1
|
Krisanova N, Pozdnyakova N, Pastukhov A, Dudarenko M, Tarasenko A, Borysov A, Driuk M, Tolochko A, Bezkrovnyi O, Paliienko K, Sivko R, Gnatyuk O, Dovbeshko G, Borisova T. Synergistic neurological threat from Сu and wood smoke particulate matter. Food Chem Toxicol 2024; 193:115009. [PMID: 39304082 DOI: 10.1016/j.fct.2024.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Trace metal Cu and carbonaceous airborn particulate matter (PM) are dangerous neuropollutants. Here, the ability of Cu2+ to modulate the neurotoxicity caused by water-suspended wood smoke PM preparations (SPs) and vice versa was examined using presynaptic rat cortex nerve terminals. Interaction of Cu2+ and SPs, changes of particle size and surface properties were shown in the presence of Cu2+ using microscopy, DLS, and IR spectroscopy. In nerve terminals, Cu2+ and SPs per se elevated the ambient levels of excitatory and inhibitory neurotransmitters L-[14C]glutamate and [3H]GABA, respectively. During combined application, Cu2+ significantly enhanced a SPs-induced increase in the ambient levels of both neurotransmitters, thereby demonstrating a cumulative synergistic effect and significant interference in the neurotoxic threat associated with Cu2+and SPs. In fluorimetric measurements, Cu2+ and SPs also demonstrated cumulative synergistic effects on the membrane potential, mitochondrial potential, synaptic vesicle acidification and ROS generation. Therefore, synergistic effects of Cu2+ and SPs on the most crucial presynaptic characteristics and neurohazard of multiple pollutants through excitatory/inhibitory imbalance, disruption of the membrane and mitochondrial potential, vesicle acidification and ROS generation were revealed. Increased expansion and burden of neuropathology may result from underestimation of synergistic interference of the neurotoxic effects of Cu2+ and carbonaceous smoke PM.
Collapse
Affiliation(s)
- Nataliya Krisanova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Natalia Pozdnyakova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Artem Pastukhov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Marina Dudarenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Alla Tarasenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Arsenii Borysov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Mykola Driuk
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Anatoliy Tolochko
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kyiv, 03680, Ukraine
| | - Oleksii Bezkrovnyi
- Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Konstantin Paliienko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Roman Sivko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine
| | - Olena Gnatyuk
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kyiv, 03680, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Galyna Dovbeshko
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kyiv, 03680, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kyiv, 01054, Ukraine; Optical Spectroscopy Division, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland.
| |
Collapse
|
2
|
Shatursky OY, Krisanova NV, Pozdnyakova N, Pastukhov AO, Dudarenko M, Kalynovska L, Shkrabak AA, Veklich TO, Selikhova AI, Cherenok SO, Borisova TA, Kalchenko VI, Kosterin SO. Substitution of bridge carbons for sulphur in calix[4]arene-bis-α-hydroxymethylphosphonic acid transformed mobile carrier into ionic channel accompanied with evoked muscle contraction and impaired neurotransmission powered by membrane action of resulting thiocalix[4]arene-bis-α-hydroxymethylphosphonic acid. Toxicol In Vitro 2024; 98:105815. [PMID: 38636607 DOI: 10.1016/j.tiv.2024.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
The action of calix[4]arenes C-424, C-425 and C-1193 has been investigated on suspended cholesterol/egg phosphatidylcholine lipid bilayer in a voltage-clamp mode. Comparative analysis with the membrane action by calix[4]arene-bis-α-hydroxymethylphosphonic acid (C-99) has shown that the substitution of bridge carbons for sulphur and addition of another methyl group to two alkyl tales in the lower rim of former dipropoxycalix[4]arene C-99 transformed mobile carrier that C-99 created in lipid bilayer (Shatursky et al., 2014) into a transmembrane pore as exposure of the bilayer membrane to sulphur-containing derivative dibutoxythiocalix[4]arene C-1193 resulted in microscopic transmembrane current patterns indicative of a channel-like mode of facilitated diffusion. Within all calix[4]arenes tested a net steady-state voltage-dependent transmembrane current was readily achieved only after addition of calix[4]-arene C-1193. In comparison with the membrane action of C-99 the current induced by calix[4]-arene C-1193 exhibited a much weakened anion selectivity passing slightly more current at positive potentials applied from the side of bilayer membrane to which the calix[4]-arene was added. Testing C-1193 for the membrane action against smooth muscle cells of rat uterus or swine myometrium and synaptosomes of rat brain nerve terminals revealed an increase in intracellular concentration of Ca2+ with reduction of the effective hydrodynamic diameter of the smooth muscle cells and enhanced basal extracellular level of neurotransmitters (glutamate and γ-aminobutyric acid) after C-1193-induced depolarization of the nerve terminals.
