1
|
Mou B, Wu S. Interactions between polycyclic aromatic hydrocarbons (PAHs) and phospholipids cause PAH migration into wet gums during the oil degumming process. Food Chem 2025; 464:141578. [PMID: 39396479 DOI: 10.1016/j.foodchem.2024.141578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/29/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
The refining process can reduce PAH contamination levels in vegetable oils, but the safety of byproducts requires further attention. We hypothesize that interactions between PAHs and phospholipids could contribute to PAH migration into the wet gums and subsequently evaluated the distribution of PAHs during different degumming processes. Enzymatic degumming achieved over 99.90 % removal of phospholipids from soybean oil and sunflower seed oil and minimized the toxic equivalency quotient of PAHs in wet gums (approximately 0.05 μg/kg). Notably, greater PAH reduction was correlated with greater phospholipid removal in degummed soybean oil. Quantum chemical calculations indicated that van der Waals forces between PAHs and phospholipids could cause PAH migration, with higher phospholipid contents and PAH contamination in soybean oil providing more favourable conditions than in sunflower seed oil. This study will help to improve the quality of edible oils and provide information on the mechanisms underlying PAH migration.
Collapse
Affiliation(s)
- Bolin Mou
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Cai R, Luo J, Chen C, Ding P, Wang X, Yang K, Zhu X, Guo Y, Chi B, Tuo X. Conformational alterations and functional changes of pepsin induced by a novel food supplement tetrahydrocurcumin: Multispectral techniques and computer simulations. Int J Biol Macromol 2024; 279:135178. [PMID: 39214215 DOI: 10.1016/j.ijbiomac.2024.135178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Tetrahydrocurcumin (THC), as a novel food supplement, has generated significant interests for its potential impact on health and nutrition. Pepsin serves as the primary enzyme involved in the digestive mechanism. This research investigated the conformational and functional alterations of pepsin induced by THC using multispectral techniques and computer simulations. The results showed that THC enters the cavity of pepsin, in which hydrophobic forces play a major role. The binding constant is 1.044 × 104 M-1 at 310 K. The upregulation or downregulation effect of THC on pepsin activity depends on its concentration. Molecular docking outcomes indicated that THC was encapsulated by various amino acids and established H-bonds with Tyr189 and Ser294, revealing that hydrogen bonds also contribute to maintaining the stability of THC-pepsin complex. In addition, the altered activity of pepsin may be related to the interaction between THC and the amino acids at the active site (Asp32) according to energy contribution results. 3D fluorescence spectroscopy, CD spectra and molecular dynamic simulations show that THC causes conformational changes in pepsin. The existence of THC makes pepsin structure to be less dense, leading to the decrease of energy traps. This suggests that pepsin becomes conformationally more suitable to bind to THC.
Collapse
Affiliation(s)
- Ruirui Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jiaqing Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Chaolan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Pei Ding
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaowei Wang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Kaiyu Yang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiner Zhu
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ying Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
3
|
Wang S, Li C, Zhang L, Chen Q, Wang S. Assessing the ecological impacts of polycyclic aromatic hydrocarbons petroleum pollutants using a network toxicity model. ENVIRONMENTAL RESEARCH 2024; 245:117901. [PMID: 38092235 DOI: 10.1016/j.envres.2023.117901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are significant petroleum pollutants that have long-term impacts on human health and ecosystems. However, assessing their toxicity presents challenges due to factors such as cost, time, and the need for comprehensive multi-component analysis methods. In this study, we utilized network toxicity models, enrichment analysis, and molecular docking to analyze the toxicity mechanisms of PAHs at different levels: compounds, target genes, pathways, and species. Additionally, we used the maximum acceptable concentration (MAC) value and risk quotient (RQ) as an indicator for the potential ecological risk assessment of PAHs. The results showed that higher molecular weight PAHs had increased lipophilicity and higher toxicity. Benzo[a]pyrene and Fluoranthene were identified as core compounds, which increased the risk of cancer by affecting core target genes such as CCND1 in the human body, thereby influencing signal transduction and the immune system. In terms of biological species, PAHs had a greater toxic impact on aquatic organisms compared to terrestrial organisms. High molecular weight PAHs had lower effective concentrations on biological species, and the ecological risk was higher in the Yellow River Delta region. This research highlights the potential application of network toxicity models in understanding the toxicity mechanisms and species toxicity of PAHs and provides valuable insights for monitoring, prevention, and ecological risk assessment of these pollutants.
