1
|
Vasiluk L, Sowa J, Sanborn P, Dutton MD, Hale B. The effect of particle size on oral bioavailability and bioaccessibility of soil Ni from different sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122761. [PMID: 37844864 DOI: 10.1016/j.envpol.2023.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The goal of the work was to contribute to a unified approach to assessing the risk to human health of soil ingestion, for contaminated sites with elevated [Ni]. Robust relationships between in vitro bioaccessibility and in vivo bioavailability of Ni in various soils, with mechanistic understanding, would enable site-specific assessments of human exposure through soil ingestion. Four soils (three ultramafic Brunisols with geogenic Ni and one Organic soil with anthropogenic Ni) were sieved into PS < 10 μm, 10-41 μm, 41-70 μm, 70-105 μm, 105-150 μm, and 150-250 μm, the [Ni]T for which ranged from 560 to 103000 mg/kg. Mass fraction-adjusted [Ni]IVBA (SBRC gastric) for each soil fraction was similar whether calculated for all particles <250 μm or <150 μm %NiIVBA ranged from 3% to 16% of [Ni]T and %NiABA (accumulated Ni in urine, kidneys, and small intestine of Sprague Dawley rats gavaged with a soil) ranged from 0% to 0.49%. The correlation between these two measurements was weak (R2 = 0.06). Multiple linear dose response relationships attributing variation in %NiABA to %NiIVBA plus soil physicochemical parameters known to influence trace element availability in soils were developed. As many soil properties measured in this study were highly correlated, ridge regression enabled a predictive relationship where the effect of each parameter was its true contribution to variation in %NiABA. Using a ridge constant (k) of 0.012, %NiABA could be predicted from %NiIVBA adjusted for soil absorptive entities (OrgC, and Fe oxides (negative coefficients)) and soil pH (positive coefficient). %NiABA predicted from this relationship was very close to 1:1 with the observed %NiABA except at the lowest observed values which were lower than predicted. This study shows that as the conditions increasingly favour soil Ni solubility, more of the Ni was bioavailable; this generalization was true regardless of particle size or soil origin.
Collapse
Affiliation(s)
- Luba Vasiluk
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
| | | | - Paul Sanborn
- Dept. of Ecosystem Science and Management, University of Northern British Columbia, Prince George, BC, Canada
| | | | - Beverley Hale
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Lin XY, Liang JH, Jiao DD, Chen JX, Wang N, Ma LQ, Zhou D, Li HB. Using Fe biofortification strategies to reduce both Ni concentration and oral bioavailability for rice with high Ni. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131367. [PMID: 37030226 DOI: 10.1016/j.jhazmat.2023.131367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Due to naturally high Ni or soil Ni contamination, high Ni concentrations are reported in rice, raising a need to reduce rice Ni exposure risk. Here, reduction in rice Ni concentration and Ni oral bioavailability with rice Fe biofortification and dietary Fe supplementation was assessed using rice cultivation and mouse bioassays. Results showed that for rice grown in a high geogenic Ni soil, increases in rice Fe concentration from ∼10.0 to ∼30.0 μg g-1 with foliar EDTA-FeNa application led to decreases in Ni concentration from ∼4.0 to ∼1.0 μg g-1 due to inhibited Ni transport from shoot to grains via down-regulated Fe transporters. When fed to mice, Fe-biofortified rice was significantly (p < 0.01) lower in Ni oral bioavailability (59.9 ± 11.9% vs. 77.8 ± 15.1%; 42.4 ± 9.81% vs. 70.4 ± 6.81%). Dietary amendment of exogenous Fe supplements to two Ni-contaminated rice samples at 10-40 μg Fe g-1 also significantly (p < 0.05) reduced Ni RBA from 91.7% to 61.0-69.5% and from 77.4% to 29.2-55.2% due to down-regulation of duodenal Fe transporter expression. Results suggest that the Fe-based strategies not only reduced rice Ni concentration but also lowered rice Ni oral bioavailability, playing dual roles in reducing rice-Ni exposure.