Collapse
Affiliation(s)
- Oleg Ya Shatursky
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str., 9, Kyiv 01030, Ukraine.
| | - Natalia V Krisanova
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str., 9, Kyiv 01030, Ukraine
| | - Natalia Pozdnyakova
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str., 9, Kyiv 01030, Ukraine
| | - Artem O Pastukhov
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str., 9, Kyiv 01030, Ukraine
| | - Marina Dudarenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str., 9, Kyiv 01030, Ukraine
| | - Lilia Kalynovska
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str., 9, Kyiv 01030, Ukraine
| | - Alexander A Shkrabak
- Department of Muscle Biochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str., 9, Kyiv 01030, Ukraine
| | - Tatiana O Veklich
- Department of Muscle Biochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str., 9, Kyiv 01030, Ukraine
| | - Anna I Selikhova
- Institute of Organic Chemistry, NAS of Ukraine, Murmanska Str., 5, Kyiv 02660, Ukraine
| | - Serhii O Cherenok
- Institute of Organic Chemistry, NAS of Ukraine, Murmanska Str., 5, Kyiv 02660, Ukraine
| | - Tatiana A Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str., 9, Kyiv 01030, Ukraine
| | - Vitaly I Kalchenko
- Institute of Organic Chemistry, NAS of Ukraine, Murmanska Str., 5, Kyiv 02660, Ukraine
| | - Sergyi O Kosterin
- Department of Muscle Biochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str., 9, Kyiv 01030, Ukraine
| |
Collapse
|
3
|
White AR. The firestorm within: A narrative review of extreme heat and wildfire smoke effects on brain health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171239. [PMID: 38417511 DOI: 10.1016/j.scitotenv.2024.171239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Climate change is generating increased heatwaves and wildfires across much of the world. With these escalating environmental changes comes greater impacts on human health leading to increased numbers of people suffering from heat- and wildfire smoke-associated respiratory and cardiovascular impairment. One area of health impact of climate change that has received far less attention is the effects of extreme heat and wildfire smoke exposure on human brain health. As elevated temperatures, and wildfire-associated smoke, are increasingly experienced simultaneously over summer periods, understanding this combined impact is critical to management of human health especially in the elderly, and people with dementia, and other neurological disorders. Both extreme heat and wildfire smoke air pollution (especially particulate matter, PM) induce neuroinflammatory and cerebrovascular effects, oxidative stress, and cognitive impairment, however the combined effect of these impacts are not well understood. In this narrative review, a comprehensive examination of extreme heat and wildfire smoke impact on human brain health is presented, with a focus on how these factors contribute to cognitive impairment, and dementia, one of the leading health issues today. Also discussed is the potential impact of combined heat and wildfire smoke on brain health, and where future efforts should be applied to help advance knowledge in this rapidly growing and critical field of health research.
Collapse
Affiliation(s)
- Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QLD, Australia.
