1
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
2
|
Wang H, Wang L, Zeng X, Zhang S, Huang Y, Zhang Q. Inflammatory bowel disease and risk for hemorrhoids: a Mendelian randomization analysis. Sci Rep 2024; 14:16677. [PMID: 39030236 PMCID: PMC11271563 DOI: 10.1038/s41598-024-66940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Observational studies have reported an association between inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), and hemorrhoids (HEM). However, the presence of a causal relationship within this observed association remains to be confirmed. Consequently, we utilized the Mendelian randomization (MR) method to assess the causal effects of IBD on hemorrhoids. We validated the association between IBD and hemorrhoids in humans based on genome-wide association studies (GWAS) data. To investigate the causal relationship between IBD and hemorrhoids, we performed a two-sample Mendelian randomization study using training and validation sets. The genetic variation data for IBD, CD, UC, and hemorrhoids were derived from published genome-wide association studies (GWAS) of individuals of European. Two-sample Mendelian randomization and Multivariable Mendelian randomization (MVMR) were employed to determine the causal relationship between IBD (CD or UC) and hemorrhoids. Genetically predicted overall IBD was positively associated with hemorrhoids risk, with ORs of 1.02 (95% CIs 1.01-1.03, P = 4.39 × 10-4) and 1.02 (95% CIs 1.01-1.03, P = 4.99 × 10-5) in the training and validation sets, respectively. Furthermore, we found that CD was positively associated with hemorrhoids risk, with ORs of 1.02 (95% CIs 1.01-1.03, P = 4.12 × 10-6) and 1.02 (95% CIs 1.01-1.02, P = 3.78 × 10-5) for CD in the training and validation sets, respectively. In addition, we found that UC in the training set was positively associated with hemorrhoids risk (ORs 1.02, 95% CIs 1.01-1.03, P = 4.65 × 10-3), while no significant causal relationship between UC and hemorrhoids was shown in the validation set (P > 0.05). However, after MVMR adjustment, UC in the training set was not associated with an increased risk of hemorrhoids. Our study showed that there is a causal relationship between CD and hemorrhoids, which may suggest that clinicians need to prevent the occurrence of hemorrhoids in CD patients.
Collapse
Affiliation(s)
- HanYu Wang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lu Wang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - XiaoYu Zeng
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - ShiPeng Zhang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yong Huang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - QinXiu Zhang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Zhang Y, Zhang Z, Mo Y, Zhang Y, Yuan J, Zhang Q. MMP-3 mediates copper oxide nanoparticle-induced pulmonary inflammation and fibrosis. J Nanobiotechnology 2024; 22:428. [PMID: 39030581 PMCID: PMC11264740 DOI: 10.1186/s12951-024-02707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The increasing production and usage of copper oxide nanoparticles (Nano-CuO) raise human health concerns. Previous studies have demonstrated that exposure to Nano-CuO could induce lung inflammation, injury, and fibrosis. However, the potential underlying mechanisms are still unclear. Here, we proposed that matrix metalloproteinase-3 (MMP-3) might play an important role in Nano-CuO-induced lung inflammation, injury, and fibrosis. RESULTS Exposure of mice to Nano-CuO caused acute lung inflammation and injury in a dose-dependent manner, which was reflected by increased total cell number, neutrophil count, macrophage count, lactate dehydrogenase (LDH) activity, and CXCL1/KC level in bronchoalveolar lavage fluid (BALF) obtained on day 3 post-exposure. The time-response study showed that Nano-CuO-induced acute lung inflammation and injury appeared as early as day 1 after exposure, peaked on day 3, and ameliorated over time. However, even on day 42 post-exposure, the LDH activity and macrophage count were still higher than those in the control group, suggesting