1
|
Huang H, Lyu X, Xiao F, Fu J, Xu H, Wu J, Sun Y. Three-year field study on the temporal response of soil microbial communities and functions to PFOA exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135008. [PMID: 38943893 DOI: 10.1016/j.jhazmat.2024.135008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Contamination of per- and polyfluoroalkyl substances (PFAS) poses a significant threat to soil ecosystem health, yet there remains a lack of understanding regarding the responses of soil microbial communities to prolonged PFAS exposure in field conditions. This study involved a three-year field investigation to track changes in microbial communities and functions in soil subjected to the contamination of a primary PFAS, perfluorooctanoic acid (PFOA). Results showed that PFOA exposure altered soil bacterial and fungal communities in terms of diversity, composition, and structure. Notably, certain bacterial communities with a delayed reaction to PFOA contamination showed the most significant response after one year of exposure. Fungal communities were sensitive to PFOA in soil, exhibiting significant responses within just four months of exposure. After two years, the impact of PFOA on both bacterial and fungal communities was lessened, likely due to the long-term adaptation of microbial communities to PFOA. Moreover, PFOA exposure notably inhibited alkaline phosphatase activity and reduced certain phosphorus cycling-related functional genes after three years of exposure, suggesting potential disruptions in soil fertility. These new insights advance our understanding of the long-term effects of PFOA on soil microbial communities and functions at a field scale.
Collapse
Affiliation(s)
- Hai Huang
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Xueyan Lyu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Jiaju Fu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Hongxia Xu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Nanjing 210018, China
| | - Yuanyuan Sun
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Nanjing 210018, China.
| |
Collapse
|
2
|
Wei Y, He H, Han T, Wang B, Ji P, Wu X, Qian J, Shao P. Environmental explanation of prostate cancer progression based on the comprehensive analysis of perfluorinated compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115267. [PMID: 37499384 DOI: 10.1016/j.ecoenv.2023.115267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Perfluorinated compounds (PFCs) are man-made chemicals used in the manufacture of many products with water and dirt repellent properties. Many diseases have been proved to be related to the exposure of PFCs, including breast fibroadenoma, hepatocellular carcinoma, breast cancer and leydig cell adenoma. However, whether the PFCs promote the progression of prostate cancer remains unclear. In this work, through comprehensive bioinformatics analysis, we discovered the correlation between the prostate cancer and five PFCs using Comparative Toxicogenomics Database (CTD), Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In addition, further analysis showed that several PFCs-related genes demonstrated strong prognostic value for prostate cancer patients. The survival analysis and receiver operating characteristic (ROC) curves revealed that PFCs-related genes based prognostic model held great predictive value for the prognosis of prostate cancer, which could potentially serve as an independent risk factor in the future. In vitro experiments verified the promotive role of perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) in the growth of prostate cancer cells. This study provided novel insights into understanding the role of PFCs in prostate cancer and brought attention to the environmental association with cancer risks and progression.
Collapse
Affiliation(s)
- Yuang Wei
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haibing He
- Urology Department, Maanshan General Hospital of Ranger-Duree Healthcare, China
| | - Tian Han
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bao Wang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Peng Ji
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiangzheng Wu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jian Qian
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Pengfei Shao
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
3
|
Shittu AR, Iwaloye OF, Ojewole AE, Rabiu AG, Amechi MO, Herve OF. The effects of per- and polyfluoroalkyl substances on environmental and human microorganisms and their potential for bioremediation. Arh Hig Rada Toksikol 2023; 74:167-178. [PMID: 37791672 PMCID: PMC10549896 DOI: 10.2478/aiht-2023-74-3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/01/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023] Open
Abstract
Utilised in a variety of consumer products, per- and polyfluoroalkyl substances (PFAS) are major environmental contaminants that accumulate in living organisms due to their highly hydrophobic, lipophobic, heat-resistant, and non-biodegradable properties. This review summarizes their effects on microbial populations in soils, aquatic and biogeochemical systems, and the human microbiome. Specific microbes are insensitive to and even thrive with PFAS contamination, such as Escherichia coli and the Proteobacteria in soil and aquatic environments, while some bacterial species, such as Actinobacteria and Chloroflexi, are sensitive and drop in population. Some bacterial species, in turn, have shown success in PFAS bioremediation, such as Acidimicrobium sp. and Pseudomonas parafulva.