Collapse
Affiliation(s)
- Shiqi Wang
- School of Energy, Faculty of Engineering, China University of Geosciences, Beijing, 100083, PR China.
| | - Congcong Li
- College of Civil Engineering and Architecture, Binzhou University, Binzhou City, Shandong Province, 256600, PR China.
| | - Lisheng Zhang
- Shengli Geological Mud Logging Company of Sinopic Matrix Co., Ltd., Dongying, Shandong Province, 257000, PR China
| | - Qian Chen
- Shengli Geological Mud Logging Company of Sinopic Matrix Co., Ltd., Dongying, Shandong Province, 257000, PR China
| | - Shuoliang Wang
- School of Energy, Faculty of Engineering, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
4
|
Ma J, Qin C, Hu X, Lin Z, Li Z, Gao Y. Health risks posed by environmental benzophenone-type ultraviolet filters (BP-UVFs): An investigation into the binding of BP-UVFs to trypsin and their adverse effects. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132231. [PMID: 37557051 DOI: 10.1016/j.jhazmat.2023.132231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Benzophenone-type ultraviolet filters (BP-UVFs) are ubiquitous in the environment, and people frequently ingest them via food chain and drinking water. However, there is no clear information about whether BP-UVFs are detrimental to human health. Herein, experiments using multi-spectroscopy revealed typical BP-UVFs, i.e., benzophenone (BP), 2-hydroxybenzophenone (2-OHBP), 4-hydroxybenzophenone (4-OHBP), 2,2'-dihydroxybenzophenone (2,2'-OHBP), 2,4-dihydroxybenzophenone (2,4-OHBP), 4,4'-dihydroxybenzophenone (4,4'-OHBP), 2,4,4'-trihydroxybenzophenone (2,4,4'-OHBP), 2,2',4,4'-tetraphydroxybenzophenone (2,2',4,4'-OHBP), 2-hydroxy-4-methoxybenzophenone (2-OH-4-MeOBP) and 2,2'-dihydroxy-4-methoxybenzophenone (2,2'-OH-4-MeOBP), could bind to the active site of trypsin with different binding constants (2.69 × 104-1.07 × 106 L/mol), cause structural abnormalities and inhibit the enzymatic activity in varying degrees, indicating that the BP-UVFs ingestion poses a risk to human health. In contrast to previous research, this study systematically analysed the binding mechanism using an innovative combination of molecular docking and advanced quantum chemistry calculations, including molecular dynamics simulations, energy calculations, etc. The results revealed that most amino acids that make up trypsin have a greater positive electrostatic surface potential (ESP). Therefore, the greater the area and distribution of negative ESP in a particular BP-UVFs, the more easily it will bind to trypsin. This provides new insight into the binding of pollutants to proteins. This study suggests a need for better monitoring and control of environmental BP-UVFs.
Collapse
Affiliation(s)
- Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhipeng Lin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zekai Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
5
|
Zamisa SJ, Adeleke AA, Devnarain N, Rhman MA, Owira PMO, Omondi B. The link between relative stability constant of DNA- and BSA-chromenopyrimidine complexes and cytotoxicity towards human breast cancer cells (MCF-7). RSC Adv 2023; 13:21820-21837. [PMID: 37475760 PMCID: PMC10354499 DOI: 10.1039/d3ra01741a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
In this study, we synthesized and characterized ten chromenopyrimidine derivatives using analytical and spectroscopic methods. Studies on DNA and albumin binding affinity, as well as cytotoxicity tests on human breast cancer (MCF-7) cells, of the chromenopyrimidines, were conducted. The natural logarithm of the relative stability constant of DNA- and BSA-chromenopyrimidine complexes [ln(KDNA/KBSA)] was used as a criterion for selecting compounds for cytotoxicity studies. We found that ln(KDNA/KBSA) was inversely related to IC50 values of the compounds in MCF-7 cells. The antiproliferative effects of the compounds were found to induce apoptosis in MCF-7 cells, which is a desired mechanism of cell death. Correlations between the DNA and albumin binding affinities of chromenopyrimidines were established. We propose that this relationship approach can, for a given set of compounds, assist in predicting the cytotoxicity of potential drug candidates towards MCF-7 cells based on their experimentally determined CT-DNA and BSA binding affinities.