that Nano-CuO caused chronic lung inflammation. The Nano-CuO-induced pulmonary inflammation was further confirmed by H&E staining of lung sections. Trichrome staining showed that Nano-CuO exposure caused pulmonary fibrosis from day 14 to day 42 post-exposure with an increasing tendency over time. Increased hydroxyproline content and expression levels of fibrosis-associated proteins in mouse lungs were also observed. In addition, Nano-CuO exposure induced MMP-3 overexpression and increased MMP-3 secretion in mouse lungs. Knocking down MMP-3 in mouse lungs significantly attenuated Nano-CuO-induced acute and chronic lung inflammation and fibrosis. Moreover, Nano-CuO exposure caused sustained production of cleaved osteopontin (OPN) in mouse lungs, which was also significantly decreased by knocking down MMP-3. CONCLUSIONS Our results demonstrated that short-term Nano-CuO exposure caused acute lung inflammation and injury, while long-term exposure induced chronic pulmonary inflammation and fibrosis. Knocking down MMP-3 significantly ameliorated Nano-CuO-induced pulmonary inflammation, injury, and fibrosis, and also attenuated Nano-CuO-induced cleaved OPN level. Our study suggests that MMP-3 may play important roles in Nano-CuO-induced pulmonary inflammation and fibrosis via cleavage of OPN and may provide a further understanding of the mechanisms underlying Nano-CuO-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Zhenyu Zhang
- Department of Emergency, Xiang'An Hospital of Xiamen University, Xiamen, 361104, Fujian, China
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yue Zhang
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Mo Y, Zhang Y, Zhang Q. The pulmonary effects of nickel-containing nanoparticles: Cytotoxicity, genotoxicity, carcinogenicity, and their underlying mechanisms. ENVIRONMENTAL SCIENCE. NANO 2024; 11:1817-1846. [PMID: 38984270 PMCID: PMC11230653 DOI: 10.1039/d3en00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the exponential growth of the nanotechnology field, the global nanotechnology market is on an upward track with fast-growing jobs. Nickel (Ni)-containing nanoparticles (NPs), an important class of transition metal nanoparticles, have been extensively used in industrial and biomedical fields due to their unique nanostructural, physical, and chemical properties. Millions of people have been/are going to be exposed to Ni-containing NPs in occupational and non-occupational settings. Therefore, there are increasing concerns over the hazardous effects of Ni-containing NPs on health and the environment. The respiratory tract is a major portal of entry for Ni-containing NPs; thus, the adverse effects of Ni-containing NPs on the respiratory system, especially the lungs, have been a focus of scientific study. This review summarized previous studies, published before December 1, 2023, on cytotoxic, genotoxic, and carcinogenic effects of Ni-containing NPs on humans, lung cells in vitro, and rodent lungs in vivo, and the potential underlying mechanisms were also included. In addition, whether these adverse effects were induced by NPs themselves or Ni ions released from the NPs was also discussed. The extra-pulmonary effects of Ni-containing NPs were briefly mentioned. This review will provide us with a comprehensive view of the pulmonary effects of Ni-containing NPs and their underlying mechanisms, which will shed light on our future studies, including the urgency and necessity to produce engineering Ni-containing NPs with controlled and reduced toxicity, and also provide the scientific basis for developing nanoparticle exposure limits and policies.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
5
|