Collapse
Affiliation(s)
- Adenike R. Shittu
- Bowling Green State University College of Arts and Sciences, Department of Biological Sciences, Bowling Green, OH, USA
| | - Opeoluwa F. Iwaloye
- Bowling Green State University College of Arts and Sciences, Department of Biological Sciences, Bowling Green, OH, USA
| | - Akinloye E. Ojewole
- Southern Illinois University, Department of Environmental Sciences, Edwardsville, IL, USA
| | - Akeem G. Rabiu
- University of Ibadan, Department of Microbiology, Ibadan, Nigeria
| | - Miracle O. Amechi
- University of Louisville, Department of Chemistry, Louisville, KY, USA
| | - Ouambo F. Herve
- Chantal Biya International Reference Centre, Laboratory of Vaccinology, Yaounde, Cameroon
| |
Collapse
|
4
|
Xing Y, Li Q, Chen X, Huang B, Ji L, Zhang Q, Fu X, Li T, Wang J. PFASs in Soil: How They Threaten Human Health through Multiple Pathways and Whether They Are Receiving Adequate Concern. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1259-1275. [PMID: 36622935 DOI: 10.1021/acs.jafc.2c06283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been mass-produced and widely applied in consumer and industrial products, resulting in their widespread presence in the environment. Features such as environmental persistence, bioaccumulation, and high toxicity even at low doses have made PFASs an increasing concern. This brief review focuses on soil PFASs, especially the effect of soil PFASs on other environmental media and their potential threats to human health through daily diet. Specifically, soil PFASs contamination caused by different pathways was first investigated. Soil pollution from application of aqueous film-forming foams (AFFFs) is generally more severe than that from fluorochemical manufacturing plants, followed by biosolid land use, landfill, and irrigation. Factors, such as carbon chain length of PFASs, wastewater treatment technology, geographical conditions, and regional development level, are related to soil PFASs' pollution. Then, the migration, bioaccumulation, and toxicity characteristics of soil PFASs were analyzed. Short-chain PFASs have higher solubility, mobility, and bioavailability, while long-chain PFASs have higher bioaccumulation potential and are more toxic to organisms. Factors such as soil texture, solution chemistry conditions, enzymes, and fertilization conditions also influence the environmental behavior of PFASs. The risk of human exposure to PFASs through agricultural and animal products is difficult to control and varies depending on living region, age, eating habits, lifestyle, ethnicity, etc. Soil PFASs threaten drinking water safety, affect soil function, and enter food webs, threatening human health. Knowledge gaps and perspectives in these research fields are also included in current work to assist future research to effectively investigate and understand the environmental risks of soil PFASs, thereby reducing human exposure.
Collapse
Affiliation(s)
- Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bin Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
5
|
Kavusi E, Shahi Khalaf Ansar B, Ebrahimi S, Sharma R, Ghoreishi SS, Nobaharan K, Abdoli S, Dehghanian Z, Asgari Lajayer B, Senapathi V, Price GW, Astatkie T. Critical review on phytoremediation of polyfluoroalkyl substances from environmental matrices: Need for global concern. ENVIRONMENTAL RESEARCH 2023; 217:114844. [PMID: 36403653 DOI: 10.1016/j.envres.2022.114844] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a class of emerging organic contaminants that are impervious to standard physicochemical treatments. The widespread use of PFAS poses serious environmental issues. PFAS pollution of soils and water has become a significant issue due to the harmful effects of these chemicals both on the environment and public health. Owing to their complex chemical structures and interaction with soil and water, PFAS are difficult to remove from the environment. Traditional soil remediation procedures have not been successful in reducing or removing them from the environment. Therefore, this review focuses on new phytoremediation techniques for PFAS contamination of soils and water. The bioaccumulation and dispersion of PFAS inside plant compartments has shown great potential for phytoremediation, which is a promising and unique technology that is realistic, cost-effective, and may be employed as a wide scale in situ remediation strategy.