| |
Collapse
|
4
|
Pozdnyakova N, Krisanova N, Pastukhov A, Dudarenko M, Tarasenko A, Borysov A, Kalynovska L, Paliienko K, Borisova T. Multipollutant reciprocal neurological hazard from smoke particulate matter and heavy metals cadmium and lead in brain nerve terminals. Food Chem Toxicol 2024; 185:114449. [PMID: 38215962 DOI: 10.1016/j.fct.2024.114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Heavy metals, Cd2+ and Pb2+, and carbonaceous air pollution particulate matter are hazardous neurotoxicants. Here, a capability of water-suspended smoke particulate matter preparations obtained from poplar wood (WPs) and polypropylene fibers (medical facemasks) (MPs) to influence Cd2+/Pb2+-induced neurotoxicity, and vice versa, was monitored using biological system, i.e. isolated presynaptic rat cortex nerve terminals. Combined application of Pb2+ and WPs/MPs to nerve terminals in an acute manner revealed that smoke preparations did not change a Pb2+-induced increase in the extracellular levels of excitatory neurotransmitter L-[14C]glutamate and inhibitory one [3H]GABA, thereby demonstrating additive result and no interference of neurotoxic effects of Pb2+ and particulate matter. Whereas, both smoke preparations decreased a Cd2+-induced increase in the extracellular level of L-[14C]glutamate and [3H]GABA in nerve terminals. In fluorimetric measurements, the metals and smoke preparations demonstrated additive effects on the membrane potential of nerve terminals causing membrane depolarisation. WPs/MPs-induced reduction of spontaneous ROS generation was mitigated by Cd2+ and Pb2+. Therefore, a potential variety of multipollutant heavy metal-/airborne particulate-induced effects on key presynaptic processes was revealed. Multipollutant reciprocal neurological hazard through disturbance of the excitation-inhibition balance, membrane potential and ROS generation was evidenced. This multipollutant approach and data contribute to up-to-date environmental quality/health risk estimation.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Nataliya Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine.
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Alla Tarasenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Arsenii Borysov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Liliia Kalynovska
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Konstantin Paliienko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| |
Collapse
|
5
|
Krisanova N, Pastukhov A, Dekaliuk M, Dudarenko M, Pozdnyakova N, Driuk M, Borisova T. Mercury-induced excitotoxicity in presynaptic brain nerve terminals: modulatory effects of carbonaceous airborne particulate simulants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3512-3525. [PMID: 38085481 DOI: 10.1007/s11356-023-31359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Multipollutant approach is a breakthrough in up-to-date environmental quality and health risk estimation. Both mercury and carbonaceous air particulate are hazardous neurotoxicants. Here, the ability of carbonaceous air particulate simulants, i.e. carbon dots obtained by heating of organics, and nanodiamonds, to influence Hg2+-induced neurotoxicity was monitored using biological system, i.e. presynaptic rat cortex nerve terminals. Using HgCl2 and classical reducing/chelating agents, an adequate synaptic parameter, i.e. the extracellular level of key excitatory neurotransmitter L-[14C]glutamate, was selected for further analysis. HgCl2 starting from 5 µM caused an acute and concentration-dependent increase in the extracellular L-[14C]glutamate level in nerve terminals. Combined application of Hg2+ and carbon dots from heating of citric acid/urea showed that this simulant was able to mitigate in an acute manner excitotoxic Hg2+-induced increase in the extracellular L-[14C]glutamate level in nerve terminals by 37%. These carbon dots and Hg2+ acted as a complex in nerve terminals that was confirmed with fluorimetric data on Hg2+-induced changes in their spectroscopic features. Nanodiamonds and carbon dots from β-alanine were not able to mitigate a Hg2+-induced increase in the extracellular L-[14C]glutamate level in nerve terminals. Developed approach can be applicable for monitoring capability of different particles/compounds to have Hg2+-chelating signs in the biological systems. Therefore, among testing simulants, the only carbon dots from citric acid/urea were able to mitigate acute Hg2+-induced neurotoxicity in nerve terminals, thereby showing a variety of effects of carbonaceous airborne particulate in situ and its potential to interfere and modulate Hg2+-associated health hazard.