Mo Y, Mo L, Zhang Y, Zhang Y, Yuan J, Zhang Q. High glucose enhances the activation of NLRP3 inflammasome by ambient fine particulate matter in alveolar macrophages. Part Fibre Toxicol 2023; 20:41. [PMID: 37919797 PMCID: PMC10621103 DOI: 10.1186/s12989-023-00552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Epidemiological studies have demonstrated that individuals with preexisting conditions, including diabetes mellitus (DM), are more susceptible to air pollution. However, the underlying mechanisms remain unclear. In this study, we proposed that a high glucose setting enhances ambient fine particulate matter (PM2.5)-induced macrophage activation and secretion of the proinflammatory cytokine, IL-1β, through activation of the NLRP3 inflammasome, altering the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs). RESULTS Exposure of mouse alveolar macrophages to non-cytotoxic doses of PM2.5 led to upregulation of IL-1β, activation of the NLRP3 inflammasome, increased nuclear translocation of the transcription factor NF-κB, increased generation of reactive oxygen species (ROS), and increased expression and enzymatic activity of MMP-9; these effects were enhanced when cells were pretreated with high glucose. However, pretreatment in a high glucose setting alone did not induce significant changes. ROS generation following PM2.5 exposure was abolished when cells were pretreated with ROS scavengers such as Trolox and superoxide dismutase (SOD), or with an NADPH oxidase inhibitor, DPI. Pretreatment of cells with DPI attenuated the effects of a high glucose setting on PM2.5-induced upregulation of IL-1β, activation of the NLRP3 inflammasome, and nuclear translocation of NF-κB. In addition, enhancement of PM2.5-induced expression and enzymatic activity of MMP-9 following high glucose pretreatment was not observed in primary alveolar macrophages obtained from NLRP3 or IL-1R1 knockout (KO) mice, where pro-IL-1β cannot be cleaved to IL-1β or cells are insensitive to IL-1β, respectively. CONCLUSIONS This study demonstrated that exposure of mouse alveolar macrophages to PM2.5 in a high glucose setting enhanced PM2.5-induced production of IL-1β through activation of the NLRP3 inflammasome and nuclear translocation of NF-κB due to PM2.5-induced oxidative stress, leading to MMP-9 upregulation. The key role of NADPH oxidase in PM2.5-induced ROS generation and activation of the IL-1β secretion pathway and the importance of IL-1β secretion and signaling in PM2.5-induced increases in MMP-9 enzymatic activity were also demonstrated. This study provides a further understanding of the potential mechanisms underlying the susceptibility of individuals with DM to air pollution and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Luke Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA.
| |
Collapse
|
6
|
Bayat H, Pourgholami MH, Rahmani S, Pournajaf S, Mowla SJ. Synthetic miR-21 decoy circularized by tRNA splicing mechanism inhibited tumorigenesis in glioblastoma in vitro and in vivo models. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:432-444. [PMID: 37181451 PMCID: PMC10173299 DOI: 10.1016/j.omtn.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is the deadliest primary central nervous system tumor. miRNAs (miRs), a class of non-coding RNAs, are considered pivotal post-transcriptional regulators of cell signaling pathways. miR-21 is a reliable oncogene that promotes tumorigenesis of cancer cells. We first performed an in silico analysis on 10 microarray datasets retrieved from TCGA and GEO databases to elucidate top differentially expressed miRs. Furthermore, we generated a circular miR-21 decoy, CM21D, using the tRNA-splicing mechanism in GBM cell models, U87 and C6. The inhibitory efficacy of CM21D with that of a linear form, LM21D, was compared under in vitro conditions and an intracranial C6 rat glioblastoma model. miR-21 significantly overexpressed in GBM samples and confirmed in GBM cell models using qRT-PCR. CM21D was more efficient than LM21D at inducing apoptosis, inhibiting cell proliferation and migration, and interrupting the cell cycle by restoring the expression of miR-21 target genes at RNA and protein levels. Moreover, CM21D suppressed tumor growth more effectively than LM21D in the C6-rat GBM model (p < 0.001). Our findings validate miR-21 as a promising therapeutic target for GBM. The introduced CM21D by sponging miR-21 reduced tumorigenesis of GBM and can be considered a potential RNA-base therapy to inhibit cancers.
