1
|
Yadav P, Petrella A, Todaro F, De Gisi S, Vitone C, Petti R, Notarnicola M. Ex Situ Stabilization/Solidification Approaches of Marine Sediments Using Green Cement Admixtures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3597. [PMID: 39063888 PMCID: PMC11278605 DOI: 10.3390/ma17143597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
The routine dredging of waterways produces huge volumes of sediments. Handling contaminated dredged sediments poses significant and diverse challenges around the world. In recent years, novel and sustainable ex situ remediation technologies for contaminated sediments have been developed and applied. This review article focuses on cement-based binders in stabilizing contaminants through the stabilization/solidification (S/S) technique and the utilization of contaminated sediments as a resource. Through S/S techniques, heavy metals can be solidified and stabilized in dense and durable solid matrices, reducing their permeability and restricting their release into the environment. Industrial by-products like red mud (RM), soda residue (SR), pulverized fly ash (PFA), and alkaline granulated blast furnace slag (GGBS) can immobilize heavy metal ions such as lead, zinc, cadmium, copper, and chromium by precipitation. However, in a strong alkali environment, certain heavy metal ions might dissolve again. To address this, immobilization in low pH media can be achieved using materials like GGBS, metakaolin (MK), and incinerated sewage sludge ash (ISSA). Additionally, heavy metals can be also immobilized through the formation of silicate gels and ettringites during pozzolanic reactions by mechanisms such as adsorption, ion exchanges, and encapsulation. It is foreseeable that, in the future, the scientific community will increasingly turn towards multidisciplinary studies on novel materials, also after an evaluation of the effects on long-term heavy metal stabilization.
Collapse
Affiliation(s)
- Pravendra Yadav
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (P.Y.); (C.V.); (R.P.); (M.N.)
| | - Andrea Petrella
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (P.Y.); (C.V.); (R.P.); (M.N.)
| | - Francesco Todaro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (P.Y.); (C.V.); (R.P.); (M.N.)
| | - Sabino De Gisi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Claudia Vitone
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (P.Y.); (C.V.); (R.P.); (M.N.)
| | - Rossella Petti
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (P.Y.); (C.V.); (R.P.); (M.N.)
| | - Michele Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (P.Y.); (C.V.); (R.P.); (M.N.)
| |
Collapse
|
2
|
Niu A, Lin C. Trends in research on characterization, treatment and valorization of hazardous red mud: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119660. [PMID: 38043310 DOI: 10.1016/j.jenvman.2023.119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Meta-analysis of red mud-related literature in English published from 1976 to 2022 and in Chinese from 1990 to 2022 was performed to support critical analysis and evaluation of the available literature based on the following aspects of red mud research: (a) characterization, (b) treatment for harmfulness minimization, (c) recovery of valuable metals, (d) environmental applications, and (e) uses as construction materials. It was found that (a) sinter red mud tended to contain more silica and calcium, and less iron, sodium and aluminium compared to Bayer red mud; (b) gypsum was the most frequently used agent for harmfulness reduction treatment of red mud, followed by flue gas/CO2; (c) the mean optimal pH for adsorption of major anionic pollutants was 8.42 ± 1.13 (arsenite), 3.73 ± 0.68 (arsenate), 3.50 ± 2.38 (phosphate), 4.43 ± 1.04 (fluoride) and 3.80 ± 1.54 (chromate); (d) wastewater treatment has attracted more attention compared to contaminated soils and waste gases; (e) recovery of iron and scandium has attracted more attention compared to other metals; (f) cement making has been the focus in construction uses. Most of the research findings were based on laboratory-scale experiments that focused on efficacy rather than efficiency. There was a lack of integrated approaches for research in red mud valorization.