Collapse
Affiliation(s)
- Nataliya Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Mariia Dekaliuk
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Mikola Driuk
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine.
| |
Collapse
|
6
|
Pastukhov A, Paliienko K, Pozdnyakova N, Krisanova N, Dudarenko M, Kalynovska L, Tarasenko A, Gnatyuk O, Dovbeshko G, Borisova T. Disposable facemask waste combustion emits neuroactive smoke particulate matter. Sci Rep 2023; 13:17771. [PMID: 37853141 PMCID: PMC10584905 DOI: 10.1038/s41598-023-44972-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023] Open
Abstract
Tremendous deposits of disposable medical facemask waste after the COVID-19 pandemic require improvement of waste management practice according to WHO report 2022, moreover facemasks are still in use around the world to protect against numerous airborne infections. Here, water-suspended smoke preparations from the combustion of disposable medical facemasks (polypropylene fibers) were collected; size, zeta potential, surface groups of smoke particulate matter were determined by dynamic light scattering, FTIR and Raman spectroscopy, and their optical properties were characterized. Neurochemical study using nerve terminals isolated from rat cortex revealed a significant decrease in the initial rate of the uptake/accumulation of excitatory and inhibitory neurotransmitters, L-[14C]glutamate and [3H]GABA, and exocytotic release, and also an increase in the extracellular level of these neurotransmitters. Fluorescent measurements revealed that ROS generation induced by hydrogen peroxide and glutamate receptor agonist kainate decreased in nerve terminals. A decrease in the membrane potential of nerve terminals and isolated neurons, the mitochondrial potential and synaptic vesicle acidification was also shown. Therefore, accidental or intentional utilization of disposable medical facemask waste by combustion results in the release of neuroactive ultrafine particulate matter to the environment, thereby contributing to plastic-associated pollution of air and water resources and neuropathology development and expansion.
Collapse
Affiliation(s)
- Artem Pastukhov
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| | - Konstantin Paliienko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine.
| | - Natalia Pozdnyakova
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| | - Natalia Krisanova
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| | - Marina Dudarenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| | - Lilia Kalynovska
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| | - Alla Tarasenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| | - Olena Gnatyuk
- Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauky 46, Kyiv, 03028, Ukraine
| | - Galina Dovbeshko
- Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauky 46, Kyiv, 03028, Ukraine
| | - Tatiana Borisova
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kyiv, 01054, Ukraine
| |
Collapse
|
7
|
Kuznietsova H, Dziubenko N, Paliienko K, Pozdnyakova N, Krisanova N, Pastukhov A, Lysenko T, Dudarenko M, Skryshevsky V, Lysenko V, Borisova T. A comparative multi-level toxicity assessment of carbon-based Gd-free dots and Gd-doped nanohybrids from coffee waste: hematology, biochemistry, histopathology and neurobiology study. Sci Rep 2023; 13:9306. [PMID: 37291245 PMCID: PMC10250545 DOI: 10.1038/s41598-023-36496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Here, a comparative toxicity assessment of precursor carbon dots from coffee waste (cofCDs) obtained using green chemistry principles and Gd-doped nanohybrids (cofNHs) was performed using hematological, biochemical, histopathological assays in vivo (CD1 mice, intraperitoneal administration, 14 days), and neurochemical approach in vitro (rat cortex nerve terminals, synaptosomes). Serum biochemistry data revealed similar changes in cofCDs and cofNHs-treated groups, i.e. no changes in liver enzymes' activities and creatinine, but decreased urea and total protein values. Hematology data demonstrated increased lymphocytes and concomitantly decreased granulocytes in both groups, which could evidence inflammatory processes in the organism and was confirmed by liver histopathology; decreased red blood cell-associated parameters and platelet count, and increased mean platelet volume, which might indicate concerns with platelet maturation and was confirmed by spleen histopathology. So, relative safety of both cofCDs and cofNHs for kidney, liver and spleen was shown, whereas there were concerns about platelet maturation and erythropoiesis. In acute neurotoxicity study, cofCDs and cofNHs (0.01 mg/ml) did not affect the extracellular level of L-[14C]glutamate and [3H]GABA in nerve terminal preparations. Therefore, cofNHs demonstrated minimal changes in serum biochemistry and hematology assays, had no acute neurotoxicity signs, and can be considered as perspective biocompatible non-toxic theragnostic agent.
Collapse
Affiliation(s)
- Halyna Kuznietsova
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kyiv, 01033, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kyiv, 01601, Ukraine
| | - Natalia Dziubenko
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kyiv, 01033, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kyiv, 01601, Ukraine
| | - Konstantin Paliienko
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kyiv, 01033, Ukraine.
