1
|
Zicarelli G, Faggio C, Blahova J, Riesova B, Hesova R, Doubkova V, Svobodova Z, Lakdawala P. Toxicity of water-soluble polymers polyethylene glycol and polyvinyl alcohol for fish and frog embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173154. [PMID: 38735322 DOI: 10.1016/j.scitotenv.2024.173154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Personal Care Products (PCPs) have been one of the most studied chemicals in the last twenty years since they were identified as pseudo-persistent pollutants by the European Union in the early 2000s. The accumulation of PCPs in the aquatic environment and their effects on non-target species make it necessary to find new, less harmful, substances. Polyethylene glycol (PEGs) and polyvinyl alcohol (PVAs) are two polymers that have increased their presence in the composition of PCPs in recent years, but little is known about the effect of their accumulation in the environment on non-target species. Through embryotoxicity tests on two common models of aquatic organisms (Danio rerio and Xenopus laevis), this work aims to increase the knowledge of PEGs and PVAs' effects on non-target species. Animals were exposed to the pollutant for 96 h. The main embryotoxicity endpoint (mortality, hatching, malformations, heartbeat rate) was recorded every 24 h. The most significant results were hatching delay in Danio rerio exposed to both chemicals, in malformations (oedema, body malformations, changes in pigmentation and deformations of spine and tail) in D. rerio and X. laevis and significant change in the heartbeat rate (decrease or increase in the rate) in both animals for all chemicals tested.
Collapse
Affiliation(s)
- Giorgia Zicarelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Jana Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic.
| | - Barbora Riesova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic.
| | - Renata Hesova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic.
| | - Veronika Doubkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic.
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic.
| | - Pavla Lakdawala
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
2
|
Siregar P, Hsieh YC, Audira G, Suryanto ME, Macabeo AP, Vasquez RD, Hsiao CD. Toxicity evaluation of neonicotinoids to earthworm (Eisenia fetida) behaviors by a novel locomotion tracking assay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124111. [PMID: 38710360 DOI: 10.1016/j.envpol.2024.124111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Pesticides are substances used for controlling, preventing, and repelling pests in agriculture. Among them, neonicotinoids have become the fastest-growing class of insecticides because of their efficiency in targeting pests. They work by strongly binding to nicotinic acetylcholine receptors (nAChRs) in the central nervous system of insects, leading to receptor blockage, paralysis, and death. Despite their selectivity for insects, these substances may be hazardous to non-target creatures, including earthworms. Although earthworms may be invasive in some regions like north America, they contribute to the development of soil structure, water management, nutrient cycling, pollution remediation, and cultural services, positively impacting the environment, particularly in the soil ecosystem. Thus, this study aimed to develop a novel earthworm behavior assay since behavior is a sensitive marker for toxicity assay, and demonstrated its application in evaluating the toxicity of various neonicotinoids. Here, we exposed Eisenia fetida to 1 and 10 ppb of eight neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram pestanal, thiacloprid, thiametoxam, and sulfoxaflor) for 3 days to observe their behavior toxicities. Overall, all of the neonicotinoids decreased their locomotion, showed by a reduction of average speed by 24.94-68.63% and increment in freezing time movement ratio by 1.51-4.25 times, and altered their movement orientation and complexity, indicated by the decrement in the fractal dimension value by 24-70%. Moreover, some of the neonicotinoids, which were acetamiprid, dinotefuran, imidacloprid, nitenpyram, and sulfoxaflor, could even alter their exploratory behaviors, which was shown by the increment in the time spent in the center area value by 6.94-12.99 times. Furthermore, based on the PCA and heatmap clustering results, thiametoxam was found as the neonicotinoid that possessed the least pronounced behavior toxicity effects among the tested pesticides since these neonicotinoid-treated groups in both concentrations were grouped in the same major cluster with the control group. Finally, molecular docking was also conducted to examine neonicotinoids' possible binding mechanism to Acetylcholine Binding Protein (AChBP), which is responsible for neurotransmission. The molecular docking result confirmed that each of the neonicotinoids has a relatively high binding energy with AChBP, with the lowest binding energy was possessed by thiametoxam, which consistent with its relatively low behavior toxicities. Thus, these molecular docking results might hint at the possible mechanism behind the observed behavior alterations. To sum up, the present study demonstrated that all of the neonicotinoids altered the earthworm behaviors which might be due to their ability to bind with some specific neurotransmitters and the current findings give insights into the toxicities of neonicotinoids to the environment, especially animals in a soil ecosystem.