Collapse
Affiliation(s)
- Sizwe J Zamisa
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Adesola A Adeleke
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Nikita Devnarain
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Mahasin Abdel Rhman
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Peter M O Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Bernard Omondi
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
6
|
Ma J, Yang B, Hu X, Gao Y, Qin C. The binding mechanism of benzophenone-type UV filters and human serum albumin: The role of site, number, and type of functional group substitutions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121342. [PMID: 36828352 DOI: 10.1016/j.envpol.2023.121342] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Benzophenone-type UV filters (BPs) are common in natural aquatic environments. They can cause endocrine disruption or other adverse effects once they enter the human body via the food chain or drinking water. The primary cause of BPs accumulation and toxicity is the transport of BPs into the human body. Functional group substitutions can have a significant impact on the interactions of BPs and transporters, resulting in a variety of impact effects. Therefore, we explored the interaction between human serum albumin (HSA, a typical transporter) and ten typical BPs [benzophenone (BP1), 2-hydroxybenzophenone (BP2), 4-hydroxybenzophenone (BP3), 2,2'-dihydroxybenzophenone (BP4), 2,4-dihydroxybenzophenone (BP5), 4,4'-dihydroxybenzophenone (BP6), 2,4,4'-trihydroxybenzophenone (BP7), 2,2',4,4'-tetrahydroxybenzophenone (BP8), 2-hydroxy-4-methoxybenzophenone (BP9), and 2,2'-dihydroxy-4-methoxybenzophenone (BP10)] to study the role of functional group substitutions in binding. The results showed that BPs could bind to HSA at site 2, with binding constants ranging from 2.01 × 103 to 4.57 × 105 L/mol. Compared to BP1, hydroxyl and methoxy substitutions enhanced the BPs-HSA binding. The combined effect of the number and site of hydroxyl substitution at BPs determined the binding strength between BPs and HSA. It was more accessible to bind HSA when BPs were substituted with para-hydroxyl (4-hydroxyl) groups than with ortho-hydroxyl (2-hydroxyl) groups. Moreover, the additional para-methoxy (4-methoxy) group increased the BP-HSA binding strength by approximately 47 times under the same hydroxyl substitution conditions. Theoretical calculations revealed that functional group substitutions increased the intermolecular binding force by increasing the negative electrostatic potential surface area of BPs, which significantly increased the electrostatic and dispersion forces between the BPs and HSA. This BPs-HSA binding decreased the α-helix of HSA and influenced the ratio of other secondary structures, including β-sheet, β-turn, and random coil of HSA. This study provides a theoretical and experimental foundation for understanding the human health risks associated with BPs.
Collapse
Affiliation(s)
- Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
7
|
Han M, Zhang Z, Liu S, Sheng Y, Waigi MG, Hu X, Qin C, Ling W. Genotoxicity of organic contaminants in the soil: A review based on bibliometric analysis and methodological progress. CHEMOSPHERE 2023; 313:137318. [PMID: 36410525 DOI: 10.1016/j.chemosphere.2022.137318] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Organic contaminants (OCs) are ubiquitous in the environment, posing severe threats to human health and ecological balance. In particular, OCs and their metabolites could interact with genetic materials to induce genotoxicity, which has attracted considerable attention. In this review, bibliometric analysis was executed to analyze the publications on the genotoxicity of OCs in soil from 1992 to 2021. The result indicated that significant contributions were made by China and the United States in this field and the research hotspots were biological risks, damage mechanisms, and testing methods. Based on this, in this review, we summarized the manifestations and influencing factors of genotoxicity of OCs to soil organisms, the main damage mechanisms, and the most commonly utilized testing methods. OCs can induce genotoxicity and the hierarchical response of soil organisms, which could be influenced by the physicochemical properties of OCs and the properties of soil. Specific mechanisms of genotoxicity can be classified into DNA damage, epigenetic toxicity, and chromosomal aberrations. OCs with different molecular weights lead to genetic material damage by inducing the generation of ROS or forming adducts with DNA, respectively. The micronucleus test and the comet test are the most commonly used testing methods. Moreover, this review also pointed out that future studies should focus on the relationships between bioaccessibilities and genotoxicities, transcriptional regulatory factors, and potential metabolites of OCs to elaborate on the biological risks and mechanisms of genotoxicity from an overall perspective.