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine.
| | - Natalia Pozdnyakova
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| | - Natalia Krisanova
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| | - Artem Pastukhov
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| | - Tetiana Lysenko
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kyiv, 01033, Ukraine
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| | - Marina Dudarenko
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| | - Valeriy Skryshevsky
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kyiv, 01033, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kyiv, 01601, Ukraine
| | - Vladimir Lysenko
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon/CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Tatiana Borisova
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60 Volodymyrska Str., Kyiv, 01033, Ukraine
- Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv, 01054, Ukraine
| |
Collapse
|
8
|
Ma YB, Xie ZY, Hamid N, Tang QP, Deng JY, Luo L, Pei DS. Recent advances in micro (nano) plastics in the environment: Distribution, health risks, challenges and future prospects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106597. [PMID: 37311378 DOI: 10.1016/j.aquatox.2023.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/15/2023]
Abstract
Environmental micro(nano)plastics have become a significant global pollution problem due to the widespread use of plastic products. In this review, we summarized the latest research advances on micro(nano)plastics in the environment, including their distribution, health risks, challenges, and future prospect. Micro(nano)plastics have been found in a variety of environmental media, such as the atmosphere, water bodies, sediment, and especially marine systems, even in remote places like Antarctica, mountain tops, and the deep sea. The accumulation of micro(nano)plastics in organisms or humans through ingestion or other passive ways poses a series of negative impacts on metabolism, immune function, and health. Moreover, due to their large specific surface area, micro(nano)plastics can also adsorb other pollutants, causing even more serious effects on animal and human health. Despite the significant health risks posed by micro(nano)plastics, there are limitations in the methods used to measure their dispersion in the environment and their potential health risks to organisms. Therefore, further research is needed to fully understand these risks and their impacts on the environment and human health. Taken together, the challenges of micro(nano)plastics analysis in the environment and organisms must be addressed, and future research prospects need to be identified. Governments and individuals must take action to reduce plastic waste and minimize the negative impact of micro(nano)plastics on the environment and human health.
Collapse
Affiliation(s)
- Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhuo-Yuan Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Qi-Ping Tang
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Jiao-Yun Deng
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Lin Luo
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Dorofeyev A, Dorofeyeva A, Borysov A, Tolstanova G, Borisova T. Gastrointestinal health: changes of intestinal mucosa and microbiota in patients with ulcerative colitis and irritable bowel syndrome from PM 2.5-polluted regions of Ukraine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7312-7324. [PMID: 36038689 DOI: 10.1007/s11356-022-22710-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Here, clinical studies of patients were conducted to assess changes in patients with ulcerative colitis (UC) and irritable bowel syndrome (IBS) associated with air pollution by PM. A comparative study of 100 patients with UC and 75 with IBS from highly (HPRs) and low (LPRs) PM2.5-polluted regions of Ukraine was conducted. Biopsy of the intestinal mucosa of patients with UC from HPRs showed severe cellular infiltration. Patients with IBS from HPRs had changes in the superficial epithelium (focal desquamation), and inflammatory-cellular infiltration of mucous membrane of the colon. In patients with UC, changes in mucus production were found, which were more significant in HPR patients. PAS response did not depend on the residence; the level of MUC2 was significantly lower in HPR patients with UC (1.12 vs 2.15 au). In patients with UC from HPRs, a decrease in Bacteroidetes (34.0 vs. 39.0 small intestinal bacterial overgrowth (SIBO), ppm) and an increase in Proteobacteria compared to LPRs were shown. In IBS patients, significant differences were found in the level of Proteobacteria, which was higher in HPRs. The level of regulatory flora Akkermansia muciniphila and Faecalibacterium prausnitzii reduced in patients with UC from HPRs. In patients from LPRs, the level of Akkermansia muciniphila raised above normal (2.8 vs 4.7 SIBO, ppm). Similar changes of regulatory flora have been identified in patients with IBS from different regions. Therefore, a more severe course of the disease (more pronounced cellular infiltration and violation of the microbiota) was shown in patients with UC from HPRs as compared to LPRs.