Collapse
Affiliation(s)
- Elaheh Kavusi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Behnaz Shahi Khalaf Ansar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Samira Ebrahimi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ritika Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, India
| | - Seyede Shideh Ghoreishi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Sima Abdoli
- Department of Soil Science and Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | | | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
6
|
Zheng W, Hu L, Chen Z, Tang J, Pan Y, Yan W, Chen X, Peng Y, Chen L. Effects of perfluorinated compounds homologues on chemical property, microbial composition, richness and diversity of urban forest soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114458. [PMID: 38321677 DOI: 10.1016/j.ecoenv.2022.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 02/08/2024]
Abstract
Perfluorinated compounds (PFCs), as an important class of new persistent organic pollutants, are widely distributed in the environment. Yet the effects of different types and concentrations of PFCs on soil microbial community in urban forest ecosystems are remain uncertain. Here, two typical PFCs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were selected to carry out a pot experiment in greenhouse with singly and joint treatment at different concentrations, to examine their effects on composition and diversity of soil microorganisms and availability of soil macronutrients by using high-throughput Illumina sequencing approach. The results showed both PFOA and PFOS application significantly increased soil NO3--N and NH4+-N content, but did not alter total phosphorus content, compared to the control check (CK) treatments. Total potassium content was reduced in PFOA treatments but increased in PFOS and PFOA×PFOS treatments. The most dominant bacterial phylum was Chloroflexi in low and medium PFCs concentrations and the CK treatments, but it was switched to Acidobacteria in high concentrations. No obvious change was detected for the composition of the dominant fungi community in PFCs treatments compared to the CK treatments. With the increase of PFCs concentrations, soil bacterial richness decreased but its diversity increased, whereas the richness and diversity of fungal community usually decreased. Redundancy analyses revealed that soil fungal community was more sensitive to PFCs pollutants than soil bacterial communities. Further data analysis revealed by structural equation model (SEM) that the PFCs exposed for 60 days indirectly affects the diversity and richness of soil bacteria and fungi by directly affecting NO3--N and NH4+-N content. The results suggested the concentration of PFCs pollutants played a primary role in determining the composition, richness and diversity of forest soil microbial communities.
Collapse
Affiliation(s)
- Wei Zheng
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Lei Hu
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Zekai Chen
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Jun Tang
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Yuliang Pan
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China.
| | - Wende Yan
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Xiaoyong Chen
- College of Arts and Science, Governors State University, University Park, IL 60484, USA
| | - Yuanying Peng
- Natural Sciences Division, College of DuPage, Glen Ellyn, IL 60137, USA
| | - Lijun Chen
- Faculty of Forestry, Central South University of Forestry & Technology, Changsha 410004, China.
| |
Collapse
|
7
|
Rong H, Li M, He L, Zhang M, Hsieh L, Wang S, Han P, Tong M. Transport and deposition behaviors of microplastics in porous media: Co-impacts of N fertilizers and humic acid. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127787. [PMID: 34848067 DOI: 10.1016/j.jhazmat.2021.127787] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Due to the interaction of fertilizers with microplastics (MPs) and porous media, fertilization process would influence MPs transport and distributions in soil. The co-impacts of N fertilizers (both inorganic and organic N fertilizers) and humic substance on MPs transport/retention behaviors in porous media were examined in 10 mM KCl solutions at pH 6. NH4Cl and CO(NH2)2 were employed as inorganic and organic N fertilizers, respectively, while humic acid (HA) was used as model humic substance. We found that for all three sized MPs (0.2, 1 and 2 µm) without HA, both types of N fertilizers decreased their transport/increased their retention in porous media (both quartz sand and soil). N fertilizers adsorbed onto surfaces of MPs and sand/soil, lowering the electrostatic repulsion between MPs and porous media, thus contributed to the enhanced MPs deposition. MPs with N fertilizers in solutions more tightly attached onto porous media and thus were more difficult to be re-mobilized by low ionic strength solution elution. Via steric repulsion and increasing electrostatic repulsion between MPs and porous media due to adsorption onto their surfaces, HA could increase MPs transport with N fertilizers in solutions.