Collapse
Affiliation(s)
- Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Yu-Chen Hsieh
- Agricultural Chemicals Research Institute, Ministry of Agriculture, Taichung City, 413001, Taiwan
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Michael Edbert Suryanto
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Allan Patrick Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila, 1015, Philippines
| | - Ross D Vasquez
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila, 1015, Philippines; Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, 1015, Philippines; The Graduate School, University of Santo Tomas, Manila, 1015, Philippines
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan, 320314, Taiwan.
| |
Collapse
|
3
|
Chen HC, Feng WW, Audira G, Kurnia KA, Hung SH, Castillo AL, Roldan MJM, Hsiao CD, Hung CH. Evaluation of sub-chronic toxicity of melamine via systematic or oral delivery in adult zebrafish based on behavioral endpoints. Neurotoxicology 2024; 102:68-80. [PMID: 38599288 DOI: 10.1016/j.neuro.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Melamine-tainted products have been found in the market and raised issues about food safety. Recent studies done in rodents and humans demonstrated the toxicities of melamine, especially in causing kidney damage and bladder stone formation. However, very few studies assessed its behavior toxicity in organisms, including fish. Therefore, in this study, the researchers aim to determine whether sub-chronic exposure to melamine via oral and systematic administration could induce behavioral abnormality in zebrafish. After 14 days of systematic exposure to melamine at doses of 0.1 and 10 ppm levels, zebrafish were subjected to multiple behavioral assays. Results from both exposure routes showed that melamine indeed slightly increased fish locomotion and altered their exploratory behaviors in the novel tank assay. Furthermore, tightened shoaling formation was also displayed by the treated fish in the waterborne exposure group. However, melamine exposure did not cause any obvious alterations in fish behaviors during other behavioral tests. In addition, in comparison with previously published data on the behavior toxicities of several solvents in zebrafish, our phenomic analysis suggests the relatively low behavior toxicities of melamine via either systematic exposure or oral administration to zebrafish compared to those solvents. Nevertheless, our data indicate that the potential neurotoxicity of chronic low-dose melamine should not be ignored.
Collapse
Affiliation(s)
- Hsiu-Chao Chen
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Da-Shu, Kaohsiung 84001, Taiwan; Department of Dermatology, E-Da Cancer Hospital, Kaohsiung 824005, Taiwan; Dr. Feng's Dermatology Clinic, Kaohsiung 811022, Taiwan
| | - Wen-Wei Feng
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Da-Shu, Kaohsiung 84001, Taiwan; Department of Dermatology, E-Da Cancer Hospital, Kaohsiung 824005, Taiwan; Dr. Feng's Dermatology Clinic, Kaohsiung 811022, Taiwan
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - San-Ho Hung
- Department of Physical Therapy, Fooyin University, 151 Jinxue Rd., Daliao Dist., Kaohsiung 83102, Taiwan; Department of Radiology, Fooyin University Hospital, No. 5, Zhongshan Road, Donggang Township, Pingtung 92847, Taiwan
| | - Agnes L Castillo
- Faculty of Pharmacy, The Graduate School and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines
| | - Marri Jmelou M Roldan
- Faculty of Pharmacy and The Graduate School, University of Santo Tomas, Manila 1008, Philippines
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan.
| | - Chih-Hsin Hung
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Da-Shu, Kaohsiung 84001, Taiwan.