Collapse
Affiliation(s)
| | - Anna Dorofeyeva
- D. F. Chebotarev State Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, Kiev, Ukraine
| | - Arsenii Borysov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | | | - Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine.
| |
Collapse
|
10
|
Paliienko K, Korbush M, Krisanova N, Pozdnyakova N, Borysov A, Tarasenko A, Pastukhov A, Dudarenko M, Kalynovska L, Grytsaenko V, Garmanchuk L, Dovbynchuk T, Tolstanova G, Borisova T. Similar in vitro response of rat brain nerve terminals, colon preparations and COLO 205 cells to smoke particulate matter from different types of wood. Neurotoxicology 2022; 93:244-256. [DOI: 10.1016/j.neuro.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/17/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
|
11
|
Yuan T, Zou H. Effects of air pollution on myopia: an update on clinical evidence and biological mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70674-70685. [PMID: 36031679 PMCID: PMC9515022 DOI: 10.1007/s11356-022-22764-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 05/06/2023]
Abstract
Myopia is one of the most common forms of refractive eye disease and considered as a worldwide pandemic experienced by half of the global population by 2050. During the past several decades, myopia has become a leading cause of visual impairment, whereas several factors are believed to be associated with its occurrence and development. In terms of environmental factors, air pollution has gained more attention in recent years, as exposure to ambient air pollution seems to increase peripheral hyperopia defocus, affect the dopamine pathways, and cause retinal ischemia. In this review, we highlight epidemiological evidence and potential biological mechanisms that may link exposure to air pollutants to myopia. A thorough understanding of these mechanisms is a key for establishing and implementing targeting strategies. Regulatory efforts to control air pollution through effective policies and limit individual exposure to preventable risks are required in reducing this global public health burden.
Collapse
Affiliation(s)
- Tianyi Yuan
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
12
|
Tarasenko A, Pozdnyakova N, Paliienko K, Borysov A, Krisanova N, Pastukhov A, Stanovyi O, Gnatyuk O, Dovbeshko G, Borisova T. A comparative study of wood sawdust and plastic smoke particulate matter with a focus on spectroscopic, fluorescent, oxidative, and neuroactive properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38315-38330. [PMID: 35079971 PMCID: PMC8789210 DOI: 10.1007/s11356-022-18741-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Here, water-suspended smoke aerosol preparation was synthesized from biomass-based fuel, i.e., a widespread product for residential heating, wood sawdust (WP) (pine, poplar, and birch mixture), and its properties were compared in parallel experiments with the smoke preparation from plastics (PP). Molecular groups in the PM preparations were analyzed using Raman and Fourier-transform infrared spectroscopy. WP was assessed in neurotoxicity studies using rat cortex nerve terminals (synaptosomes). Generation of spontaneous and H2O2-evoked reactive oxygen species (ROS) detected using fluorescent dye 2',7'-dichlorofluorescein in nerve terminals was decreased by WP. In comparison with PP, WP demonstrated more pronounced reduction of spontaneous and H2O2-evoked ROS production. WP completely inhibited glutamate receptor agonist kainate-induced ROS production, thereby affecting the glutamate receptor-mediated signaling pathways. WP decreased the synaptosomal membrane potential in fluorimetric experiments and the synaptosomal transporter-mediated uptake of excitatory and inhibitory neurotransmitters, L-[14C]glutamate and [3H] γ-aminobutyric acid (GABA), respectively. PP decreased the ambient synaptosomal level of [3H]GABA, whereas it did not change that of L-[14C]glutamate. Principal difference between WP and PP was found in their ability to influence the ambient synaptosomal level of [3H]GABA (an increase and decrease, respectively), thereby showing riskiness in mitigation of synaptic inhibition by PP and triggering development of neuropathology.