Collapse
Affiliation(s)
- Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Lichun Hsieh
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Peng Han
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
8
|
Lv M, Xie Y, Yu H, Sun T, Song L, Wang F. Effects of perfluoroalkyl substances on soil respiration and enzymatic activity: differences in carbon chain-length dependence. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:284-296. [PMID: 35262431 DOI: 10.1080/03601234.2022.2047563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perfluoroalkyl substances (PFASs) are anthropogenic compounds that exhibit ecotoxicity when discharged into the environment, causing increasing concern. An indoor experiment was conducted to investigate the effects of perfluoroalkyl carboxylic acids (PFCAs) and PFSAs on soil respiration, sucrase activity, and urease activity at 0, 7, 14, and 28 d for perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and perfluorobutyric acid (PFBA), and at 14 and 28 d for perfluorooctane sulfonic acid (PFOS), perfluorohexanoic sulfonic acid (PFHxS), and perfluorobutyric sulfonic acid (PFBS). PFCAs significantly inhibited soil respiration, with a significant negative correlation between respiration and PFBA (P < 0.05) at 28 d. Sucrase activities were initially inhibited by PFCAs, and then recovered. Urease activities were inhibited by PFOA at 14 d and by PFHxA at 14 and 28 d, but not by PFBA. PFOS and PFBS briefly enhanced soil respiration. PFOS inhibited sucrase activity. PFSAs significantly decreased urease activity in a concentration- and time-dependent manner. The chain-length dependence of the ecotoxicity of PFASs varied depending on concentration and time. Toxicity demonstrated a trend of initial decrease followed by increase with carbon chain length. Our results first revealed that the chain-length dependences of PFASs were also related to concentrations and exposure time.
Collapse
Affiliation(s)
- Ming Lv
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, China
| | - Yangyang Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, China
| | - Hui Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, China
| | - Tao Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, China
| | - Liping Song
- Taishan District Total Pollutant Emission Control Center, Taishan Branch of Tai'an Ecological Environment Bureau, Taian, Shandong, China
| | - Fenghua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
9
|
Ye S, Liu Q, Huang K, Jiang X, Zhang X. The comprehensive analysis based study of perfluorinated compounds-Environmental explanation of bladder cancer progression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113059. [PMID: 34894427 DOI: 10.1016/j.ecoenv.2021.113059] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 05/15/2023]
Abstract
Perfluorinated compounds are emerging organic pollutants widely used in building materials, textiles, and electric equipment. Herein, silico analysis was conducted using bioinformatics approach to assess the potential relationship between bladder cancer and perfluorinated compounds. Transcriptome profiles and data of perfluorinated compounds were obtained from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression and Comparative Toxicogenomics databases. Gene Ontology (GO9 and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that interactive genes were mainly enriched in bladder cancer (BC). Transcriptome profiles were used to verify the expression of m6A-related genes at the mRNA and protein levels. Most m6A-related genes predicted BC prognosis. Survival analysis and ROC curves demonstrated that the expression levels of m6A-related genes were associated with BC prognosis. Perfluorooctanoic acid (PFOA) significantly increased the cell proliferation ability and promoted cell invasion capacity. In addition, PFOA significantly increased the cell viability and cell invasion capacity of T24 and BIU-87 cell lines compared with the control group. Taken together, these results show that perfluorinated compounds could promote BC progression. DATA AVAILABILITY: Data and materials are available within the manuscript.
