METHODS Six-week-old male mice were divided into the control (Con) group (normal circadian rhythm), L24 group (constant light), D12L12 group (weekly shift light/dark cycle), and D24 group (constant dark). Body weight was recorded every 10 days. Ninety days after model construction, the serum lipid and cytokine level, liver function, fat accumulation, carotid artery stenosis, and cardiomyopathological changes were detected in mice. Macrophages in the liver, subscapular fat, and heart tissues were labeled with immunofluorescence staining. Mouse peritoneal macrophages were then isolated. Inflammatory cytokine levels were measured in the macrophage supernatant. The ability of macrophages to form foam cells was also tested. The supernatant from macrophages in different groups was added to AML12 (hepatocytes), 3T3-L1 (preadipocytes), or HL-1 (cardiomyocytes). Effects of conditioned media on recipient cells were determined. RESULTS Body weight, serum lipids and cytokines, subscapular fat accumulation, liver enzymes, carotid artery stenosis, and myocardial fibrosis levels of the L24, D12L12, and D24 groups mice were significantly higher than those in the Con group. Macrophages were significantly increased in the liver, heart, and subscapular fat of mice with circadian rhythmdisorders. Cytokine secretion by peritoneal macrophages was enhanced in the L24, D12L12, and D24 groups. Under oxidized low density lipoprotein (oxLDL) stimulation, macrophages with circadian rhythm disorders are more likely to form foam cells. Conditioned media from the L24, D12L12, and D24 groups significantly promoted AML12 apoptosis and lipid intake, accelerated the adipogenic differentiation of 3T3-L1, and up-regulated collagen I in HL-1. CONCLUSION These findings reveal that macrophages are increased in the tissues/organs under circadian rhythm disorders, and these macrophages could aggravate obesity, promote liver disease, accelerate atherosclerosis, and increase myocardial fibrosis through the paracrine effect.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhixin Yan
- Department of Burn Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
16
|
Liu D, Cheng Y, Mei X, Xie Y, Tang Z, Liu J, Cao X. Mechanisms of acrolein induces toxicity in human umbilical vein endothelial cells: Oxidative stress, DNA damage response, and apoptosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:708-719. [PMID: 34908224 DOI: 10.1002/tox.23436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Acrolein is a ubiquitous environmental pollutant that produced by the incomplete combustion of cigarette smoke, forest fires, petroleum fuels, plastic materials, and cooking fumes. Inhalation is a common form of people exposure to acrolein, increasing evidence demonstrates that acrolein impairs the cardiovascular system by targeting vascular endothelial cells. However, the molecular mechanism of the cytotoxicity of acrolein exposure on vascular endothelial cells remains unclear. This work focused on the toxicity of acrolein on human umbilical vein endothelial cells (HUVECs). The molecular mechanism was studied based on oxidative stress, DNA damage response (DDR), and mitochondrial apoptosis pathways. After HUVECs were treated with 12.5, 25, and 50 μM acrolein for 24 h, cell viability, cell colony formation, mitochondrial membrane potential, and adenosine triphosphate content significantly reduced, and acrolein increased intracellular reactive oxygen species, apoptosis rate, and 8-hydroxy-2 deoxyguanosine (8-OHdG) level. Furthermore, p38MAPK and c-Jun N-terminal kinase signaling pathways were activated in response to oxidative stress. Moreover, acrolein induced G0/G1phase arrest, promoted the expression of γ-H2AX, activated the DDR signaling pathway (Ataxia-Telangiectasia-Mutated [ATM] and Rad-3-related/Chk1 and ATM/Chk2), and triggered the consequent cell cycle checkpoints. Finally, the protein expression of Bax/Bcl-2 and cleaved Caspase-3 was up-regulated, suggesting apoptosis was induced by triggering the mitochondrial apoptosis pathway. All these results indicated that acrolein induced HUVECs cytotoxicity by regulating oxidative stress, DNA damage, and apoptosis. This study provides a novel perspective on the mechanism of acrolein-induced cardiovascular toxicity, it will be helpful for the prevention of acrolein-induced cardiovascular disease.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Yanzhen Xie
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
17
|
Protective Effect of Ganoderma atrum Polysaccharide on Acrolein-Induced Apoptosis and Autophagic Flux in IEC-6 Cells. Foods 2022; 11:foods11020240. [PMID: 35053972 PMCID: PMC8774341 DOI: 10.3390/foods11020240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