Collapse
Affiliation(s)
- Anyi Niu
- International Envirotech Limited, Hong Kong 999077, China; School of Geography, South China Normal University, Guangzhou 510631, China
| | - Chuxia Lin
- Faculty of Science, Engineering and Built Environment, Deakin University, Burwood VIC 3125, Australia.
| |
Collapse
|
3
|
Ma M, Xu X, Ha Z, Su Q, Lv C, Li J, Du D, Chi R. Deep insight on mechanism and contribution of arsenic removal and heavy metals remediation by mechanical activation phosphogypsum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122258. [PMID: 37536479 DOI: 10.1016/j.envpol.2023.122258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Arsenic-containing wastewater and arsenic-contaminated soil can cause serious environmental pollution. In this study, phosphogypsum with partial mechanical activation of calcium oxide was used to prepare a new phosphogypsum-based passivate (Ca-mPG), and its remediation performance on arsenic-contaminated soil was evaluated in terms of both effectiveness and microbial response. The results showed that the optimum conditions for the preparation of the passivate were optimized in terms of single factor and response surface with a ball milling speed of 200 r/min, a material ratio of 6:4 and a ball milling time of 4 h. Under these conditions, the adsorption capacity was 37.75 mg/g. The leaching concentration of arsenic (As) in the contaminated soil after Ca-mPG modification decreased from 25.75 μg/L to 5.88 μg/L, which was lower than the Chinese national standard (GB/T 5085.3-2007); Ca-mPG also showed excellent passivation effect on other heavy Metals (copper, nickel, cadmium, zinc). In addition, As-resistant bacteria and passivators work together to promote the stabilization effect of contaminants during the remediation of As-contaminated soil. The mechanisms of Cu, As(III)/As(V), Zn, Cd, and Ni removal were related to ion exchange, electrostatic adsorption of substances on heavy metals, calcium binding to other substances to produce precipitation; and microbially induced stabilization of HMs, oxidized. Overall, this study demonstrates an eco-friendly "waste-soil remediation" strategy to solve problems associated with solid waste reuse and remediation of HM-contaminated soils.
Collapse
Affiliation(s)
- Mengyu Ma
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China; Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Xingfa Mining Engineering, Wuhan Institute of Technology, Wuhan 430074, PR China
| | - Xiangqun Xu
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Zhihao Ha
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Qingmuke Su
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Chenyang Lv
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Jia Li
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Dongyun Du
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China.
| | - Ruan Chi
- Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Xingfa Mining Engineering, Wuhan Institute of Technology, Wuhan 430074, PR China
| |
Collapse
|
4
|
Chen L, Nakamura K, Hama T. Review on stabilization/solidification methods and mechanism of heavy metals based on OPC-based binders. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117362. [PMID: 36716545 DOI: 10.1016/j.jenvman.2023.117362] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Stabilization/solidification (S/S) with ordinary portland cement (OPC)-based binders is a suitable method to remediate heavy metal (HM)-contaminated soil and reuse resources of industrial wastes. In industrial wastes, alkaline wastes such as red mud (RM), soda residue (SR), pulverized fly ash (PFA), and alkalinity granulated blast furnace slag (GGBS) can immobilize HM ions (Pb2+, Zn2+, Cd2+, Cr3+, and Cu2+) by precipitation. However, some HM ions (such as AsO43-) would redissolve within the strong alkali environment. In this case, PFA, GGBS, metakaolin (MK), and incinerated sewage sludge ash (ISSA) which have low pH, can be used to immobilize HM ions or added to the OPC-based binders to adjust the pH in the soil products. Moreover, the calcium silicate hydrate (CSH), calcium aluminum silicate hydrate (CASH), ettringite (AFt), and calcium monosulfoalumiante hydrates (AFm) generated during the pozzolanic reaction can also immobilize HM ions by adsorption on the surface, ion exchange, and encapsulation. SR and GGBS can be used to immobilize the HMs (such as CrO42- and AsO43-), which are mainly affected by AFt and AFm. For those not affected by AFt and AFm but related to immobilization by precipitating (such as Mn2+), other wastes except SR and GGBS are suitable for treating contaminated soil. Nevertheless, the formation of AFt is also instrumental for soil product strength. There are several factors affecting soil product strength. In the future, the influence of different hydration products on the S/S effects, competitive adsorption of HM ions, effects on long-term HM stabilization, and novel materials are worth being explored by researchers.