Collapse
Affiliation(s)
- Alla Tarasenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| | - Natalia Pozdnyakova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| | - Konstantin Paliienko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| | - Arsenii Borysov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| | - Natalia Krisanova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| | - Artem Pastukhov
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| | - Olexander Stanovyi
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kiev, 03680, Ukraine
| | - Olena Gnatyuk
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kiev, 03680, Ukraine
| | - Galina Dovbeshko
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave, Kiev, 03680, Ukraine
| | - Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha str, Kiev, 01054, Ukraine
| |
Collapse
|
13
|
Shatursky OY, Demchenko AP, Panas I, Krisanova N, Pozdnyakova N, Borisova T. The ability of carbon nanoparticles to increase transmembrane current of cations coincides with impaired synaptic neurotransmission. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183817. [PMID: 34767780 DOI: 10.1016/j.bbamem.2021.183817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Here, carbon nanodots synthesized from β-alanine (Ala-CDs) and detonation nanodiamonds (NDs) were assessed using (1) radiolabeled excitatory neurotransmitters L-[14C]glutamate, D-[2,33H]aspartate, and inhibitory ones [3H]GABA, [3H]glycine for registration of their extracellular concentrations in rat cortex nerve terminals; (2) the fluorescent ratiometric probe NR12S and pH-sensitive probe acridine orange for registration of the membrane lipid order and synaptic vesicle acidification, respectively; (3) suspended bilayer lipid membrane (BLM) to monitor changes in transmembrane current. In nerve terminals, Ala-CDs and NDs increased the extracellular concentrations of neurotransmitters and decreased acidification of synaptic vesicles, whereas have not changed sufficiently the lipid order of membrane. Both nanoparticles, Ala-CDs and NDs, were capable of increasing the conductance of the BLM by inducing stable potential-dependent cation-selective pores. Introduction of divalent cations, Zn2+ or Cd2+ on the particles` application side (cis-side) increased the rate of Ala-CDs pore-formation in the BLM. The application of positive potential (+100 mV) to the cis-chamber with Ala-CDs or NDs also activated the insertion as compared with the negative potential (-100 mV). The Ala-CD pores exhibited a wide-range distribution of conductances between 10 and 60 pS and consecutive increase in conductance of each major peak by ~10 pS, which suggest the clustering of the same basic ion-conductive structure. NDs also formed ion-conductive pores ranging from 6 pS to 60 pS with the major peak of conductance at ~12 pS in cholesterol-containing membrane. Observed Ala-CDs and NDs-induced increase in transmembrane current coincides with disturbance of excitatory and inhibitory neurotransmitter transport in nerve terminals.
Collapse
Affiliation(s)
- Oleg Ya Shatursky
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Alexander P Demchenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine
| | - Ihor Panas
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| |
Collapse
|
14
|
Borisova T, Komisarenko S. Air pollution particulate matter as a potential carrier of SARS-CoV-2 to the nervous system and/or neurological symptom enhancer: arguments in favor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40371-40377. [PMID: 33051841 PMCID: PMC7552951 DOI: 10.1007/s11356-020-11183-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/07/2020] [Indexed: 05/04/2023]
Abstract
Entry receptor for SARS-CoV-2 is expressed in nasal epithelial cells, and nasal delivery pathway can be a key feature of transmission. Here, a possibility of interaction of SARS-CoV-2 with air pollution particulate matter (PM) was considered. It was shown in our recent studies that water-suspended plastic and wood smoke aerosol PM and carbon-containing nanoparticles from burning organics can interact with the plasma membrane of brain nerve terminals presumably due to their lipid components. COVID-19 patients have neurological symptoms, viral particles were found in the brain, SARS-CoV-2 enters the cells via fusion of lipid viral envelope with the plasma membranes of infected cells, and so viral envelop can contain lipid components of the host neuronal membranes. Therefore, interaction of SARS-CoV-2 envelope with PM is possible in water surrounding. After drying, PM can serve as a carrier for transmission of SARS-CoV-2 immobilized at their surface. Moreover, PM and SARS-CoV-2 per se can enter human organism during nasal inhalation, and they both use the same nose-to-brain delivery pathways moving along axons directly to the brain, influencing the nervous system and exocytosis/endocytosis in nerve cells. Thus, PM can aggravate neurological symptoms of SARS-CoV-2 and vice versa, due to their identical nose-to-brain delivery mechanism and possible interference of neuronal effects. In addition, different types of PM because of their ability to interact with the plasma membranes of nerve cells can facilitate unspecific SARS-CoV-2 entrance to the cells, and can influence envelope features of SARS-CoV-2. Detailed studies are required to analyze interaction of SARS-CoV-2 with PM.