This study was designed to explore the beneficial effect and mechanism of Ganoderma atrum (G. atrum) polysaccharide (PSG-1) on acrolein-induced IEC-6 cells. Our results indicated that PSG-1 significantly reduced the impairment of acrolein on cell viability, decreased oxidative stress, and enabled normal expression of tight junction (TJ) proteins that were inhibited by acrolein in IEC-6 cells. Furthermore, PSG-1 attenuated the elevation of microtubule-associated proteins light chain 3 (LC3) and Beclin 1-like protein 1 (Beclin 1) and increased the protein levels of phospho-mTOR (p-mTOR) and phospho-akt (p-akt), indicating that PSG-1 activated the mammalian target of rapamycin (mTOR) signaling pathway and alleviated acrolein-induced autophagy in IEC-6 cells. Moreover, PSG-1 markedly attenuated the acrolein-induced apoptosis, as evidenced by the increase in mitochondrial membrane potential (MMP) and B-cell lymphoma 2 (Bcl-2) expression, and the decrease in cysteine aspartate lyase (caspase)-3 and caspase-9. In addition, autophagy the inhibitor inhibited acrolein-induced TJ and apoptosis of IEC-6 cells, while the apoptosis inhibitor also inhibited acrolein-induced TJ and autophagy, suggesting that autophagy and apoptosis were mutually regulated. Taken together, the present study proved that PSG-1 could protect IEC-6 cells from acrolein-induced oxidative stress and could repair TJ by inhibiting apoptosis and autophagic flux, where autophagy and apoptosis were mutually regulated.
Collapse
|
18
|
Liu D, Cheng Y, Chen J, Mei X, Tang Z, Cao X, Liu J. Exploring the molecular mechanisms of the inhibition of acrolein-induced BEAS-2B cytotoxicity by luteolin using network pharmacology and cell biology technology. Food Chem Toxicol 2021; 160:112779. [PMID: 34958803 DOI: 10.1016/j.fct.2021.112779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Acrolein is a highly reactive unsaturated hazardous air pollutant, which is extremely irritating to the respiratory tract. Luteolin, an active flavonoid compound, possesses multiple biological activities. The purpose of this study was to evaluate the mechanism of the inhibition of acrolein-induced human bronchial epithelial (BEAS-2B) cells cytotoxicity by luteolin using network pharmacology and cell biology technology. Firstly, network pharmacology results indicated that oxidative stress processes might play an important role in luteolin inhibiting lung injury. Next, it was verified at the cellular level. Reactive oxygen species (ROS) generation increased, glutathione (GSH) level decreased after exposure to acrolein. MAPK signaling pathways were activated, which activated downstream IκBα/NF-κB signaling pathways. Meanwhile, acrolein caused oxidative DNA damage and double-strand breaks, induced DNA damage response (DDR) and apoptosis. These adverse effects were significantly reversed by luteolin, which inhibited the activation of MAPK/IκBα/NF-κB and DDR pathways, and reduced the ratio of Bax/Bcl-2. Moreover, luteolin also had a similar effect to antioxidant N-acetyl cysteine (NAC) in the regulation of signaling transduction mechanisms, which indicated that the regulation of oxidative stress played an important role in the process. These results provide an experimental basis for elucidating the molecular mechanisms of the inhibition of acrolein-induced BEAS-2B cytotoxicity with luteolin.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Junliang Chen
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| |
Collapse
|
19
|
The Role of Long Non-coding RNA, Nuclear Enriched Abundant Transcript 1 (NEAT1) in Cancer and Other Pathologies. Biochem Genet 2021; 60:843-867. [PMID: 34689290 DOI: 10.1007/s10528-021-10138-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023]
Abstract
Nuclear enriched abundant transcript 1 (NEAT1), consisting of two kinds of lncRNAs of 3.7 kB NEAT1-1 and 23 kB NEAT1-2, can be highly expressed in organs and tissues such as the ovary, prostate, colon, and pancreas, and is involved in paraspeckle formation and mRNA editing and gene expression. Therefore, NEAT1 is a potential biomarker for the treatment of a variety of diseases, which may be caused by two factors (isoforms of NEAT1 and NEAT1 sponging miRNA as ceRNA). However, there is still much confusion about the mechanism and downstream effector between the abnormal expression of NEAT1 and various diseases. This review summarizes recent research progress on NEAT1 in cancer and other pathologies and provides a more reliable theoretical basis for the treatment of related diseases.