Collapse
Affiliation(s)
- Liyuan Chen
- Graduate School of Agriculture, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 , Japan.
| | - Kimihito Nakamura
- Graduate School of Agriculture, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 , Japan.
| | - Takehide Hama
- Graduate School of Agriculture, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 , Japan.
| |
Collapse
|
5
|
Research and Development of Red Mud and Slag Alkali Activation Light Filling Materials Preparation by Ultra-High Water Content and Analysis of Microstructure Formation Mechanism. Polymers (Basel) 2022; 14:polym14235176. [PMID: 36501574 PMCID: PMC9739920 DOI: 10.3390/polym14235176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
This paper presents the preparation of alkali-activated red mud (RM) light material by an ultra-high liquid-solid ratio (1.98) based on the super water absorption characteristic of RM particles. Compressive strength, dry density, and water absorption are analyzed over time. Besides, the characteristic distributions of porosity and pore size are measured by mercury injection tests, and the microstructure is further analyzed by scanning electron microscopy. The results show that the ultra-high liquid-solid ratio can be used to prepare light samples with superior mechanical properties, low water absorption, reasonable pore distribution, and fine microstructures compared with light samples prepared with a foaming agent. The reason is that the significant increase in the free water does not change the dense microstructure of samples and effectively limits the increase in the detrimental pores. This effectively alleviates the sudden decrease in compressive strength and limits the increase in water absorption.
Collapse
|
6
|
Bai X, Lin J, Zhang Z, Zhan Y. Immobilization of lead, copper, cadmium, nickel, and zinc in sediment by red mud: adsorption characteristics, mechanism, and effect of dosage on immobilization efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51793-51814. [PMID: 35254614 DOI: 10.1007/s11356-022-19506-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The objective of this work was to determine the effect of dosage on the immobilization of lead (Pb), copper (Cu), cadmium (Cd), nickel (Ni), and zinc (Zn) in sediment by red mud (RM). To achieve this aim, the adsorption characteristics and mechanism of Pb, Cu, Cd, Ni, and Zn from aqueous solution on RM were studied at first, and then the influence of the RM dosage on the fractionation and leaching potential of Pb, Cu, Cd, Ni, and Zn in sediment was investigated. The results showed that RM possessed high adsorption capacities for Pb(II), Cu(II), Cd(II), Ni(II), and Zn(II) in aqueous solution. The maximum monolayer Pb(II), Cu(II), Cd(II), Ni(II), and Zn(II) adsorption capacities for RM derived from the Langmuir isotherm model were found to be 296, 39.2, 70.2, 46.0, and 50.7 mg/g, respectively. The addition of RM into sediment could effectively reduce the toxicity characteristic leaching procedure (TCLP)-leachable concentrations of Pb, Cu, Cd, Ni, and Zn in the sediment. The added RM could effectively immobilize the mobile (exchangeable, reducible, and oxidizable fractions) Pb in sediment by the conversion of the exchangeable and reducible fractions into the residual fraction, and it could effectively immobilize the mobile Cu, Cd, Ni, and Zn in sediment by the conversion of the exchangeable fraction into the residual fraction. The quantities of mobile Pb, Cu, Cd, and Ni immobilized by RM had a good linear relationship with the added RM. The above results suggest that RM is a promising amendment for the immobilization of mobile Pb, Cu, Cd, Ni, and Zn in sediment, and the linear relationship between the RM dosage and the quantities of immobilized Pb, Cu, Cd, and Ni by RM can be employed to determine the RM dosage required for the immobilization of mobile Pb, Cu, Cd, and Ni in sediment.
Collapse
Affiliation(s)
- Xianshang Bai
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China.
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, People's Republic of China.