| |
Collapse
|
4
|
Benchoula K, Serpell CJ, Mediani A, Albogami A, Misnan NM, Ismail NH, Parhar IS, Ogawa S, Hwa WE. 1H NMR metabolomics insights into comparative diabesity in male and female zebrafish and the antidiabetic activity of DL-limonene. Sci Rep 2024; 14:3823. [PMID: 38360784 PMCID: PMC10869695 DOI: 10.1038/s41598-023-45608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 02/17/2024] Open
Abstract
Zebrafish have been utilized for many years as a model animal for pharmacological studies on diabetes and obesity. High-fat diet (HFD), streptozotocin and alloxan injection, and glucose immersion have all been used to induce diabetes and obesity in zebrafish. Currently, studies commonly used both male and female zebrafish, which may influence the outcomes since male and female zebrafish are biologically different. This study was designed to investigate the difference between the metabolites of male and female diabetic zebrafish, using limonene - a natural product which has shown several promising results in vitro and in vivo in treating diabetes and obesity-and provide new insights into how endogenous metabolites change following limonene treatment. Using HFD-fed male and female zebrafish, we were able to develop an animal model of T2D and identify several endogenous metabolites that might be used as diagnostic biomarkers for diabetes. The endogenous metabolites in males and females were different, even though both genders had high blood glucose levels and a high BMI. Treatment with limonene prevented high blood glucose levels and improved in diabesity zebrafish by limonene, through reversal of the metabolic changes caused by HFD in both genders. In addition, limonene was able to reverse the elevated expression of AKT during HFD.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University, 65779-7738, Alaqiq, Saudi Arabia
| | - Norazlan Mohmad Misnan
- Institute for Medical Research Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Products Discovery, UiTM Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Ilyin NP, Petersen EV, Kolesnikova TO, Demin KA, Khatsko SL, Apuhtin KV, Kalueff AV. Developing Peripheral Biochemical Biomarkers of Brain Disorders: Insights from Zebrafish Models. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:377-391. [PMID: 38622104 DOI: 10.1134/s0006297924020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
High prevalence of human brain disorders necessitates development of the reliable peripheral biomarkers as diagnostic and disease-monitoring tools. In addition to clinical studies, animal models markedly advance studying of non-brain abnormalities associated with brain pathogenesis. The zebrafish (Danio rerio) is becoming increasingly popular as an animal model organism in translational neuroscience. These fish share some practical advantages over mammalian models together with high genetic homology and evolutionarily conserved biochemical and neurobehavioral phenotypes, thus enabling large-scale modeling of human brain diseases. Here, we review mounting evidence on peripheral biomarkers of brain disorders in zebrafish models, focusing on altered biochemistry (lipids, carbohydrates, proteins, and other non-signal molecules, as well as metabolic reactions and activity of enzymes). Collectively, these data strongly support the utility of zebrafish (from a systems biology standpoint) to study peripheral manifestations of brain disorders, as well as highlight potential applications of biochemical biomarkers in zebrafish models to biomarker-based drug discovery and development.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia.
| | - Tatyana O Kolesnikova
- Neuroscience Program, Sirius University of Science and Technology, Sochi, 354340, Russia.
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Pesochny, 197758, Russia
| | | | - Kirill V Apuhtin
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.
- Neuroscience Division, Sirius University of Science and Technology, Sirius Federal Territory, 354340, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Ural Federal University, Ekaterinburg, 620002, Russia
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
6
|
Ha HA, Al-Sadoon MK, Saravanan M, Jhanani GK. Antibacterial, antidiabetic, acute toxicity, antioxidant, and nephroproductive competence of extracts of Lannea coromandelica fruit through in-vitro and in-vivo animal model investigation. ENVIRONMENTAL RESEARCH 2024; 242:117767. [PMID: 38029826 DOI: 10.1016/j.envres.2023.117767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
The anti-dermatophytic (Proteus vulgaris, Klebsiella pneumoniae, Enterobacter aerogenes, Propionibacterium acnes, Staphylococcus aureus, and Streptococcus pyogenes) and nephroprotective activities of methanol and aqueous extracts obtained from Lannea coromandelica fruit were investigated through in-vitro (agar well diffusion method) and in-vivo (animal model) study. The methanol extract showed considerable antibacterial activity against selective bacterial pathogens at increased concentration (15.0 mg mL-1) in the following order P. vulgaris (35.2 ± 1.6 mm) > E. aerogenes (32.1 ± 2.1 mm) > K. pneumoniae (29.3±2 mm) > P. acnes (28.2 ± 2.4 mm) > S. aureus (25.5 ± 2.4 mm) > S. pyogenes (24.3 ± 2.1 mm) than aqueous extract. The MIC values of this methanol and aqueous extract was found as 2.5-7.5 mg mL-1 and 5.0 to 1.0 mg mL-1 respectively. Different treatment sets (A-E) on a rat-based animal model study revealed that the methanol extract has excellent antioxidant and nephroprotective activity, as well as favorable effects on essential biochemical substances involved in active metabolic activities. As demonstrated by histopathological and microscopic examination, the biologically active chemical present in methanol extract had a positive effect on serum markers, enzyme, and non-enzyme-based antioxidant activities, as well as lowering the toxicity caused by EG in the rat (as nephroprotective activity) renal cells.