Collapse
Affiliation(s)
- Hadi Bayat
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | | | - Saeid Rahmani
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| | - Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| |
Collapse
|
7
|
Yuan J, Mo Y, Zhang Y, Zhang Y, Zhang Q. Nickel nanoparticles induce epithelial-mesenchymal transition in human bronchial epithelial cells via the HIF-1α/HDAC3 pathway. Nanotoxicology 2022; 16:695-712. [PMID: 36345150 PMCID: PMC9892310 DOI: 10.1080/17435390.2022.2142169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
We and others have previously demonstrated that exposure to nickel nanoparticles (Nano-Ni) caused fibrogenic and carcinogenic effects; however, the underlying mechanisms are still not fully understood. This study aimed to investigate the effects of Nano-Ni on epithelial-mesenchymal transition (EMT) in human bronchial epithelial cells (BEAS-2B) and its underlying mechanisms since EMT is involved in both cancer pathogenesis and tissue fibrosis. Our results showed that exposure to Nano-Ni, compared to the control Nano-TiO2, caused a remarkable decrease in the expression of E-cadherin and an increase in the expression of vimentin and α-SMA, indicating an inducible role of Nano-Ni in EMT development in human bronchial epithelial cells. HIF-1α nuclear accumulation, HDAC3 upregulation, and decreased histone acetylation were also observed in the cells exposed to Nano-Ni, but not in those exposed to Nano-TiO2. Pretreatment of the cells with a specific HIF-1α inhibitor, CAY10585, or HIF-1α-specific siRNA transfection prior to Nano-Ni exposure resulted in the restoration of E-cadherin and abolished Nano-Ni-induced upregulation of vimentin and α-SMA, suggesting a crucial role of HIF-1α in Nano-Ni-induced EMT development. CAY10585 pretreatment also attenuated the HDAC3 upregulation and increased histone acetylation. Inhibition of HDAC3 with specific siRNA significantly restrained Nano-Ni-induced reduction in histone acetylation and restored EMT-related protein expression to near control levels. In summary, our findings suggest that exposure to Nano-Ni promotes the development of EMT in human bronchial epithelial cells by decreasing histone acetylation through HIF-1α-mediated HDAC3 upregulation. Our findings may provide information for further understanding of the molecular mechanisms of Nano-Ni-induced fibrosis and carcinogenesis.
Collapse
Affiliation(s)
| | | | - Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40209, USA
| | - Yue Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40209, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40209, USA
| |
Collapse
|
8
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
9
|
Deng Q, Wan Q, Liao J, Fang D, Wang L, Xiong S, Xu P, Shen X, Li Q, Zhou Y. Nickel nanoparticles affect the migration and invasion of HTR-8/SVneo cells by downregulating MMP2 through the PI3K/AKT pathway. Toxicol In Vitro 2022; 80:105328. [PMID: 35150872 DOI: 10.1016/j.tiv.2022.105328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 02/05/2022] [Indexed: 12/24/2022]
Abstract
Proper migration and invasion of extravillous trophoblast cells into the endometrium in early gestation is essential for successful embryo implantation. The development of nanotechnology has led to the emergence of nickel nanoparticles (Ni NPs), for which attendant health concerns are widespread. Ni NPs are known to affect reproduction and be embryotoxic, but whether they affect the migration and invasion functions of trophoblast cells is unclear. We investigated the effects of Ni NPs on the migration and invasion of HTR-8/SVneo in extravillous trophoblast cells and explored the possible role of the PI3K/AKT/MMP2 signaling pathway in this regard. Results showed that the migration and invasion of cells was significantly inhibited by the exposure of Ni NPs. The protein and mRNA levels of PI3K/AKT/MMP2 signaling pathway were significantly reduced with the increase in Ni NPs concentration. The presence of the PI3K activator 740Y-P partially attenuated the inhibition of cell migration and invasion by Ni NPs, confirming the involvement of this pathway. Thus, Ni NPs inhibit migration and invasion of human trophoblast HTR-8/SVneo cells by downregulating the PI3K/AKT/MMP2 signaling pathway. This study is important for the development of safety evaluation criteria for Ni NPs.