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China
| |
Collapse
|
7
|
Study on Properties of Copper-Contaminated Soil Solidified by Solid Waste System Combined with Cement. SUSTAINABILITY 2022. [DOI: 10.3390/su14095604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Three industrial solid wastes including red mud, carbide slag, and phosphogypsum combined with ordinary Portland cement were used as curing agents to solidify/stabilize loess polluted by a high concentration of copper ions. The unconfined compressive strength, resistivity, permeability coefficient, copper ion leaching concentration, pH value, and other engineering application evaluation indexes were analyzed to preliminarily assess the applicability of the curing agent in the remediation of soil contaminated with a high concentration of copper ions. The mineral phases and functional groups of solidified soil were detected using XRD and FTIR, showing that the strength, electrical resistivity, and pH value of solidified soil decrease following the addition of copper ions. Moreover, the strength and resistivity of solidified soil increase with the curing age, and the pH value decreases with age. For solidified contaminated soil, when the total content of curing agent increases from 10 to 20%, the maximum 28 d strength increases from 1.35 to 5.43 MPa, and in this study, its permeability coefficient, copper ion leaching concentration, and pH value were found to be within the limits set by relevant national standards. In conclusion, red mud-carbide slag-phosphogypsum combined with cement has a good stabilizing effect on sites polluted with a high concentration of copper ions.
Collapse
|
8
|
The Effects of the Long-Term Freeze–Thaw Cycles on the Forms of Heavy Metals in Solidified/Stabilized Lead–Zinc–Cadmium Composite Heavy Metals Contaminated Soil. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Heavy metals (HMs) exist in nature in different forms, and the more unstable the form of an HM, the higher its toxicity and bioavailability. The content of HMs in stable fractions can increase significantly through the stabilization/solidification (S/S) technology. Still, external environments such as freeze–thaw (F–T) cycles will affect the stability of HMs directly. Therefore, a long-term F–T study of S/S Pb–Zn–Cd composite HM-contaminated soil was conducted under six conditions (0, 3, 7, 14, 30, and 90 cycles) with each F–T cycle process up to 24 h. The improved Tessier method was employed, and the results show that the S/S technology makes HMs transform to a more stable fraction. Still, the transformation efficiency is different for each HM. More than 98% of lead and zinc were converted to stable forms, while for cadmium, there are only 75.1%. Meanwhile, the S/S HMs were rapidly transformed into unstable forms at 0–14 cycles, but after 14 cycles, the transformation speed was significantly reduced. Among stable forms, it is mainly that the carbonate-bound fraction of HMs changes to unstable forms, and the characteristic peaks of carbonate stretching vibration were found at 874 cm−1, and 1420 cm−1 by Fourier infrared spectroscopy proves the presence of carbonate-bound substances. As a result of this study, the change trend of contaminated soil with S/S HMs under the effect of long-term F–T cycle was revealed, and the crisis point of pollution prevention and control was found, which provides some theoretical basis for the safety of soil remediation project.
Collapse
|
9
|
Synergistically Using Bauxite Residue (Red Mud) and Other Solid Wastes to Manufacture Eco-Friendly Cementitious Materials. BUILDINGS 2022. [DOI: 10.3390/buildings12020117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bauxite residue (red mud) is a solid waste resulting from the aluminum production industry. Disposal or landfill of the red mud (RM) poses irreversible environmental problems; therefore, it is compelling to find practical solutions that can mitigate the negative environmental problems of RM stacking storage. In the past decades, although the recycling of RM has achieved significant progress, challenges remain from both academic and practical perspectives. Previous studies have demonstrated that all the aluminosilicate-based solid wastes have pozzolanic activity, and thus can be considered as resources to manufacture eco-friendly cementitious materials to relieve the carbon emission burden. Therefore, combining RM and other solid wastes to manufacture green cementitious materials has become a promising route to alleviate the burden of environmental pollutions. However, challenges from the fluctuation of the chemical compositions, inert activity, heavy metals stabilization, efflorescence, the side effects of the second pollutions from solid wastes, the hydration process, and mutual interaction mechanisms between the various types of solid wastes are still unclear, especially for multi-components RM-based cementitious materials. This review article summarizes the state of the art of mechanical properties, microstructure characterization methodologies, and hydration process and mechanisms of RM along with other solid wastes. The main challenges and future research trends are discussed. This article attempts to summarize the details of the RM recycling technologies that are beneficial to readers in understanding the background knowledge and research methodologies of eco-friendly cementitious materials.
