1
|
Hu X, Zhao Y, He T, Gao ZX, Zhang P, Fang Y, Ge M, Xu YQ, Pan HF, Wang P. Causal Relationships between Air Pollutant Exposure and Bone Mineral Density and the Risk of Bone Fractures: Evidence from a Two-Stage Mendelian Randomization Analysis. TOXICS 2023; 12:27. [PMID: 38250984 PMCID: PMC10820864 DOI: 10.3390/toxics12010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
A number of studies from the literature have suggested that exposure to air pollutants is associated with a declined bone mineral density (BMD), and increased risks of osteoporosis (OP) and bone fractures. This study was performed to systemically assess the genetically causal associations of air pollutants with site-/age-specific BMD and risk of bone fractures with the implementation of two-sample Mendelian randomization (TSMR) and multivariate Mendelian randomization (MVMR). The TSMR analysis was implemented to infer the causal associations between air pollutants and BMD and the risk of bone fractures, additional MVMR analysis was used to further estimate the direct causal effects between air pollutants and BMD, the occurrence of OP, and bone fractures. The results showed that NOx exposure contributed to lower femoral neck BMD (FN-BMD) (β = -0.71, 95%CI: -1.22, -0.20, p = 0.006) and total body BMD (TB-BMD) (β = -0.55, 95%CI: -0.90, -0.21, p = 0.002). Additionally, exposure to PM10 was found to be associated with a decreased TB-BMD (B β = -0.42, 95%CI: -0.66, -0.18, p = 0.001), further age-specific subgroup analysis demonstrated the causal effect of PM10 exposure on the decreased TB-BMD in a subgroup aged 45 to 60 years (β = -0.70, 95%CI: -1.12, -0.29, p = 0.001). Moreover, the findings of the MVMR analysis implied that there was a direct causal effect between PM10 exposure and the decreased TB-BMD (45 < age < 60), after adjusting for PM2.5 and PM2.5 -10 exposure. Our study provides additional evidence to support the causal associations of higher concentrations of air pollutant exposure with decreased BMD, especially in those populations aged between 45 to 60 years, suggesting that early intervention measures and public policy should be considered to improve public health awareness and promote bone health.
Collapse
Affiliation(s)
- Xiao Hu
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China;
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei 230032, China; (Y.Z.); (T.H.); (Z.-X.G.); (P.Z.); (Y.F.); (M.G.); (Y.-Q.X.)
| | - Yan Zhao
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei 230032, China; (Y.Z.); (T.H.); (Z.-X.G.); (P.Z.); (Y.F.); (M.G.); (Y.-Q.X.)
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Tian He
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei 230032, China; (Y.Z.); (T.H.); (Z.-X.G.); (P.Z.); (Y.F.); (M.G.); (Y.-Q.X.)
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Zhao-Xing Gao
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei 230032, China; (Y.Z.); (T.H.); (Z.-X.G.); (P.Z.); (Y.F.); (M.G.); (Y.-Q.X.)
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Peng Zhang
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei 230032, China; (Y.Z.); (T.H.); (Z.-X.G.); (P.Z.); (Y.F.); (M.G.); (Y.-Q.X.)
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yang Fang
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei 230032, China; (Y.Z.); (T.H.); (Z.-X.G.); (P.Z.); (Y.F.); (M.G.); (Y.-Q.X.)
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Man Ge
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei 230032, China; (Y.Z.); (T.H.); (Z.-X.G.); (P.Z.); (Y.F.); (M.G.); (Y.-Q.X.)
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yi-Qing Xu
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei 230032, China; (Y.Z.); (T.H.); (Z.-X.G.); (P.Z.); (Y.F.); (M.G.); (Y.-Q.X.)
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hai-Feng Pan
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei 230032, China; (Y.Z.); (T.H.); (Z.-X.G.); (P.Z.); (Y.F.); (M.G.); (Y.-Q.X.)
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Peng Wang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China;
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei 230032, China; (Y.Z.); (T.H.); (Z.-X.G.); (P.Z.); (Y.F.); (M.G.); (Y.-Q.X.)