Collapse
Affiliation(s)
- Miao Han
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zaifeng Zhang
- Jiangsu Province Nantong Environmental Monitoring Center, Nantong 226006, PR China
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Youying Sheng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
8
|
Qin C, Lu YX, Borch T, Yang LL, Li YW, Zhao HM, Hu X, Gao Y, Xiang L, Mo CH, Li QX. Interactions between Extracellular DNA and Perfluoroalkyl Acids (PFAAs) Decrease the Bioavailability of PFAAs in Pakchoi ( Brassica chinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14622-14632. [PMID: 36375011 DOI: 10.1021/acs.jafc.2c04597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are emerging ionic organic pollutants worldwide. Great amounts of extracellular DNA (∼mg/kg) coexist with PFAAs in the environment. However, PFAA-DNA interactions and effects of such interactions have not been well studied. Herein, we used isothermal titration calorimetry (ITC), spectroscopy, and computational simulations to investigate the PFAA-DNA interactions. ITC assays showed that specific binding affinities of PFHxA-DNA, PFOA-DNA, PFNA-DNA, and PFOS-DNA were 5.14 × 105, 3.29 × 105, 1.99 × 105, and 2.18 × 104 L/mol, respectively, which were about 1-2 orders of magnitude stronger than those of PFAAs with human serum albumin. Spectral analysis suggested interactions of PFAAs with adenine (A), cytosine (C), guanine (G), and thymine (T), among which grooves associated with thymine were the major binding sites. Molecular dynamics simulations and quantum chemical calculations suggested that hydrogen bonds and van der Waals forces were the main interaction forces. Such a PFAA-DNA binding decreased the bioavailability of PFAAs in plant seedlings. The findings will help to improve the current understanding of the interaction between PFAAs and biomacromolecules, as well as how such interactions affect the bioavailability of PFAAs.
Collapse
Affiliation(s)
- Chao Qin
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Ying-Xin Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Thomas Borch
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado80523, United States
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado80523, United States
| | - Ling-Ling Yang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii96822, United States
| |
Collapse
|
9
|
Ma J, Qin C, Waigi MG, Gao Y, Hu X, Mosa A, Ling W. Functional group substitutions influence the binding of benzophenone-type UV filters with DNA. CHEMOSPHERE 2022; 299:134490. [PMID: 35385766 DOI: 10.1016/j.chemosphere.2022.134490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
As a class of possible carcinogens, benzophenone-type UV filters (BPs) widely exist in natural environments and organisms. The crucial step of the carcinogenic process induced by cancerous toxins is binding with DNA to form adducts. Here, the binding of 10 typical BPs, i.e., benzophenone (BP1), 2-hydroxyl benzophenone (BP2), 4-hydroxyl benzophenone (BP3), 2,2'-dihydroxyl benzophenone (BP4), 2,4-dihydroxyl benzophenone (BP5), 4,4'-dihydroxyl benzophenone (BP6), 2,4,4'-trihydroxyl benzophenone (BP7), 2,2',4,4'-tetrahydroxyl benzophenone (BP8), 2-hydroxyl-4-methoxyl benzophenone (BP9), and 2,2'-dihydroxyl-4-methoxyl benzophenone (BP10), with DNA was tested via fluorescence quenching experiments. Only hydroxyl group-substituted BPs could bind to DNA by groove binding mode, and the quenching constants were 0.93 × 103-5.89 × 103 L/mol. Substituted BPs were preferentially bound to thymine. Circular dichroism analysis confirmed that BPs could affect DNA base stacking but could not transform its B-form. Based on molecular electrostatic surface potential analyses, molecular dynamics simulations, and energy decomposition calculations, it could be found that the site and number of hydroxyl substitution changed the molecular polarity of BPs, thereby affecting the number and strength of hydrogen bonds between BPs and DNA. The hydroxyl substitution at site 2 was more conducive to binding than at site 4. This study is beneficial in comprehending the carcinogenic mechanisms of BPs.
Collapse
Affiliation(s)
- Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
10
|
Cheng H, Qin C, Yang B, Hu X, Gatheru Waigi M, Vasilyeva GK, Gao Y. Non-covalent binding interaction between phthalic acid esters and DNA. ENVIRONMENT INTERNATIONAL 2022; 161:107095. [PMID: 35063790 DOI: 10.1016/j.envint.2022.107095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The interaction of phthalic acid esters (PAEs) with DNA is known to be responsible for the disruption of endocrine functions and the teratogenic and carcinogenic effects. However, the binding strength and mechanism of this important process has often been neglected. Here, we confirmed the binding interaction between PAEs and DNA via fluorescence titration quenching experiment. The linear fitting curve proved that PAEs could bind to DNA, and the binding constants (KA) were 4.11 × 105, 1.04 × 105, 7.60 × 104, 1.99 × 104, and 1.42 × 103 L/mol for diethyl phthalate (DEP), bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), dimethyl phthalate (DMP), and benzyl butyl phthalate (BBP), respectively. DNA melting point, UV-vis spectra and Fourier transform infrared spectroscopy (FTIR) analyses revealed that PAEs interact predominantly with thymines in the DNA minor groove. Quantum chemical calculations showed that hydrogen bonding and van der Waals force formation between PAEs and DNA bases dominated the binding interaction. However, PAEs-DNA binding did not induce any DNA conformation change since the circular dichroism and FTIR spectra of B-DNA were not change. The electrostatic surface potential (ESP) might act an important role in PAEs-DNA binding interaction. This work will broaden our understanding of the interaction between PAEs and genetic materials.