Collapse
Affiliation(s)
- Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jia-Hui Liang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Duo-Duo Jiao
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jun-Xiu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ning Wang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Shaheen SM, Chen HY, Song H, Rinklebe J, Hseu ZY. Release and mobilization of Ni, Co, and Cr under dynamic redox changes in a geogenic contaminated soil: Assessing the potential risk in serpentine paddy environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158087. [PMID: 35981572 DOI: 10.1016/j.scitotenv.2022.158087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The release dynamics and mobilization of geogenic Ni, Co, and Cr in serpentine paddy soils under fluctuating redox conditions have not yet been well studied. Here we investigated the release dynamics of Cr, Co, and Ni and controlling factors (e.g., Fe, Mn, Mg, Cl-, PO43-, SO42-, and dissolved organic carbon (DOC)) in a geogenic-contaminated serpentine soil under wide range of redox potential (EH) changes. The effects of re-oxidation process have been also investigated. The soil was incubated for 28 days and EH was controlled from oxidation (+200 mV) to reduction (-200 mV) and re-oxidation (+240 mV) using a microcosm setup in duplicates. The slurry pH increased, along with decreasing EH. The average concentration of dissolved Co (17.1-23.6 μg L-1) decreased under low EH/high pH and vice versa. The average concentration of dissolved Cr decreased sharply from 624 μg L-1 to 54.4 μg L-1 with decreasing EH from +200 mV to 0 mV and the associated increase of pH from 7.8 to 8.5; then, it was constant around 24.5 μg L-1. Concentration of dissolved Ni was lower (73.5-84.6 μg L-1) under high EH at the first week of incubation; then, increased to 108.5 μg L-1 under low EH (-200 mV); thereafter, increased more at the end up to 124.5 μg L-1 at high EH (+240 mV), because of the pH decrease. A factor analysis identified that Cr and Co formed one group with Mn and Mg, while Ni was clustered together with Cl-, DOC, and SO42-. This indicates that the redox-induced release dynamic of Cr and Co was mainly governed by MnMg compounds, while the release of Ni was mainly affected by the aliphatic compounds of DOC and the redox chemistry of chlorides and sulfur in this soil. The re-oxidation increased the mobilization of Ni and Co and did not affect the release of Cr. These findings suggest that the redox-induced mobilization of geogenic Co, Ni, and Cr from soil to water in serpentine rice soils should be considered due to the high solubility and thus the associated bioavailability and potential environmental and human health risks, when such metal-enriched soils will be used for agricultural flood-dry cycle systems.
Collapse
Affiliation(s)
- Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India.
| | - Hsin-Yu Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
4
|
Ding S, Guan DX, Dai ZH, Su J, Teng HH, Ji J, Liu Y, Yang Z, Ma LQ. Nickel bioaccessibility in soils with high geochemical background and anthropogenic contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119914. [PMID: 35963393 DOI: 10.1016/j.envpol.2022.119914] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Abnormally high concentrations of metals including nickel (Ni) in soils result from high geochemical background (HB) or anthropogenic contamination (AC). Metal bioaccessibility in AC-soils has been extensively explored, but studies in HB-soils are limited. This study examined the Ni bioaccessibility in basalt and black shale derived HB-soils, with AC-soils and soils without contamination (CT) being used for comparison. Although HB- and AC-soils had similar Ni levels (123 ± 43.0 vs 155 ± 84.7 mg kg-1), their Ni bioaccessibility based on the gastric phase of the Solubility Bioaccessibility Research Consortium (SBRC) in vitro assay was different. Nickel bioaccessibility in HB-soils was 6.42 ± 3.78%, 2-times lower than the CT-soils (12.0 ± 9.71%) and 6-times lower than that in AC-soils (42.6 ± 16.3%). Based on the sequential extraction, a much higher residual Ni fractionation in HB-soils than that in CT- and AC-soils was observed (81.9 ± 9.52% vs 68.6 ± 9.46% and 38.7 ± 16.0%). Further, correlation analysis indicate that the available Ni (exchangeable + carbonate-bound + Fe/Mn hydroxide-bound) was highly correlated with Ni bioaccessibility, which was also related to the organic carbon content in soils. The difference in co-localization between Ni and other elements (Fe, Mn and Ca) from high-resolution NanoSIMS analysis provided additional explanation for Ni bioaccessibility. In short, based on the large difference in Ni bioaccessibility in geochemical background and anthropogenic contaminated soils, it is important to base contamination sources for proper risk assessment of Ni-contaminated soils.