Collapse
Affiliation(s)
- Shaopei Ye
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Qin Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Fujian 361000, China
| | - Ke Huang
- Peoples Hosp Deyang City, Dept Clin Lab, Deyang, China
| | - Xinlu Jiang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 30001, China
| | - Xu Zhang
- Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
10
|
Cai Y, Wang Q, Zhou B, Yuan R, Wang F, Chen Z, Chen H. A review of responses of terrestrial organisms to perfluorinated compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148565. [PMID: 34174603 DOI: 10.1016/j.scitotenv.2021.148565] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Perfluorinated compounds (PFCs) are a class of persistent organic pollutants with widespread distribution in the environment. Since the soil environment has become a significant sink for PFCs, the toxicological assessment about their potential effects on terrestrial organisms is necessary. This review compiles the toxicity researches of regular and emerging PFCs on classical terrestrial biota i.e. microorganisms, earthworms, and plants. In the soil environment, the bioavailability of PFCs much depends on their adsorption in soil, which is affected by soil properties and PFCs structure. By the exploration of bacterial community richness and structure, the gene expression, the influences of PFCs on soil microorganisms were revealed; while the plants and earthworms manifested the PFCs disruption not only through macroscopic indicators, but also from molecular and metabolite responses. Basically, the addition of PFCs would accelerate the production of reactive oxygen species (ROS) in terrestrial organisms, while the excessive ROS could not be eliminated by the defense system causing oxidative damage. Nowadays, the PFCs toxic mechanisms discussed are limited to a single strain, Escherichia coli; thus, the complexity of the soil environment demands further in-depth researches. This review warrants studies focus on more potential quantitative toxicity indicators, more explicit elaboration on toxicity influencing factors, and environmentally relevant concentrations to obtain a more integrated picture of PFCs toxicity on terrestrial biota.
Collapse
Affiliation(s)
- Yanping Cai
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianyu Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
11
|
Gan CD, Gan ZW, Cui SF, Fan RJ, Fu YZ, Peng MY, Yang JY. Agricultural activities impact on soil and sediment fluorine and perfluorinated compounds in an endemic fluorosis area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144809. [PMID: 33548703 DOI: 10.1016/j.scitotenv.2020.144809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Perfluorinated compounds (PFCs) are organo-fluorine compounds which have been identified at significant levels in soils due to their widespread usage in industrial and commercial applications. However, few studies are available regarding the occurrence of PFCs in the environment of endemic fluorosis areas. To address the issue, soils collected from an endemic fluorosis area of southwestern China were analyzed for the distribution of fluorine and 21 kinds of PFCs. The average water-soluble fluorine concentration in cultivated soil (4.87 mg kg-1) was significantly higher than that in uncultivated soil (3.15 mg kg-1), which mainly ascribed to the utilization of fluorine-enriched fertilizers during agricultural practices. Concentrations of ΣPFCs in all soils ranged from 0.508 to 6.83 ng g-1, with an average of 2.81 ng g-1, dominated by perfluorononanoic acid (PFNA) and perfluorooctanoic acid (PFOA). Highest ΣPFCs was found in the soil samples collected from cropland with intensive agricultural activities. Long-chain PFCs, including four perfluoroalkylcarboxylic acids (PFCAs, C ≥ 8) and one perfluoroalkylsulfonic acids (PFSAs) (perfluorooctane sulfonate (PFOS), C8), exhibited high levels in soils, probably due to their higher hydrophobicity and lower water-solubility than short-chain PFCs. While in sediments, short-chain PFCAs were the dominant compounds. Based on correlation analysis, the relationship between total fluorine and PFCs was insignificant, and soil organic matter was a relevant factor affecting PFCs distribution in soils. This study is expected to present a more comprehensive information about fluorine contamination under the influence of agricultural activities in an endemic fluorosis area.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Zhi-Wei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Si-Fan Cui
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Rui-Jun Fan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuan-Zhou Fu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Mu-Yi Peng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| |