Collapse
|
20
|
Peng XF, Huang SF, Chen LJ, Xu L, Ye WC. Targeting epigenetics and lncRNAs in liver disease: From mechanisms to therapeutics. Pharmacol Res 2021; 172:105846. [PMID: 34438063 DOI: 10.1016/j.phrs.2021.105846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Early onset and progression of liver diseases can be driven by aberrant transcriptional regulation. Different transcriptional regulation processes, such as RNA/DNA methylation, histone modification, and ncRNA-mediated targeting, can regulate biological processes in healthy cells, as well also under various pathological conditions, especially liver disease. Numerous studies over the past decades have demonstrated that liver disease has a strong epigenetic component. Therefore, the epigenetic basis of liver disease has challenged our knowledge of epigenetics, and epigenetics field has undergone an important transformation: from a biological phenomenon to an emerging focus of disease research. Furthermore, inhibitors of different epigenetic regulators, such as m6A-related factors, are being explored as potential candidates for preventing and treating liver diseases. In the present review, we summarize and discuss the current knowledge of five distinct but interconnected and interdependent epigenetic processes in the context of hepatic diseases: RNA methylation, DNA methylation, histone methylation, miRNAs, and lncRNAs. Finally, we discuss the potential therapeutic implications and future challenges and ongoing research in the field. Our review also provides a perspective for identifying therapeutic targets and new hepatic biomarkers of liver disease, bringing precision research and disease therapy to the modern era of epigenetics.
Collapse
Affiliation(s)
- Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Shi-Feng Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Lingqing Xu
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Wen-Chu Ye
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
21
|
Zou Z, Yin Z, Ou J, Zheng J, Liu F, Huang C, Ou S. Identification of adducts formed between acrolein and alanine or serine in fried potato crisps and the cytotoxicity-lowering effect of acrolein in three cell lines. Food Chem 2021; 361:130164. [PMID: 34062460 DOI: 10.1016/j.foodchem.2021.130164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
In physiological and thermally-processed conditions, alanine and serine efficiently eliminate acrolein to generate two main adducts, 2-(5-formyl-3,6-dihydropyridin-1(2H)-yl) propanoic acid and 2-(5-formyl-3,6-dihydropyridin-1(2H)-yl)-3-hydroxypropanoic acid, with amounts of 81.6 ± 4.24 μg/kg and 23.72 ± 0.40 μg/kg in fried potato crisps, respectively. Adduct formation markedly decreased the cytotoxicity of acrolein against Caco-2, GES-1 and HUVEC cells. The cell viability of them remained approximately100% after incubation with 200 µmolL-1 adducts, while the IC50 values for acrolein in the three cells were 66, 54, and 16 µmolL-1 respectively. The adducts express the protective effects by tremendous reduction of cell apoptosis, reactive oxygen species (ROS) production, and DNA damage.