| |
Collapse
|
2
|
Liu S, Lim YH, Chen J, Strak M, Wolf K, Weinmayr G, Rodopolou S, de Hoogh K, Bellander T, Brandt J, Concin H, Zitt E, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Jöckel KH, Jørgensen JT, So R, Amini H, Cole-Hunter T, Mehta AJ, Mortensen LH, Ketzel M, Lager A, Leander K, Ljungman P, Severi G, Boutron-Ruault MC, Magnusson PKE, Nagel G, Pershagen G, Peters A, Raaschou-Nielsen O, Rizzuto D, van der Schouw YT, Schramm S, Sørensen M, Stafoggia M, Tjønneland A, Katsouyanni K, Huang W, Samoli E, Brunekreef B, Hoek G, Andersen ZJ. Long-term Air Pollution Exposure and Pneumonia-related Mortality in a Large Pooled European Cohort. Am J Respir Crit Care Med 2022; 205:1429-1439. [PMID: 35258439 DOI: 10.1164/rccm.202106-1484oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Ambient air pollution exposure has been linked to mortality from chronic cardiorespiratory diseases, while evidence on respiratory infections remains more limited. Objectives: We examined the association between long-term exposure to air pollution and pneumonia-related mortality in adults in a pool of eight European cohorts. Methods: Within the multicenter project ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe), we pooled data from eight cohorts among six European countries. Annual mean residential concentrations in 2010 for fine particulate matter, nitrogen dioxide (NO2), black carbon (BC), and ozone were estimated using Europe-wide hybrid land-use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and pneumonia, influenza, and acute lower respiratory infections (ALRI) mortality. Measurements and Main Results: Of 325,367 participants, 712 died from pneumonia and influenza combined, 682 from pneumonia, and 695 from ALRI during a mean follow-up of 19.5 years. NO2 and BC were associated with 10-12% increases in pneumonia and influenza combined mortality, but 95% confidence intervals included unity (hazard ratios, 1.12 [0.99-1.26] per 10 μg/m3 for NO2; 1.10 [0.97-1.24] per 0.5 10-5m-1 for BC). Associations with pneumonia and ALRI mortality were almost identical. We detected effect modification suggesting stronger associations with NO2 or BC in overweight, employed, or currently smoking participants compared with normal weight, unemployed, or nonsmoking participants. Conclusions: Long-term exposure to combustion-related air pollutants NO2 and BC may be associated with mortality from lower respiratory infections, but larger studies are needed to estimate these associations more precisely.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Institute for Risk Assessment Sciences and
| | - Maciek Strak
- Institute for Risk Assessment Sciences and.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopolou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Tom Bellander
- Institute of Environmental Medicine.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science.,iClimate, Interdisciplinary Centre for Climate Change, and
| | - Hans Concin
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria.,Department of Internal Medicine 3, Landeskrankenhaus Feldkirch, Feldkirch, Austria
| | - Daniela Fecht
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/Azienda Sanitaria Locale Roma 1, Rome, Italy.,Science Policy & Epidemiology Environmental Research Group King's College London, London, United Kingdom
| | - John Gulliver
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.,Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Ole Hertel
- Department of Ecoscience, Aarhus University, Roskilde, Denmark, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - W M Monique Verschuren
- Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, The Netherlands.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | | | - Rina So
- Section of Environmental Health
| | | | | | - Amar J Mehta
- Section of Epidemiology, and.,Statistics Denmark, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, and.,Statistics Denmark, Copenhagen, Denmark
| | - Matthias Ketzel
- Department of Environmental Science.,Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom
| | | | | | - Petter Ljungman
- Institute of Environmental Medicine.,Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Gianluca Severi
- University Paris-Saclay, University of Versailles Saint-Quentin, Inserm, Gustave Roussy, "Exposome and Heredity" team, The Centre de Recherche en Epidémiologie et Santé des Populations UMR1018, Villejuif, France.,Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Florence, Italy
| | - Marie-Christine Boutron-Ruault
- University Paris-Saclay, University of Versailles Saint-Quentin, Inserm, Gustave Roussy, "Exposome and Heredity" team, The Centre de Recherche en Epidémiologie et Santé des Populations UMR1018, Villejuif, France
| | | | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Göran Pershagen
- Institute of Environmental Medicine.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Epidemiology, Ludwig Maximilians Universität München, Germany
| | - Ole Raaschou-Nielsen
- Department of Environmental Science.,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden.,Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, The Netherlands
| | - Sara Schramm
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Massimo Stafoggia
- Institute of Environmental Medicine.,Department of Epidemiology, Lazio Region Health Service/Azienda Sanitaria Locale Roma 1, Rome, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Diet, Genes and Environment (DGE), Copenhagen, Denmark; and
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Science Policy & Epidemiology Environmental Research Group King's College London, London, United Kingdom
| | - Wei Huang
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Lin L, Li T, Sun M, Liang Q, Ma Y, Wang F, Duan J, Sun Z. Global association between atmospheric particulate matter and obesity: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 209:112785. [PMID: 35077718 DOI: 10.1016/j.envres.2022.112785] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Among various air pollutants, particulate matter (PM) is the most harmful and representative pollutant. Although several studies have shown a link between particulate pollution and obesity, the conclusions are still inconsistent. METHODS We conducted a systematic review and meta-analysis to pool the effect of PM exposure on obesity. Five databases (including PubMed, Web of Science, Scopus, Embase, and Cochrane) were searched for relevant studies up to Jan 2022. Adjusted risk ratio (RR) with corresponding 95% confidence interval (CI) were retrieved from individual studies and pooled with random effect models by STATA software. Besides, we tested the stability of results by Egger's test, Begg's test, funnel plot, and using the trim-and-fill method to modify the possible asymmetric funnel graph. The NTP-OHAT guidelines were followed to assess the risk of bias. Then the GRADE was used to evaluate the certainty of evidence. RESULTS 26 studies were included in this meta-analysis. 19 studies have shown that PM2.5 can increase the risk of obesity per 10 μg/m3 increment (RR: 1.159, 95% CI: 1.111-1.209), while 15 studies have indicated that PM10 increase the risk of obesity per 10 μg/m3 increment (RR: 1.092, 95% CI: 1.070-1.116). Besides, 5 other articles with maternal exposure showed that PM2.5 increases the risk of obesity in children (RR: 1.06, 95% CI: 1.02-1.11). And we explored the source of heterogeneity by subgroup analysis, which suggested associations between PM and obesity tended to vary by region, age group, participants number, etc. The analysis results showed publication bias and other biases are well controlled, but most certainties of the evidence were low, and more research is required to reduce these uncertainties. CONCLUSION Exposure to PM2.5 and PM10 with per 10 μg/m3 increment could increase the risk of obesity in the global population.
Collapse
Affiliation(s)
- Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|