Collapse
|
12
|
Li HZ, Zhu D, Lindhardt JH, Lin SM, Ke X, Cui L. Long-Term Fertilization History Alters Effects of Microplastics on Soil Properties, Microbial Communities, and Functions in Diverse Farmland Ecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4658-4668. [PMID: 33754703 DOI: 10.1021/acs.est.0c04849] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) pollution has caused a threat to soil ecosystem diversity and functioning globally. Recently, an increasing number of studies have reported effects of MPs on soil ecosystems. However, these studies mainly focused on soil bacterial communities and a few limited functional genes, which is why MPs effects on soil ecosystems are still not fully understood. Fertilization treatment often coinsides with MPs exposure in practice. Here, we studied effects of an environmentally relevant concentration of polyethylene on soil properties, microbial communities, and functions under different soil types and fertilization history. Our results showed that 0.2% PE MPs exposure could affect soil pH, but this effect varied according to soil type and fertilization history. Long-term fertilization history could alter effects of MPs on soil bacterial and fungal communities in diverse farmland ecosystems (P < 0.05). Soil fungal communities are more sensitive to MPs than bacterial communities under 0.2% PE MPs exposure. MPs exposure has a greater impact on the soil ecosystem with a lower microbial diversity and functional genes abundance and increases the abundance of pathogenic microorganisms. These findings provided an integrated picture to aid our understanding of the impact of MPs on diverse farmland ecosystems with different fertilization histories.
Collapse
Affiliation(s)
- Hong-Zhe Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jonathan Hessner Lindhardt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Sino-Danish Center for Education and Research, Beijing, China
| | - Shao-Min Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- College of Life Sciences, Fujian Agriculture and Forestry University, FuZhou 350002, China
| | - Xin Ke
- Institute of Plant Physiology and Ecology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|
13
|
An Overview of Per- and Polyfluoroalkyl Substances (PFAS) in the Environment: Source, Fate, Risk and Regulations. WATER 2020. [DOI: 10.3390/w12123590] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The current article reviews the state of art of the perfluoroalkyl and polyfluoroalkyl substances (PFASs) compounds and provides an overview of PFASs occurrence in the environment, wildlife, and humans. This study reviews the issues concerning PFASs exposure and potential risks generated with a focus on PFAS occurrence and transformation in various media, discusses their physicochemical characterization and treatment technologies, before discussing the potential human exposure routes. The various toxicological impacts to human health are also discussed. The article pays particular attention to the complexity and challenging issue of regulating PFAS compounds due to the arising uncertainty and lack of epidemiological evidence encountered. The variation in PFAS regulatory values across the globe can be easily addressed due to the influence of multiple scientific, technical, and social factors. The varied toxicology and the insufficient definition of PFAS exposure rate are among the main factors contributing to this discrepancy. The lack of proven standard approaches for examining PFAS in surface water, groundwater, wastewater, or solids adds more technical complexity. Although it is agreed that PFASs pose potential health risks in various media, the link between the extent of PFAS exposure and the significance of PFAS risk remain among the evolving research areas. There is a growing need to address the correlation between the frequency and the likelihood of human exposure to PFAS and the possible health risks encountered. Although USEPA (United States Environmental Protection Agency) recommends the 70 ng/L lifetime health advisory in drinking water for both perfluorooctane sulfonate (PFO) perfluorooctanoic acid (PFOA), which is similar to the Australian regulations, the German Ministry of Health proposed a health-based guidance of maximum of 300 ng/L for the combination of PFOA and PFOS. Moreover, there are significant discrepancies among the US states where the water guideline levels for the different states ranged from 13 to 1000 ng L−1 for PFOA and/or PFOS. The current review highlighted the significance of the future research required to fill in the knowledge gap in PFAS toxicology and to better understand this through real field data and long-term monitoring programs.
Collapse
|