Collapse
Affiliation(s)
- Qingfang Deng
- Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiyou Wan
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Juan Liao
- Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Derong Fang
- Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Linglu Wang
- The second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Pei Xu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Quan Li
- Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
10
|
Liu L, Lu W, Dong J, Wu Y, Tang M, Liang G, Kong L. Study of the mechanism of mitochondrial division and mitochondrial autophagy in the male reproductive toxicity induced by nickel nanoparticles. NANOSCALE 2022; 14:1868-1884. [PMID: 35043808 DOI: 10.1039/d1nr05407d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Male reproductive health is deteriorating, and fertility is largely affected by environmental factors. This study aims to investigate the potential mechanism underlying mitochondrial division and mitochondrial autophagy in the male reproductive toxicity of nickel nanoparticles (Ni NPs). An in vivo mouse (BALB/c) model was constructed to calculate testicular organ coefficients and sperm abnormality rates, and detect serum reproductive hormones, testicular pathological morphology, and the expression of Drp1, Pink1, and Parkin proteins. Furthermore, mouse spermatogonia (GC-1 cells) were used as an in vitro model to detect cell viability, apoptosis, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), ATP and protein expression. After treatment with an additional inhibitor, Mdivi-1, such influences were further detected to explore the possible mechanism of male reproductive toxicity induced by Ni NPs. The in vivo studies showed that compared with the control group, exposure to Ni NPs reduced the serum levels of testosterone, follicle stimulating hormone and luteinizing hormone, increased the sperm abnormality rate, widened the gaps in the seminiferous tubules of the testes, decreased the sperm count, and increased the expression of Drp1, Pink1 and Parkin proteins (all P < 0.05). The in vitro studies further confirmed that compared with the control group, Ni NPs can lead to decreased cell viability, increased apoptosis, accumulation of ROS, decreased MMP and ATP, increased expression of Drp1, Pink1, Parkin, Bax, caspase-9 and caspase-3 proteins, and decreased expression of Bcl-2, resulting in an increased value of Bax/Bcl-2. It is worth noting that such influences induced by Ni NPs were significantly reversed by the additional Mdivi-1. In conclusion, Drp1-mediated mitochondrial division and Pink1/Parkin-mediated mitochondrial autophagy play an important role in the male reproductive toxicity of Ni NPs, during which both of them form an interaction cycle and accelerate the occurrence of cell apoptosis.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Wenjuan Lu
- Nanjing Central Hospital, Nanjing 210018, P.R. China
| | - Jiahui Dong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Yongya Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| |
Collapse
|
11
|
Han D, Xu C, Ren XH, Peng Y, Xu B, Song JL, Chen J, Cheng SX. In Situ Detection of Nanotoxicity in Living Cells Based on Multiple miRNAs Probed by a Peptide Functionalized Nanoprobe. Anal Chem 2022; 94:2399-2407. [PMID: 35099175 DOI: 10.1021/acs.analchem.1c03950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The potential toxicity of nanoparticles, especially for clinically applicable ones, has become a critical concern. Technologies that can in situ-evaluate the toxicity of nanoparticles with high sensitivity are urgently needed. In this study, a facile strategy was developed for sensitive detection on the nanotoxicity of nanoparticles with low toxicity or a low dose. A functional nanoprobe loaded with molecular beacons was constructed to realize in situ evaluation of the nanotoxicity through probing multiple miRNAs in nanoparticle-exposed living cells. Being composed of protamine complexed with molecular beacons for miRNA detection and decorated by TAT and KALA peptides, the dual-peptide functionalized nanoprobe can efficiently deliver molecular beacons into living cells to realize the real-time monitoring of early biomarkers (miR-21 and miR-221) to evaluate nanotoxicity. Using mesoporous silica nanoparticles (MSNs) with different surface modifications as typical representatives of low toxic nanoparticles, we demonstrate that our nanoprobe can sensitively detect miRNA changes in cells under diverse exposure conditions, that is, MSN-NH2 exhibits the strongest capability to upregulate miR-21 and miR-221, and the upregulation is exposure dose- and time-dependent. Our approach is much more sensitive as compared with conventional methods to study cytotoxicity such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell morphology observation, and reactive oxygen species (ROS) assay. This study paves a path for effective and facile nanotoxicity evaluation and provides insights into the biological impacts of MSNs.