Collapse
Affiliation(s)
- Hai-Anh Ha
- Faculty of Pharmacy, Duy Tan University, Da Nang 550000, Vietnam.
| | - Mohammad K Al-Sadoon
- Department of Zoology, College of Science, King Saud University, P. O. Box; 2455, Riyadh, 11451, Saudi Arabia
| | - Mythili Saravanan
- Department of Pharmaceutical Sciences, North Carolina Central University, USA
| | - G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India.
| |
Collapse
|
7
|
Nilén G, Larsson M, Hyötyläinen T, Keiter SH. A complex mixture of polycyclic aromatic compounds causes embryotoxic, behavioral, and molecular effects in zebrafish larvae (Danio rerio), and in vitro bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167307. [PMID: 37804991 DOI: 10.1016/j.scitotenv.2023.167307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Polycyclic aromatic compounds (PACs) are prevalent in the environment, typically found in complex mixtures and high concentrations. Our understanding of the effects of PACs, excluding the 16 priority polycyclic aromatic hydrocarbons (16 PAHs), remains limited. Zebrafish embryos and in vitro bioassays were utilized to investigate the embryotoxic, behavioral, and molecular effects of a soil sample from a former gasworks site in Sweden. Additionally, targeted chemical analysis was conducted to analyze 87 PACs in the soil, fish, water, and plate material. CALUX® assays were used to assess the activation of aryl hydrocarbon and estrogen receptors, as well as the inhibition of the androgen receptor. Larval behavior was measured by analyzing activity during light and darkness and in response to mechanical stimulation. Furthermore, qPCR analyses were performed on a subset of 36 genes associated with specific adverse outcomes, and the total lipid content in the larvae was measured. Exposure to the sample resulted in embryotoxic effects (LC50 = 0.480 mg dry matter soil/mL water). The mixture also induced hyperactivity in darkness and hypoactivity in light and in response to the mechanical stimulus. qPCR analysis revealed differential regulation of 15 genes, including downregulation of opn1sw1 (eye pigmentation) and upregulation of fpgs (heart failure). The sample caused significant responses in three bioassays (ERα-, DR-, and PAH-CALUX), and the exposed larvae exhibited elevated lipid levels. Chemical analysis identified benzo[a]pyrene as the predominant compound in the soil and approximately half of the total PAC concentration was attributed to the 16 PAHs. This study highlights the value of combining in vitro and in vivo methods with chemical analysis to assess toxic mechanisms at specific targets and to elucidate the possible interactions between various pathways in an organism. It also enhances our understanding of the risks associated with environmental mixtures of PACs and their distribution during toxicity testing.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
8
|
Stachurski P, Świątkowski W, Ciszewski A, Sarna-Boś K, Michalak A. A Short Review of the Toxicity of Dentifrices-Zebrafish Model as a Useful Tool in Ecotoxicological Studies. Int J Mol Sci 2023; 24:14339. [PMID: 37762640 PMCID: PMC10531698 DOI: 10.3390/ijms241814339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This review aims to summarize the literature data regarding the effects of different toothpaste compounds in the zebrafish model. Danio rerio provides an insight into the mechanisms of the ecotoxicity of chemicals as well as an assessment of their fate in the environment to determine long-term environmental impact. The regular use of adequate toothpaste with safe active ingredients possessing anti-bacterial, anti-inflammatory, anti-oxidant, and regenerative properties is one of the most effective strategies for oral healthcare. In addition to water, a typical toothpaste consists of a variety of components, among which three are of predominant importance, i.e., abrasive substances, fluoride, and detergents. These ingredients provide healthy teeth, but their environmental impact on living organisms are often not well-known. Each of them can influence a higher level of organization: subcellular, cellular, tissue, organ, individual, and population. Therefore, it is very important that the properties of a chemical are detected before it is released into the environment to minimize damage. An important part of a chemical risk assessment is the estimation of the ecotoxicity of a compound. The zebrafish model has unique advantages in environmental ecotoxicity research and has been used to study vertebrate developmental biology. Among others, the advantages of this model include its external, visually accessible development, which allows for providing many experimental manipulations. The zebrafish has a significant genetic similarity with other vertebrates. Nevertheless, translating findings from zebrafish studies to human risk assessment requires careful consideration of these differences.