Collapse
Affiliation(s)
- Song Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhi-Hua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Su
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - H Henry Teng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Junfeng Ji
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210093, China
| | - Yizhang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Liang JH, Lin XY, Huang DK, Xue RY, Fu XQ, Ma LQ, Li HB. Nickel oral bioavailability in contaminated soils using a mouse urinary excretion bioassay: Variation with bioaccessibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156366. [PMID: 35654181 DOI: 10.1016/j.scitotenv.2022.156366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
To assess the health risk of nickel (Ni) in contaminated soils, studies rarely evaluated Ni bioavailability in the gastrointestinal (GI) tract, limiting the accurate regulation of contaminated sites. Here, for 15 soil samples contaminated by Ni-electroplating, Ni oral relative bioavailability (RBA, relative to NiSO4) was measured using a mouse urinary excretion bioassay. Nickel-RBA varied from 7.89% to 33.8% at an average of 19.1 ± 18.6%. The variation was not explained well by variation in soil properties including Ni speciation and co-contamination of other metals, which showed weak correlation with Ni-BRA (R2 < 0.36). In comparison, the Ni-RBA variation was explained well by the variation of soil-Ni solubility in simulated human gastric or gastrointestinal fluids, i.e., Ni bioaccessibility. Determined using the gastric (GP) and intestinal phases (IP) of solubility bioaccessibility research consortium (SBRC), physiologically based extraction test methods (PBET), and unified BARGE method (UBM), Ni bioaccessibility explained 54-71% variation of the Ni-RBA, suggesting that Ni oral bioavailability was predominantly controlled by Ni solubility in the GI tract. The results highlight the suitability of using simple, fast, and cost-effective bioaccessbility assays to predict site-specific Ni oral bioavailability.
Collapse
Affiliation(s)
- Jia-Hui Liang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Dan-Kun Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiao-Qing Fu
- Jiangsu SEP Analytical Services Co., Ltd, Nanjing 210033, People's Republic of China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
6
|
Contaminated Land by Wildfire Effect on Ultramafic Soil and Associated Human Health and Ecological Risk. LAND 2020. [DOI: 10.3390/land9110409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study is the evaluation of fire effect on contaminated land and the assessment of the associated risk of human health and terrestrial ecological receptors. Ash and soil samples were gathered from burned and unburned areas (central Evia, Greece) which are adjacent with a Natura 2000 area. The geochemical dataset includes 20 sampling sites and 35 elements. The wildfire severity was investigated by applying a macroscopic approach and field observations. Statistical and spatial analysis were applied for delineating the distribution of elements in ash and soil. Elemental balance approach was performed for estimating net gain (+) or loss (−) to the ash. Element contents in sampling sites were compared to screening values proposed by the literature. Hundreds of hectares of burned land including wildland areas in central Evia are contaminated with (contents in mg Kg−1), Co (up to 43.5), Cr (up to 244), Mn (up to 1158), Ni (up to 463) associated with geogenic sources such as serpentinite peridotites and Ni-laterite deposits. Aluminum, As, Cd, Co, Cr, Fe, Mn, Ni, Pb, V and Zn contents recorded in the sampling sites are posing a potential risk to human health and ecological receptors.
Collapse
|