Collapse
Affiliation(s)
- Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yan Peng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jun-Long Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jing Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
12
|
Zhang Y, Mo Y, Yuan J, Zhang Y, Mo L, Zhang Q. MMP-3 activation is involved in copper oxide nanoparticle-induced epithelial-mesenchymal transition in human lung epithelial cells. Nanotoxicology 2021; 15:1380-1402. [PMID: 35108494 PMCID: PMC9484543 DOI: 10.1080/17435390.2022.2030822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Copper oxide nanoparticles (Nano-CuO) are widely used in medical and industrial fields and our daily necessities. However, the biosafety assessment of Nano-CuO is far behind their rapid development. Here, we investigated the adverse effects of Nano-CuO on normal human bronchial epithelial BEAS-2B cells, especially determined whether Nano-CuO exposure would cause dysregulation of MMP-3, an important mediator in pulmonary fibrosis, and its potential role in epithelial-mesenchymal transition (EMT). Our results showed that exposure to Nano-CuO, but not Nano-TiO2, caused increased ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO-induced ROS generation was not observed in mitochondrial DNA-depleted BEAS-2B ρ0 cells, indicating that mitochondria may be the main source of Nano-CuO-induced ROS generation. Pretreatment of the cells with ROS scavengers or inhibitors or depleting mitochondrial DNA significantly attenuated Nano-CuO-induced MAPKs activation and MMP-3 upregulation, and pretreatment of cells with MAPKs inhibitors abolished Nano-CuO-induced MMP-3 upregulation, suggesting Nano-CuO-induced MMP-3 upregulation is through Nano-CuO-induced ROS generation and MAPKs activation. In addition, exposure of the cells to Nano-CuO for 48 h resulted in decreased E-cadherin expression and increased expression of vimentin, α-SMA, and fibronectin, which was ameliorated by MMP-3 siRNA transfection, suggesting an important role of MMP-3 in Nano-CuO-induced EMT. Taken together, our study demonstrated that Nano-CuO exposure caused mitochondrial ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO exposure also caused cells to undergo EMT, which was through Nano-CuO-induced dysregulation of ROS/MAPKs/MMP-3 pathway. Our findings will provide further understanding of the potential mechanisms involved in metal nanoparticle-induced various toxic effects including EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Luke Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
13
|
Mo Y, Zhang Y, Zhang Y, Yuan J, Mo L, Zhang Q. Nickel nanoparticle-induced cell transformation: involvement of DNA damage and DNA repair defect through HIF-1α/miR-210/Rad52 pathway. J Nanobiotechnology 2021; 19:370. [PMID: 34789290 PMCID: PMC8600818 DOI: 10.1186/s12951-021-01117-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Nickel nanoparticles (Nano-Ni) are increasingly used in industry and biomedicine with the development of nanotechnology. However, the genotoxic and carcinogenic effects of Nano-Ni and the underlying mechanisms are still unclear. METHODS At first, dose-response (0, 10, 20, and 30 μg/mL) and time-response (0, 3, 6, 12, and 24 h) studies were performed in immortalized normal human bronchial epithelial cells BEAS-2B to observe the effects of Nano-Ni on DNA damage response (DDR)-associated proteins and the HIF-1α/miR-210/Rad52 pathway by real-time PCR or Western blot. Then, a Hsp90 inhibitor (1 µM of 17-AAG, an indirect HIF-1α inhibitor), HIF-1α knock-out (KO) cells, and a miR-210 inhibitor (20 nM) were used to determine whether Nano-Ni-induced Rad52 down-regulation was through HIF-1α nuclear accumulation and miR-210 up-regulation. In the long-term experiments, cells were treated with 0.25 and 0.5 µg/mL of Nano-Ni for 21 cycles (~ 150 days), and the level of anchorage-independent growth was determined by plating the cells in