Collapse
Affiliation(s)
- Piotr Stachurski
- Department of Paediatric Dentistry, Medical University of Lublin, 20-059 Lublin, Poland
| | - Wojciech Świątkowski
- Department of Oral Surgery, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Andrzej Ciszewski
- Department of Paediatric Orthopaedics and Rehabilitation, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Katarzyna Sarna-Boś
- Department of Dental Prosthetics, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 20-059 Lublin, Poland;
| |
Collapse
|
9
|
McCoy JCS, Spicer JI, Ibbini Z, Tills O. Phenomics as an approach to Comparative Developmental Physiology. Front Physiol 2023; 14:1229500. [PMID: 37645563 PMCID: PMC10461620 DOI: 10.3389/fphys.2023.1229500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
The dynamic nature of developing organisms and how they function presents both opportunity and challenge to researchers, with significant advances in understanding possible by adopting innovative approaches to their empirical study. The information content of the phenotype during organismal development is arguably greater than at any other life stage, incorporating change at a broad range of temporal, spatial and functional scales and is of broad relevance to a plethora of research questions. Yet, effectively measuring organismal development, and the ontogeny of physiological regulations and functions, and their responses to the environment, remains a significant challenge. "Phenomics", a global approach to the acquisition of phenotypic data at the scale of the whole organism, is uniquely suited as an approach. In this perspective, we explore the synergies between phenomics and Comparative Developmental Physiology (CDP), a discipline of increasing relevance to understanding sensitivity to drivers of global change. We then identify how organismal development itself provides an excellent model for pushing the boundaries of phenomics, given its inherent complexity, comparably smaller size, relative to adult stages, and the applicability of embryonic development to a broad suite of research questions using a diversity of species. Collection, analysis and interpretation of whole organismal phenotypic data are the largest obstacle to capitalising on phenomics for advancing our understanding of biological systems. We suggest that phenomics within the context of developing organismal form and function could provide an effective scaffold for addressing grand challenges in CDP and phenomics.
Collapse
Affiliation(s)
| | | | | | - Oliver Tills
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
10
|
Siregar P, Audira G, Castillo AL, Roldan MJM, Suryanto ME, Liu RX, Lin YT, Lai YH, Hsiao CD. Comparison of the psychoactive activity of four primary Areca nut alkaloids in zebrafish by behavioral approach and molecular docking. Biomed Pharmacother 2022; 155:113809. [DOI: 10.1016/j.biopha.2022.113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022] Open
|
11
|
Yu F, Hou ZS, Luo HR, Cui XF, Xiao J, Kim YB, Li JL, Feng WR, Tang YK, Li HX, Su SY, Song CY, Wang MY, Xu P. Zinc alters behavioral phenotypes, neurotransmitter signatures, and immune homeostasis in male zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154099. [PMID: 35240190 DOI: 10.1016/j.scitotenv.2022.154099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities discharge zinc into aquatic ecosystems, and the effects of long-term and low-concentration zinc exposure on fish behavior are unclear. We evaluated the behavior and physiology of male zebrafish (Danio rerio) after a 6-week exposure to 1.0 or 1.5 ppm (mg/L) zinc chloride. The exposure caused anxiety-like behaviors and altered the social preferences in both exposure groups. Analysis of transcriptional changes suggested that in the brain, zinc exerted heterogenetic effects on immune and neurotransmitter functions. Exposure to 1.0 ppm zinc chloride resulted in constitutive immune dyshomeostasis, while exposure to 1.5 ppm zinc chloride impaired the neurotransmitter glutamate. In the intestine, zinc dysregulated self-renewal of intestinal cells, a potential loss of defense function. Moreover, exposure to 1.5 ppm zinc chloride suppressed intestinal immune functions and dysregulated tyrosine metabolism. These behavioral alterations suggested that the underlying mechanisms were distinct and concentration-specific. Overall, environmental levels of zinc can alter male zebrafish behaviors by dysregulating neurotransmitter and immunomodulation signatures.
