1
|
Parnis JM, Celsie AKD, Robitaille R, Moradi M, Diamond ML, Jantunen L, Harner T. Oil sands process-affected water composition effect on Henry's law constants for polycyclic aromatic compounds: Theory and experiment. CHEMOSPHERE 2024; 364:143090. [PMID: 39154765 DOI: 10.1016/j.chemosphere.2024.143090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Oil sands process-affected water (OSPW) is a source of atmospheric emission for polycyclic aromatic compounds (PACs), compounds known to have toxic effects on humans. Estimating emissions and assessing the chemical fate of PACs requires measured or predicted physical-chemical properties such as Henry's law constants (H), that can be used to predict chemical transfer into the atmosphere. OSPW is a complex water-based mixture that is highly variable in composition and nature and contains both organic and inorganic ions. This study uses COSMO-RS solvation theory to estimate and compare Henry's law constants for a set of PACs in both water and theoretically modelled OSPW, to assess the expected deviation that occurs from pure water H values due to the ionic content within OSPW. Experimental measurements of Henry's law constants for PACs in pure water and OSPW using EVA-coated passive dosing and sampler beads were also made in support of our theoretical predictions. For the theory work, OSPW composition data for the Athabasca oil sands in Alberta were used to model a simulated OSPW environment with realistic sodium, chloride, fluoride, sulfate, potassium, bicarbonate, and naphthenic acid concentrations. Theory results indicate that the combined presence of these ions at OSPW concentrations has a negligible effect on H values, causing on average a 3% or 0.014 log unit deviation. By comparison, temperature has a much larger influence on H values, with estimations showing an average 0.20 log unit increase for a 5 °C increase in temperature. The experimental results demonstrate that Henry's law constants can be accurately and precisely measured with this technique in pure water but with less precision in OSPW. Nevertheless, the experimental results support the conclusion that Henry's law constants for OSPW can be accurately estimated assuming a pure water phase.
Collapse
Affiliation(s)
- J Mark Parnis
- Canadian Environmental Modelling Centre, Department of Chemistry, Trent University, Peterborough, ON, K9L 0G2, Canada.
| | - Alena K D Celsie
- Canadian Environmental Modelling Centre, Department of Chemistry, Trent University, Peterborough, ON, K9L 0G2, Canada.
| | - Rachelle Robitaille
- Department of Earth Sciences, University of Toronto, Toronto, ON, M5S 3B1, Canada.
| | - Maryam Moradi
- Canadian Environmental Modelling Centre, Department of Chemistry, Trent University, Peterborough, ON, K9L 0G2, Canada.
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, Toronto, ON, M5S 3B1, Canada; School of the Environment, University of Toronto, ON, M5S 3E8, Canada.
| | - Liisa Jantunen
- Department of Earth Sciences, University of Toronto, Toronto, ON, M5S 3B1, Canada; Air Quality Processes Research Section, Environment and Climate Change Canada, Egbert, ON, L0L 1N0, Canada.
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada.
| |
Collapse
|
2
|
Yang F, Cheng I, Mamun AA, Zhang L. Measurement constrained emission estimates of alkylated polycyclic aromatic hydrocarbons in the Canadian Athabasca oil sands region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123602. [PMID: 38382731 DOI: 10.1016/j.envpol.2024.123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Alkylated polycyclic aromatic hydrocarbons (APAH) are important contaminants of crude oil production and exhibit similar toxicity to their parent compounds. This study developed an emission inventory of APAH in a major oil sands development region of Alberta, Canada, and validated the inventory with ambient concentration measurements through dispersion modeling. The initial estimate of regional total annual emissions of 21 APAH species was 362 tonnes/year in the last decade, of which 309 and 53 tonnes/year were in particle-bound and gas-phase APAH, respectively. Fugitive dust from oil sands mining activities is the primary source of particle-bound APAH, emitting 274 tonnes/year. Other major sources of APAH include point sources (31), tailings ponds (21), anthropogenic fuel consumption from mine fleet (17), and local transportation (13). The group of species with highest emissions was C1-C4 alkylnaphthalenes (53%), followed by C1-C4 alkylphenanthrenes/anthracenes (19%), C1-C4 fluorenes (13%), and C1-C4 fluoranthenes/pyrenes and C1-C4 benz[a]anthracenes/chrysene/triphenylenes (7% each). CALPUFF dispersion modeling was performed using the APAH emissions as model input. The model-predicted annual average ambient APAH concentrations at 17 monitoring sites were 1%-52% (19% on average) lower than the measurements. Inverse dispersion modeling was then applied to adjust APAH emissions higher by 19% for each of the 21 APAH species, which resulted in a revised estimate of APAH emissions to 431 tonnes/year. With the revised emissions as model input, model bias in the predicted ambient concentration was reduced from -19% to -8%. The model results showed the highest concentrations of APAH were near tailings ponds and open mining faces and downwind areas, with total APAH concentrations being higher than 50 ng/m3.