soft agar. Transduction of lentiviral particles containing human Rad52 ORF into BEAS-2B cells was used to observe the role of Rad52 in Nano-Ni-induced cell transformation. Nano-Ni-induced DNA damage and dysregulation of HIF-1α/miR-210/Rad52 pathway were also investigated in vivo by intratracheal instillation of 50 µg per mouse of Nano-Ni. gpt delta transgenic mice were used to analyze mutant frequency and mutation spectrum in mouse lungs after Nano-Ni exposure. RESULTS Nano-Ni exposure caused DNA damage at both in vitro and in vivo settings, which was reflected by increased phosphorylation of DDR-associated proteins such as ATM at Ser1981, p53 at Ser15, and H2AX. Nano-Ni exposure also induced HIF-1α nuclear accumulation, miR-210 up-regulation, and down-regulation of homologous recombination repair (HRR) gene Rad52. Inhibition of or knocking-out HIF-1α or miR-210 ameliorated Nano-Ni-induced Rad52 down-regulation. Long-term low-dose Nano-Ni exposure led to cell malignant transformation, and augmentation of Rad52 expression significantly reduced Nano-Ni-induced cell transformation. In addition, increased immunostaining of cell proliferation markers, Ki-67 and PCNA, was observed in bronchiolar epithelial cells and hyperplastic pneumocytes in mouse lungs at day 7 and day 42 after Nano-Ni exposure. Finally, using gpt delta transgenic mice revealed that Nano-Ni exposure did not cause increased gpt mutant frequency and certain DNA mutations, such as base substitution and small base insertions/deletions, are not the main types of Nano-Ni-induced DNA damage. CONCLUSIONS This study unraveled the mechanisms underlying Nano-Ni-induced cell malignant transformation; the combined effects of Nano-Ni-induced DNA damage and DNA repair defects through HIF-1α/miR-210/Rad52 pathway likely contribute to Nano-Ni-induced genomic instability and ultimately cell transformation. Our findings will provide information to further elucidate the molecular mechanisms of Nano-Ni-induced genotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Luke Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| |
Collapse
|
14
|
Sun T, Kang Y, Liu J, Zhang Y, Ou L, Liu X, Lai R, Shao L. Nanomaterials and hepatic disease: toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. J Nanobiotechnology 2021; 19:108. [PMID: 33863340 PMCID: PMC8052793 DOI: 10.1186/s12951-021-00843-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of nanomaterials (NMs) has raised concerns that exposure to them may introduce potential risks to the human body and environment. The liver is the main target organ for NMs. Hepatotoxic effects caused by NMs have been observed in recent studies but have not been linked to liver disease, and the intrinsic mechanisms are poorly elucidated. Additionally, NMs exhibit varied toxicokinetics and induce enhanced toxic effects in susceptible livers; however, thus far, this issue has not been thoroughly reviewed. This review provides an overview of the toxicokinetics of NMs. We highlight the possibility that NMs induce hepatic diseases, including nonalcoholic steatohepatitis (NASH), fibrosis, liver cancer, and metabolic disorders, and explore the underlying intrinsic mechanisms. Additionally, NM toxicokinetics and the potential induced risks in the livers of susceptible individuals, including subjects with liver disease, obese individuals, aging individuals and individuals of both sexes, are summarized. To understand how NM type affect their toxicity, the influences of the physicochemical and morphological (PCM) properties of NMs on their toxicokinetics and toxicity are also explored. This review provides guidance for further toxicological studies on NMs and will be important for the further development of NMs for applications in various fields.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatological Hospital, Foshan University, Foshan, 528000, China.
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China.