Collapse
|
10
|
Zhang Q, Cao X, Sun S, Yang W, Fang L, Ma R, Lin C, Li H. Lead zinc slag-based geopolymer: Demonstration of heavy metal solidification mechanism from the new perspectives of electronegativity and ion potential. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118509. [PMID: 34793905 DOI: 10.1016/j.envpol.2021.118509] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Lead-zinc slag (LZS) is a solid waste product that is rich in silicon and aluminum and has enormous resource potential for functional environmental functional geopolymer materials. Unfortunately, the solidification mechanism of heavy metals in geopolymers is still unclear, which is detrimental to the heavy metal solidification of LZS. In this study, we comprehensively studied and demonstrated the solidification mechanisms of Pb and Zn in geopolymers, based on the preparation of high-performance LZS-based geopolymers (compressive strength up to 89.3 MPa, and Pb and Zn solidification efficiency up to 93.1% and 90.0%, respectively). Thereafter, the solidification mechanism differences between Pb and Zn were explained by electronegativity and ion potential. Due to the ionic potential order of Zn2+> Pb2+> Na+, both Zn2+ and Pb2+ could exchange with Na+ in the geopolymer. In addition, due to the electronegativity order of Pb > Si > Zn, Pb could attack the [SiO4] structure and form covalent bonds in the Pb-O structure, while Zn did not (shown by Raman spectroscopy). As a result, Pb simultaneously solidified in the geopolymer through covalent bonding and ion exchange, while Zn was solidified mainly by ion exchange. Thus, this work provides new perspectives and ideas for the solidification mechanisms of heavy metals in geopolymers.
Collapse
Affiliation(s)
- Qiushi Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xing Cao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Research Center for Water Science and Environmental Engineering, Shenzhen University, 518055, China
| | - Weichen Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lin Fang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Chenghua Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haowen Li
- Micro Optical Instruments (Shenzhen) Inc, 518129, China; Guangdong Engineering Research Center for Intelligent Spectroscopy, 518118, China
| |
Collapse
|
11
|
Wang F, Xu J, Yin H, Zhang Y, Pan H, Wang L. Sustainable stabilization/solidification of the Pb, Zn, and Cd contaminated soil by red mud-derived binders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117178. [PMID: 33901985 DOI: 10.1016/j.envpol.2021.117178] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/20/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Red mud and phosphogypsum are voluminous industrial by-products worldwide. They have long been disposed of in landfills or open storage, leading to a waste of resource and environmental pollution. This study provides a novel approach to recycle these industrial by-products as sustainable red mud-phosphogypsum-Portland cement (RPPC) binders for stabilization/solidification (S/S) of multimetal-contaminated soil. The physical strength, metal leachability and microstructure of S/S soil were investigated after 7-day and 28-day curing, as well as freezing-thawing (F-T) cycle and wetting-drying (W-D) cycle. The results show that the strength of soil treated by all binders fulfilled the uniaxial compressive strength requirement (350 kPa) of S/S waste in landfills. Microstructural analyses show that the main hydration products of the RPPC S/S soil are ilmenite, ettringite, anhydrite and hydrated calcium silicate. The 10% and 15% RPPC binders have a competitive metal immobilization ability compared with 10% PC, but the immobilization priority is different: Pb > Zn > Cd in RPPC system and Zn > Cd > Pb in PC system, respectively, probably due to the precipiataion of Pb2+ with the abundant SO42- in phosphogypsum in RPPC system. The strength of RPPC and PC treated soil was still higher than 350 kPa except for RPPC7.5 after 10 freeze-thaw or 10 wetting-drying cycles. The RPPC binder performed worse than PC binder after both freeze-thaw and wetting-drying cycles, especially at a lower dosage. Only the metal leaching concentrations of samples treated by RPPC15 and PC10 could fulfil the Chinese standards for hazardous wastes.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China.
| | - Jian Xu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, 210042, China.
| | - Hailong Yin
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Yunhui Zhang
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Hao Pan
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China.