Collapse
Affiliation(s)
- Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Hong-Rui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xue-Fan Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jian-Lin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wen-Rong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yong-Kai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hong-Xia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sheng-Yan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chang-You Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mei-Yao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
12
|
Acute and Chronic Effects of Fin Amputation on Behavior Performance of Adult Zebrafish in 3D Locomotion Test Assessed with Fractal Dimension and Entropy Analyses and Their Relationship to Fin Regeneration. BIOLOGY 2022; 11:biology11070969. [PMID: 36101350 PMCID: PMC9312171 DOI: 10.3390/biology11070969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023]
Abstract
Simple Summary Fin amputation is a routinely conducted procedure for various experiments, especially in zebrafish. However, no study compares the acute and chronic effects of the amputation of each fin on their behaviors. In addition, although some analgesics have been applied after the fin amputation procedure, the long-term effects of these drugs in have not been evaluated yet. In this study, we found that amputation in the caudal fin resulted in the most pronounced behavior alterations and their behavior was fully recovered before the caudal fin was fully regenerated, indicating that these behavioral changes came from pain elicited from the fin amputation. Finally, while lidocaine treatment could ameliorate the behavioral effects after the amputation procedure, it did not accelerate the behavior recovery process; instead, it caused the fish to display some slight side effects. Abstract The fin is known to play an important role in swimming for many adult fish, including zebrafish. Zebrafish fins consist of paired pectoral and pelvic with unpaired dorsal, anal, and caudal tail fins with specific functions in fish locomotion. However, there was no study comparing the behavior effects caused by the absence of each fin. We amputated each fin of zebrafish and evaluated their behavior performance in the 3D locomotion test using fractal dimension and entropy analyses. Afterward, the behavior recovery after the tail fin amputation was also evaluated, together with the fin regeneration process to study their relationship. Finally, we conducted a further study to confirm whether the observed behavior alterations were from pain elicited by fin amputation procedure or not by using lidocaine, a pain-relieving drug. Amputation in the caudal fin resulted in the most pronounced behavior alterations, especially in their movement complexity. Furthermore, we also found that their behavior was fully recovered before the caudal fin was fully regenerated, indicating that these behavioral changes were not majorly due to a mechanical change in tail length; instead, they may come from pain elicited from the fin amputation, since treatment with lidocaine could ameliorate the behavioral effects after the amputation procedure. However, lidocaine did not accelerate the behavior recovery process; instead, it caused the fishes to display some slight side effects. This study highlights the potential moderate severity of fin amputation in zebrafish and the importance of analgesia usage. However, side effects may occur and need to be considered since fin amputation is routinely conducted for various research, especially genomic screening.
Collapse
|
13
|
Zhou Y, Kong Q, Lin Z, Ma J, Zhang H. Transcriptome aberration associated with altered locomotor behavior of zebrafish (Danio rerio) caused by Waterborne Benzo[a]pyrene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112928. [PMID: 34710819 DOI: 10.1016/j.ecoenv.2021.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Waterborne Benzo[a]pyrene (B[a]P) pollution is a global threat to aquatic organisms. The exposure to waterborne B[a]P can disrupt the normal locomotor behavior of zebrafish (Danio rerio), however, how it affect the locomotor behavior of adult zebrafish remains unclear. Herein, B[a]P at two concentrations (0.8 μg/L and 2.0 μg/L) were selected to investigate the molecular mechanisms of the affected locomotor behavior of zebrafish by B[a]P based on transcriptome profiling. Adverse effects of B[a]P exposure affecting locomotor behavior in zebrafish were studied by RNA sequencing, and the locomotion phenotype was acquired. The gene enrichment results showed that the differentially highly expressed genes (atp2a1, cdh2, aurka, fxyd1, clstn1, apoc1, mt-co1, tnnt3b, and fads2) of zebrafish are mainly enriched in adrenergic signaling in cardiomyocytes (dre04261) and locomotory behavior (GO:0007626). The movement trajectory plots showed an increase in the locomotor distance and velocity of zebrafish in the 0.8 μg/L group and the opposite in the 2.0 μg/L group. The results showed that B[a]P affects the variety of genes in zebrafish, including motor nerves, muscles, and energy supply, and ultimately leads to altered locomotor behavior.
Collapse
Affiliation(s)
- Yumiao Zhou
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China.
| | - Jinyue Ma
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| |
Collapse
|
14
|
Meador JP. The fish early-life stage sublethal toxicity syndrome - A high-dose baseline toxicity response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118201. [PMID: 34740289 DOI: 10.1016/j.envpol.2021.118201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
A large number of toxicity studies report abnormalities in early life-stage (ELS) fish that are described here as a sublethal toxicity syndrome (TxSnFELS) and generally include a reduced heart rate, edemas (yolk sac and cardiac), and a variety of morphological abnormalities. The TxSnFELS is very common and not diagnostic for any chemical or class of chemicals. This sublethal toxicity syndrome is mostly observed at high exposure concentrations and appears to be a baseline, non-specific toxicity response; however, it can also occur at low doses by specific action. Toxicity metrics for this syndrome generally occur at concentrations just below those causing mortality and have been reported for a large number of diverse chemicals. Predictions based on tissue concentrations or quantitative-structure activity relationship (QSAR) models support the designation of baseline toxicity for many of the tested chemicals, which is confirmed by observed values. Given the sheer number of disparate chemicals causing the TxSnFELS and correlation with QSAR derived partitioning; the only logical conclusion for these high-dose responses is baseline toxicity by nonspecific action and not a lock and key type receptor response. It is important to recognize that many chemicals can act both as baseline toxicants and specific acting toxicants likely via receptor interaction and it is not possible to predict those threshold doses from baseline toxicity. We should search out these specific low-dose responses for ecological risk assessment and not rely on high-concentration toxicity responses to guide environmental protection. The goal for toxicity assessment should not be to characterize toxic responses at baseline toxicity concentrations, but to evaluate chemicals for their most toxic potential. Additional aspects of this review evaluated the fish ELS teratogenic responses in relation to mammalian oral LD50s and explored potential key events responsible for baseline toxicity.