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lingling Ou
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Xiangning Liu
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Renfa Lai
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
15
|
Yuan J, Zhang Y, Zhang Y, Mo Y, Zhang Q. Effects of metal nanoparticles on tight junction-associated proteins via HIF-1α/miR-29b/MMPs pathway in human epidermal keratinocytes. Part Fibre Toxicol 2021; 18:13. [PMID: 33740985 PMCID: PMC7980342 DOI: 10.1186/s12989-021-00405-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Background The increasing use of metal nanoparticles in industry and biomedicine raises the risk for unintentional exposure. The ability of metal nanoparticles to penetrate the skin ranges from stopping at the stratum corneum to passing below the dermis and entering the systemic circulation. Despite the potential health risks associated with skin exposure to metal nanoparticles, the mechanisms underlying the toxicity of metal nanoparticles on skin keratinocytes remain unclear. In this study, we proposed that exposure of human epidermal keratinocytes (HaCaT) to metal nanoparticles, such as nickel nanoparticles, dysregulates tight-junction associated proteins by interacting with the HIF-1α/miR-29b/MMPs axis. Methods We performed dose-response and time-response studies in HaCaT cells to observe the effects of Nano-Ni or Nano-TiO2 on the expression and activity of MMP-2 and MMP-9, and on the expression of tight junction-associated proteins, TIMP-1, TIMP-2, miR-29b, and HIF-1α. In the dose-response studies, cells were exposed to 0, 10, or 20 μg/mL of Nano-Ni or Nano-TiO2 for 24 h. In the time-response studies, cells were exposed to 20 μg/mL of Nano-Ni for 12, 24, 48, or 72 h. After treatment, cells were collected to either assess the expression of mRNAs and miR-29b by real-time PCR or to determine the expression of tight junction-associated proteins and HIF-1α nuclear accumulation by Western blot and/or immunofluorescent staining; the conditioned media were collected to evaluate the MMP-2 and MMP-9 activities by gelatin zymography assay. To further investigate the mechanisms underlying Nano-Ni-induced dysregulation of tight junction-associated proteins, we employed a HIF-1α inhibitor, CAY10585, to perturb HIF-1α accumulation in one experiment, and transfected a miR-29b-3p mimic into the HaCaT cells before Nano-Ni exposure in another experiment. Cells and conditioned media were collected, and the expression and activities of MMPs and the expression of tight junction-associated proteins were determined as described above. Results Exposure of HaCaT cells to Nano-Ni resulted in a dose-dependent increase in the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 and the activities of MMP-2 and MMP-9. However, exposure of cells to Nano-TiO2 did not cause these effects. Nano-Ni caused a dose-dependent decrease in the expression of miR-29b and tight junction-associated proteins, such as ZO-1, occludin, and claudin-1, while Nano-TiO2 did not. Nano-Ni also caused a dose-dependent increase in HIF-1α nuclear accumulation. The time-response studies showed that Nano-Ni caused significantly increased expressions of MMP-2 at 24 h, MMP-9 at 12, 24, and 48 h, TIMP-1 from 24 to 72 h, and TIMP-2 from 12 to 72 h post-exposure. The expression of miR-29b and tight junction-associated proteins such as ZO-1, occludin, and claudin-1 decreased as early as 12 h post-exposure, and their levels declined gradually over time. Pretreatment of cells with a HIF-1α inhibitor, CAY10585, abolished Nano-Ni-induced miR-29b down-regulation and MMP-2/9 up-regulation. Introduction of a miR-29b-3p mimic into HaCaT cells by transfection before Nano-Ni exposure ameliorated Nano-Ni-induced increased expression and activity of MMP-2 and MMP-9 and restored Nano-Ni-induced down-regulation of tight junction-associated proteins. Conclusion Our study herein demonstrated that exposure of human epidermal keratinocytes to Nano-Ni caused increased HIF-1α nuclear accumulation and increased transcription and activity of MMP-2 and MMP-9 and down-regulation of miR-29b and tight junction-associated proteins. Nano-Ni-induced miR-29b down-regulation was through Nano-Ni-induced HIF-1α nuclear accumulation. Restoration of miR-29b level by miR-29b-3p mimic transfection abolished Nano-Ni-induced MMP-2 and MMP-9 activation and down-regulation of tight junction-associated proteins. In summary, our results demonstrated that Nano-Ni-induced dysregulation of tight junction-associated proteins in skin keratinocytes was via HIF-1α/miR-29b/MMPs pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00405-2.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA.
| |
Collapse
|