Collapse
Affiliation(s)
- Fuquan Yang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Irene Cheng
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Abdulla Al Mamun
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada.
| |
Collapse
|
3
|
Moradi M, Eng A, Staebler R, Harner T. Atmospheric emissions estimation of polycyclic aromatic compounds from an oil sands tailings pond using passive air samplers. CHEMOSPHERE 2023; 345:140423. [PMID: 37839749 DOI: 10.1016/j.chemosphere.2023.140423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
A mapping study targeting emissions of polycyclic aromatic compounds (PACs) from an oil sands tailings pond was undertaken in the Athabasca Oil sands Region (AOSR). Ten passive air samplers comprising polyurethane foam (PUF) disks were deployed around the perimeter of Suncor Tailings Pond 2/3 for a five-week period to generate time-integrated concentrations in air for PACs, which included ∑unsubstituted polycyclic aromatic hydrocarbons (PAHs), ∑alkylated PAHs (alk-PAHs), and ∑dibenzothiophenes (DBTs) (both unsubstituted and alkylated). Concentrations in air ranged from 13 to 70, 220-970, and 30-210 ng/m3, respectively, and were elevated in samplers downwind of the tailings pond. PAC emissions to air from the pond were estimated using only the air-side concentration information by applying a simplified Gaussian dispersion model and found to be 896 μg/m2/day. ∑alk-PAHs and ∑DBTs had the highest contribution to the total PAC fluxes (79% and 16%, respectively). This flux estimate for PACs is equivalent to 460 kg on an annual basis and 35 000 kg/year when scaled to represent all tailings ponds in the region. The results generally agree with fluxes estimated from coupled high volume air sampling data and tailings pond water concentrations from the same field study but which are complicated due to uncertainties associated with the use of pure water Henry's Law values for tailings pond water as well as the potential for surface oily films on the tailings ponds to impact water-air exchange of PACs. Overall, these findings support the use of relatively simple and electricity-free PUF disk samplers for mapping and estimating emissions from area sources such as tailings ponds, using only air-side concentration information.
Collapse
Affiliation(s)
- Maryam Moradi
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada
| | - Anita Eng
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada.
| | - Ralf Staebler
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada
| |
Collapse
|
4
|
Treatment of Oil Sands’ Mature Fine Tailings Using Advanced Wet Air Oxidation (WAO) and Wet Air Peroxide Oxidation (WAPO). Catalysts 2022. [DOI: 10.3390/catal12121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Mature Fine Tailings (MFT) generated from oil sands processing represent a growing environmental issue, as settling of these tailings’ emulsion can take decades, increasing the risk of the toxic material’s leaching if left untreated. This study uses advanced wet air oxidation (WAO) and wet air peroxide oxidation (WAPO) to break down the MFT emulsions for faster settling. Three oxidation time intervals (5, 15, and 30 min) were investigated using compressed air and hydrogen peroxide in a pressurized vessel of 3.1–3.4 MPa internal pressure and at 200 °C temperature. The results showed that the WAO process was able to break the MFT emulsion, release trapped water, and recover residual bitumen. The WAPO process was much faster in breaking the emulsion; however, the presence of extra oxidants also resulted in the degradation of the residual bitumen. The 5 min oxidation time interval was found to be sufficient in breaking emulsions, separating water from soil particles, and recovering residual bitumen under the tested conditions. The oxidation process proved to be efficient by degrading all inorganic carbon, whereas 70% of the dissolved organic carbon in the recovered water after oxidation comprised only low molecular weight biodegradable hydrocarbons. Therefore, the WAO process was capable of breaking the MFT emulsions and allowing a faster settling of these tailings, with the added benefit of recovering residual bitumen.