Collapse
Affiliation(s)
- Hao Cheng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Galina K Vasilyeva
- Institute of Physicochemical and Biological Problems in Soil Science, RAS, Pushchino, Moscow region 1422290, Russia
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
11
|
Wang Z, Ng K, Warner RD, Stockmann R, Fang Z. Reduction strategies for polycyclic aromatic hydrocarbons in processed foods. Compr Rev Food Sci Food Saf 2022; 21:1598-1626. [DOI: 10.1111/1541-4337.12905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Zun Wang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| | - Robyn Dorothy Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| | | | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| |
Collapse
|
12
|
Li P, Guo X, Jing J, Hu W, Wei WQ, Qi X, Zhuang G. The lag effect of exposure to PM 2.5 on esophageal cancer in urban-rural areas across China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4390-4400. [PMID: 34406566 DOI: 10.1007/s11356-021-15942-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Exposure to PM2.5 pollution is a significant health concern and increases risks for cancers in China. However, the studies regarding the effect of PM2.5 and esophageal cancer incidence (ECI) among urban-rural areas are limited. In this study, we examined the sex- and area-specific association between exposure to PM2.5 and ECI, as well as explored the corresponding lag effects on ECI using a geographical weighted Poisson regression. We found significantly positive effect on ECI for males and females in different models, with the greatest increase of 1.44% (95% CI: 1.30%, 1.59%) and 2.42% (95% CI: 2.17%, 2.66%) in per 10 ug/m3 increase of PM2.5 for males and females at single year lag7 and lag4 after all covariates controlled, respectively. We also found that the long-term effect of PM2.5 on ECI was relatively stable at all moving average year lags. Moreover, rural areas had higher ECI risks for males (0.17%) and females (0.64%) with longer lag period than urban areas. In addition, higher risks for both sexes appeared in north, northwestern, and east China. The findings indicated that long-term exposure to PM2.5 was significantly associated with increased risks for ECI, which reinforce a comprehensive understanding for ECI related to PM2.5.
Collapse
Affiliation(s)
- Peng Li
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Xiya Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jing Jing
- College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi, 721013, China
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Wen-Qiang Wei
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Guihua Zhuang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
13
|
Cetin A. In silico studies on stilbenolignan analogues as SARS-CoV-2 Mpro inhibitors. Chem Phys Lett 2021; 771:138563. [PMID: 33776065 PMCID: PMC7983322 DOI: 10.1016/j.cplett.2021.138563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
COVID-19, a new strain of coronavirus family, was identified at the end of 2019 in China. The COVID-19 virus spread rapidly all over the world. Scientists strive to find virus-specific antivirals for the treatment of COVID-19. The present study reports a molecular docking study of the stilbenolignans and SARS-CoV-2 main protease (SARS-CoV-2 Mpro) inhibitors. The detailed interactions between the stilbenolignan analogues and SARS-CoV-2 Mpro inhibitors were determined as hydrophobic bonds, hydrogen bonds and electronic bonds, inhibition activity, ligand efficiency, bonding type and distance and etc. The binding energies of the stilbenolignan analogues were obtained from the molecular docking of SARS-CoV-2 Mpro. Lehmbachol D, Maackolin, Gnetucleistol, Gnetifolin F, Gnetofuran A and Aiphanol were found to be -7.7, -8.2, -7.3, -8.5, -8.0 and -7.3 kcal/mol, respectively. Osirus, Molinspiration and SwissADME chemoinformatic tools were used to examine ADMET properties, pharmacokinetic parameters and toxicological characteristics of the stilbenolignan analogues. All analogues obey the Lipinski's rule of five. Furthermore, stilbenolignan analogues were studied to predict their binding affinities against SARS-CoV-2 Mpro using molecular modeling and simulation techniques, and the binding free energy calculations of all complexes were calculated using the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) method. With the data presented here it has been observed that these analogues may be a good candidate for SARS-CoV-2 Mpro in vivo studies, so more research can be done on stilbenolignan analogues.
Collapse
|