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
12
|
Vinter Š, Bednařík V, Montañés MT, Černotová A, Kadlečková M. Microencapsulation of zinc plating waste using silicone polymers. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125225. [PMID: 33529831 DOI: 10.1016/j.jhazmat.2021.125225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
This paper deals with the treatment of hazardous zinc-bearing waste using hydraulic binders and silicone polymers, with the aim to allow its safe disposal into landfill. The waste was solidified using hydraulic binders in the first step and then encapsulated using silicone polymers. Samples were characterised using x-ray fluorescence, x-ray diffraction, and scanning electron microscopy. The effectiveness of the process was evaluated by leaching tests in distilled water and in an acidic environment according to Toxicity Characteristic Leaching Procedure. The effect of porosity and pH on the release of pollutants was also studied. Zinc and chloride were identified as the most significant pollutants in the waste. Portland cement did not stabilize them efficiently. The two-step treatment with Portland cement and silicone binders decreased, in the best case, the concentration of zinc and chloride in acidic extracts from 12,400 mg/L and 38,300 mg/L to 21.9 mg/L and 74 mg/L, respectively, and the treated waste complied with regulatory requirements for hazardous waste disposal into landfills. The two-step treatment was also found as a more effective method than microencapsulation using a silicone binder alone. The factor that most affects leachability appears to be the porosity of the encapsulated waste.
Collapse
Affiliation(s)
- Š Vinter
- Department of Environmental Protection Engineering, Tomas Bata University in Zlin, Faculty of Technology, Vavrečkova 275, 760 01 Zlín, Czech Republic.
| | - V Bednařík
- Department of Environmental Protection Engineering, Tomas Bata University in Zlin, Faculty of Technology, Vavrečkova 275, 760 01 Zlín, Czech Republic.
| | - M T Montañés
- Ingeniería Electroquimíca y Corrosión, Departamento de Ingeniería Química y Nuclear, Universitat Politécnica de Valencia (Polytechnic University of Valencia), Camino de Vera s/n, 46022 Valencia, Spain.
| | - A Černotová
- Department of Environmental Protection Engineering, Tomas Bata University in Zlin, Faculty of Technology, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - M Kadlečková
- Department of Physics and Materials Engineering, Tomas Bata University in Zlin, Faculty of Technology, Vavrečkova 275, 760 01 Zlín, Czech Republic.
| |
Collapse
|
13
|
Tyagi G, Singhal A, Routroy S, Bhunia D, Lahoti M. Radiation Shielding Concrete with alternate constituents: An approach to address multiple hazards. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124201. [PMID: 33129018 DOI: 10.1016/j.jhazmat.2020.124201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Radiation Shielding Concrete (RSC) is a superior alternative to many conventional and modern shields against gamma and neutron radiation hazards. The present work is the first comprehensive review on utilization of alternate materials, emphasizing hazardous industrial byproducts, as constituents of RSC. Such usage enhances the performance, sustainability, and affordability of RSC. Added advantages are the immobilization of wastes and the conservation of natural resources for RSC. The review analyses incorporation of ferrous and non-ferrous slags, mines wastes, plastics, red mud, cathode ray tube's glass, metallic wastes, fly ash, silica fume, and miscellaneous residues. Besides, utilization of fibers, nanoparticles, and calcined clay is investigated. The influence on shielding efficiency is adjudged by scrutinizing changes in parameters such as half-value layer and linear attenuation coefficients. Similarly, variations in mechanical and durability properties are investigated and compared. The underlying responsible factors related to the physical, chemical and morphological characteristics of materials and their consequences on RSC's behavior are correlated. In association with alternatives, the advantages, disadvantages, and possible treatment methods are discussed. The country-wise, material-specific, and progressive research trends are revealed to facilitate future work in this upcoming field. Finally, conclusions are drawn with exposition of current bottlenecks and scope of future research.
Collapse
Affiliation(s)
- Gaurav Tyagi
- Department of Civil Engineering, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, 333031, India.
| | - Anupam Singhal
- Department of Civil Engineering, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, 333031, India.
| | - Srikanta Routroy
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, 333031, India.
| | - Dipendu Bhunia
- Department of Civil Engineering, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, 333031, India.
| | - Mukund Lahoti
- Department of Civil Engineering, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, 333031, India.
| |
Collapse
|