Collapse
Affiliation(s)
- Zhaojia Zou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Zhao Yin
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Jacq A, Becquet D, Bello-Goutierrez MM, Boyer B, Guillen S, Franc JL, François-Bellan AM. Genome-wide screening of circadian and non-circadian impact of Neat1 genetic deletion. Comput Struct Biotechnol J 2021; 19:2121-2132. [PMID: 33995907 PMCID: PMC8085668 DOI: 10.1016/j.csbj.2021.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Neat1 deletion affects numerous circadian and non-circadian genes. Neat1 deletion causes loss, modification or acquisition of gene circadian pattern. Paraspeckles contribute significantly to the circadian transcriptome.
The functions of the long non-coding RNA, Nuclear enriched abundant transcript 1 (Neat1), are poorly understood. Neat1 is required for the formation of paraspeckles, but its respective paraspeckle-dependent or independent functions are unknown. Several studies including ours reported that Neat1 is involved in the regulation of circadian rhythms. We characterized the impact of Neat1 genetic deletion in a rat pituitary cell line. The mRNAs whose circadian expression pattern or expression level is regulated by Neat1 were identified after high-throughput RNA sequencing of the circadian transcriptome of wild-type cells compared to cells in which Neat1 was deleted by CRISPR/Cas9. The numerous RNAs affected by Neat1 deletion were found to be circadian or non-circadian, targets or non-targets of paraspeckles, and to be associated with many key biological processes showing that Neat1, in interaction with the circadian system or independently, could play crucial roles in key physiological functions through diverse mechanisms.
Collapse
|
23
|
Zhang Z, Yu B, Wang X, Luo C, Zhou T, Zheng X, Ding J. Circadian rhythm and atherosclerosis (Review). Exp Ther Med 2020; 20:96. [PMID: 32973945 PMCID: PMC7506962 DOI: 10.3892/etm.2020.9224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis is the leading cause of morbidity and mortality worldwide. The underlying pathogenesis involves multiple metabolic disorders, endothelial dysfunction and a maladaptive immune response, and leads to chronic arterial wall inflammation. Numerous normal physiological activities exhibit daily rhythmicity, including energy metabolism, vascular function and inflammatory immunoreactions, and disrupted or misaligned circadian rhythms may promote the progression of atherosclerosis. However, the association between the circadian rhythm and atherosclerosis remains to be fully elucidated. In the present review, the effects of the circadian rhythm on atherosclerosis progression are discussed.
Collapse
Affiliation(s)
- Zaiqiang Zhang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Bin Yu
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Xinan Wang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Caiyun Luo
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Tian Zhou
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Xiaxia Zheng
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jiawang Ding
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
24
|
Role of Non-Coding RNAs in Lung Circadian Clock Related Diseases. Int J Mol Sci 2020; 21:ijms21083013. [PMID: 32344623 PMCID: PMC7215637 DOI: 10.3390/ijms21083013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Circadian oscillations are regulated at both central and peripheral levels to maintain physiological homeostasis. The central circadian clock consists of a central pacemaker in the suprachiasmatic nucleus that is entrained by light dark cycles and this, in turn, synchronizes the peripheral clock inherent in other organs. Circadian dysregulation has been attributed to dysregulation of peripheral clock and also associated with several diseases. Components of the molecular clock are disrupted in lung diseases like chronic obstructive pulmonary disease (COPD), asthma and IPF. Airway epithelial cells play an important role in temporally organizing magnitude of immune response, DNA damage response and acute airway inflammation. Non-coding RNAs play an important role in regulation of molecular clock and in turn are also regulated by clock components. Dysregulation of these non-coding RNAs have been shown to impact the expression of core clock genes as well as clock output genes in many organs. However, no studies have currently looked at the potential impact of these non-coding RNAs on lung molecular clock. This review focuses on the ways how these non-coding RNAs regulate and in turn are regulated by the lung molecular clock and its potential impact on lung diseases.
Collapse
|