Collapse
Affiliation(s)
- James P Meador
- Ecotoxicology Program, Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA.
| |
Collapse
|
15
|
Audira G, Lai YH, Huang JC, Chen KHC, Hsiao CD. Phenomics Approach to Investigate Behavioral Toxicity of Environmental or Occupational Toxicants in Adult Zebrafish (Danio rerio). Curr Protoc 2021; 1:e223. [PMID: 34387947 DOI: 10.1002/cpz1.223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the last few years, environmental pollution, especially water pollution, has become a serious issue worldwide. Thus, methods that can help us understand the impact and effects of these pollutants, especially on aquatic animals, are needed. Behavioral assessment has emerged as a crucial tool in toxicology and pharmacology because many studies have shown, in multiple animal models, that various pharmacological compounds can alter behavior, with many of the findings being translatable to humans. Moreover, behavior study can also be used as a suitable indicator in the ecotoxicological risk assessment of pollutants. Several model organisms, especially rodent models, have been extensively employed for behavior studies. However, assessments using this model are generally time consuming, expensive, and require extensive facilities for housing experimental animals. Moreover, behavioral studies typically use different measurements and assessment tools, making comparisons difficult. In addition, even though behavioral phenomics has the potential to comprehensively illustrate the toxicities of chemicals, there is only a limited number of studies focusing on animal behavior using such a global approach. Here, we describe a phenomics approach that can be used to investigate the impact of pollutants using zebrafish. The approach consists of several behavioral tests, including response to a novel environment, mirror-reflection image, predator fish, and conspecifics, after exposure to a test chemical. Phenotype fingerprinting, a method for summarizing individual phenotypes based on the results of the behavioral tests, is then conducted to reduce data complexity and display the pattern of each compound on behavioral phenotypes in zebrafish. This approach may be useful to researchers studying the potential adverse effects of different pollutants. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Novel tank test Basic Protocol 2: Shoaling test Basic Protocol 3: Aggression test (mirror biting test) Basic Protocol 4: Social interaction test Basic Protocol 5: Fear response test Basic Protocol 6: PCA and heatmap clustering.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, Taiwan
| |
Collapse
|
16
|
Jorge S, Ferreira JM, Olsson IAS, Valentim AM. Adult Zebrafish Anesthesia: A Study of Efficacy and Behavioral Recovery of Different Anesthetics. Zebrafish 2021; 18:330-337. [PMID: 34314622 DOI: 10.1089/zeb.2021.0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of proper anesthesia in zebrafish research is essential to ensure fish welfare and data reliability. However, anesthesia long-term side effects remain poorly understood. The purpose of this study was to assess anesthesia quality and recovery in adult zebrafish using different anesthetic protocols and to determine possible long-term effects on the fish activity and anxiety-like behaviors after anesthesia. Mixed-sex adult AB zebrafish were randomly assigned to five different groups (Control, 175 mg/L of tricaine methanesulfonate [MS222], 45 mg/L of clove oil, 2 mg/L of etomidate, and 5 mg/L of propofol combined with 150 mg/L of lidocaine) and placed in the respective anesthetic bath. Time to lose the equilibrium, response to touch and to caudal fin pinch stimuli, and recovery after anesthesia administration were evaluated. In addition, after stopping anesthesia, respiratory rate, activity, and anxiety-like behaviors in the novel tank test were studied. Overall, all protocols proved to be adequate for zebrafish anesthesia research as they showed full recovery at 1 h, and only etomidate had minor effects on fish behavior in the novel tank, a validated test for anxiety.