Collapse
Affiliation(s)
- Tatiana Borisova
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine.
| | - Serhiy Komisarenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| |
Collapse
|
15
|
Prokić MD, Gavrilović BR, Radovanović TB, Gavrić JP, Petrović TG, Despotović SG, Faggio C. Studying microplastics: Lessons from evaluated literature on animal model organisms and experimental approaches. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125476. [PMID: 33647615 DOI: 10.1016/j.jhazmat.2021.125476] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 05/24/2023]
Abstract
Although we are witnesses of an increase in the number of studies examining the exposure/effects of microplastics (MPs) on different organisms, there are many unknowns. This review aims to: (i) analyze current studies devoted to investigating the exposure/effects of MPs on animals; (ii) provide some basic knowledge about different model organisms and experimental approaches used in studying MPs; and to (iii) convey directions for future studies. We have summarized data from 500 studies published from January 2011 to May 2020, about different aspects of model organisms (taxonomic group of organisms, type of ecosystem they inhabit, life-stage, sex, tissue and/or organ) and experimental design (laboratory/field, ingestion/bioaccumulation/effect). We also discuss and try to encourage investigation of some less studied organisms (terrestrial and freshwater species, among groups including Annelida, Nematoda, Echinodermata, Cnidaria, Rotifera, birds, amphibians, reptiles), and aspects of MP pollution (long-term field studies, comparative studies examining life stages, sexes, laboratory and field work). We hope that the information presented in this review will serve as a good starting point and will provide useful guidelines for researchers during the process of deciding on the model organism and study designs for investigating MPs.
Collapse
Affiliation(s)
- Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 3198166 Santa Agata-Messina, Italy.
| |
Collapse
|
16
|
Borisova T, Pozdnyakova N, Dudarenko M, Krisanova N, Andronati S. GABAA receptor agonist cinazepam and its active metabolite 3-hydroxyphenazepam act differently at the presynaptic site. Eur Neuropsychopharmacol 2021; 45:39-51. [PMID: 33820715 DOI: 10.1016/j.euroneuro.2021.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Cinazepam C19H14BrClN2O5, ("LevanaⓇ ІC") a partial GABAA receptor agonist, and its active metabolite 3-hydroxyphenazepam C15H10BrClN2O2 were comparatively assessed in vitro using nerve terminals isolated from rat cortex (synaptosomes). At the presynaptic site, cinazepam (100 and 200 µM) facilitated synaptosomal transporter-mediated [3H]GABA uptake by enhancing both the initial rate and accumulation, and decreased the ambient level and transporter-mediated release of [3H]GABA. Whereas, 3-hydroxyphenazepam decreased the uptake and did not change the ambient synaptosomal level and transporter-mediated release of [3H]GABA. To exclude GABA transporter influence, NO-711, the transporter blocker, was applied and it was found that exocytotic release of [3H]GABA decreased, whereas tonic release of [3H]GABA was not changed in the presence of both cinazepam or 3-hydroxyphenazepam after treatment of synaptosomes with NO-711. In fluorimetric studies using potential- and pH-sensitive dyes rhodamine 6G and acridine orange, respectively, it was found that cinazepam hyperpolarized the synaptosomal plasma membrane, and increased synaptic vesicle acidification, whereas, 3-hydroxyphenazepam demonstrated opposite effects on these parameters. Therefore, action of cinazepam and its active metabolite 3-hydroxyphenazepam on GABAergic neurotransmission was different. Therapeutic effects of cinazepam can be associated with its ability to hyperpolarize the plasma membrane, to increase synaptic vesicle acidification and capacity of its active metabolite 3-hydroxyphenazepam to inhibit GABA transporter functioning.
Collapse
Affiliation(s)
- Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01054, Ukraine.
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01054, Ukraine.
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01054, Ukraine.
| | - Natalia Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev 01054, Ukraine.
| | - Sergey Andronati
- The Department of Medicinal Chemistry, A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odessa, Ukraine.
| |
Collapse
|