Collapse
Affiliation(s)
- Sara Jorge
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Laboratory Animal Science, IBMC-Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Jorge M Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Laboratory Animal Science, IBMC-Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
| | - I Anna S Olsson
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Laboratory Animal Science, IBMC-Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
| | - Ana M Valentim
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Laboratory Animal Science, IBMC-Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Audira G, Lee JS, Siregar P, Malhotra N, Rolden MJM, Huang JC, Chen KHC, Hsu HS, Hsu Y, Ger TR, Hsiao CD. Comparison of the chronic toxicities of graphene and graphene oxide toward adult zebrafish by using biochemical and phenomic approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116907. [PMID: 33744786 DOI: 10.1016/j.envpol.2021.116907] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 05/14/2023]
Abstract
Graphene (GR) and graphene oxide (GO) are widely being used as promising candidates for biomedical applications, as well as for bio-sensing, drug delivery, and anticancer therapy. However, their undesirable side effects make it necessary to assess further the toxicity and safety of using these materials. The main objective of the current study was to investigate the toxicities of GR and GO in predicted environmental relevant concentrations in adult zebrafish (Danio rerio), particularly on their behaviors, and conducted biochemical assays to elucidate the possible mechanism that underlies their toxicities. Zebrafish was chronically (∼14 days) exposed to two different doses of GR (0.1 and 0.5 ppm) or GO (0.1 and 1 ppm). At 14 ± 1 days, a battery of behavioral tests was conducted, followed by enzyme-linked immunosorbent assays (ELISA) test on the following day to inspect the alterations in antioxidant activity, oxidative stress, and neurotransmitters in the treated zebrafish brain. An alteration in predator avoidance behavior was observed in all treated groups, while GR-treated fish exhibited abnormal exploratory behavior. Furthermore, altered locomotor activity was displayed by most of the treated groups, except for the high concentration of the GR group. From the ELISA results, we discovered a high concentration of GR exposure significantly decreased several neurotransmitters and cortisol levels. Meanwhile, elevated reactive oxygen species (ROS) were displayed by the group treated with low and high doses of GR and GO, respectively. These significant changes would possibly affect zebrafish behaviors and might suggest the potential toxicity from GR and GO exposures. To sum up, the present study presented new evidence for the effects of GR and GO in zebrafish behavioral dysregulation. We hope these assessments can contribute to our understanding of graphene and graphene oxide biosafety.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung, 90003, Taiwan
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Marri Jmelou M Rolden
- Faculty of Pharmacy and the Graduate School, University of Santo Tomas, Manila, 1008, Philippines
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Hua-Shu Hsu
- Department of Applied Physics, National Pingtung University, Pingtung, 90003, Taiwan
| | - Yuchun Hsu
- Department of Applied Physics, National Pingtung University, Pingtung, 90003, Taiwan
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan.
| |
Collapse
|
18
|
Malhotra N, Hsu HS, Liang ST, Roldan MJM, Lee JS, Ger TR, Hsiao CD. An Updated Review of Toxicity Effect of the Rare Earth Elements (REEs) on Aquatic Organisms. Animals (Basel) 2020; 10:E1663. [PMID: 32947815 PMCID: PMC7552131 DOI: 10.3390/ani10091663] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/11/2023] Open
Abstract
Rare earth elements (REEs) or "technology metals" were coined by the U.S. Department of Energy, a group of seventeen elements found in the Earth's crust. These chemical elements are vital and irreplaceable to the world of technology owing to their unique physical, chemical, and light-emitting properties, all of which are beneficial in modern healthcare, telecommunication, and defense. Rare earth elements are relatively abundant in Earth's crust, with critical qualities to the device performance. The reuse and recycling of rare earth elements through different technologies can minimize impacts on the environment; however, there is insufficient data about their biological, bioaccumulation, and health effects. The increasing usage of rare earth elements has raised concern about environmental toxicity, which may further cause harmful effects on human health. The study aims to review the toxicity analysis of these rare earth elements concerning aquatic biota, considering it to be the sensitive indicator of the environment. Based on the limited reports of REE effects, the review highlights the need for more detailed studies on the hormetic effects of REEs. Aquatic biota is a cheap, robust, and efficient platform to study REEs' toxicity, mobility of REEs, and biomagnification in water bodies. REEs' diverse effects on aquatic life forms have been observed due to the lack of safety limits and extensive use in the various sectors. In accordance with the available data, we have put in efforts to compile all the relevant research results in this paper related to the topic "toxicity effect of REEs on aquatic life".
Collapse
Affiliation(s)
- Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Hua-Shu Hsu
- Department of Applied Physics, National Pingtung University, Pingtung 900391, Taiwan;
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Marri Jmelou M. Roldan
- Faculty of Pharmacy and The Graduate School, University of Santo Tomas, Manila 1008, Philippines;
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung 900391, Taiwan;
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|