Collapse
|
5
|
Incorporating Industrial and Climatic Covariates into Analyses of Fish Health Indicators Measured in a Stream in Canada’s Oil Sands Region. ENVIRONMENTS 2022. [DOI: 10.3390/environments9060073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Industrial and other human activities in Canada’s oil sands region (OSR) influence the environment. However, these impacts can be challenging to separate from natural stresses in flowing waters by comparing upstream reference sites to downstream exposure locations. For example, health indicators of lake chub (Couesius plumbeus) compared between locations in the Ells River (Upper and Lower) in 2013 to 2015 and 2018 demonstrated statistical differences. To further examine the potential sources of variation in fish, we also analyzed data at sites over time. When fish captured in 2018 were compared to pooled reference years (2013–2015), results indicated multiple differences in fish, but most of the differences disappeared when environmental covariates were included in the Elastic Net (EN) regularized regression models. However, when industrial covariates were included separately in the EN, the large differences in 2018 also disappeared, also suggesting the potential influence of these covariables on the health of fish. Further ENs incorporating both environmental and industrial covariates along with other variables which may describe industrial and natural influences, such as spring or summer precipitation and summer wind speeds and distance-based penalty factors, also support some of the suspected and potential mechanisms of impact. Further exploratory analyses simulating changes from zero and the mean (industrial) activity levels using the regression equations respectively suggest effects exceeding established critical effect sizes (CES) for fish measurements may already be present or effects may occur with small future changes in some industrial activities. Additional simulations also suggest that changing regional hydrological and thermal regimes in the future may also cause changes in fish measurements exceeding the CESs. The results of this study suggest the wide applicability of the approach for monitoring the health of fish in the OSR and beyond. The results also suggest follow-up work required to further evaluate the veracity of the suggested relationships identified in this analysis.
Collapse
|
6
|
Arciszewski TJ. A re-analysis and review of elemental and polycyclic aromatic compound deposition in snow and lake sediments from Canada's Oil Sands Region integrating industrial performance and climatic variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153254. [PMID: 35065131 DOI: 10.1016/j.scitotenv.2022.153254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Much of the research from Canada's oil sands region (OSR) shows contaminants of concern (CoCs) throughout the ambient environment surrounding the industrial facilities. While there are some well-established sources of the CoCs, there is also spatial and temporal variability suggesting activity intensity, changes in technology, types and amounts of fuels combusted at the facilities, and climate may affect the results of deposition studies. This study re-analysed published data on the deposition of elements and polycyclic aromatic compounds (PACs) in snow and the sediments of some lakes by incorporating production data from facilities and climate. Using the Elastic Net (EN) regularized regression, variables describing potential associations between facility-specific activity and climate on the deposition of CoCs were identified. Among the selected variables, the combustion of delayed petroleum coke at the Suncor Basemine was associated with the deposition of CoCs, including elements in snow and in some lakes. Similarly, combustion of petroleum coke at Syncrude Mildred Lake was also identified in some models. In both cases, the effects of petroluem coke combustion are likely associated with the emission and deposition of fly ash. The mass of stored petroleum coke was not selected in snow CoC models, but the speed of the wind was a common driver for PACs. However, the mass of stockpiled petcoke was more closely associated with both elements and PACs in lake sediments. While the potential influence of other variables on the occurrence of CoCs in the OSR was also identified, including the production of crude bitumen and synthetic crude, the use of process and natural gases, temperature, and precipitation, these analyses support much of the earlier work and provides additional nuance. While more work is required, these results suggest facility-specific production and climatic data can be coupled with existing approaches to improve the identification of sources of CoCs in Canada's OSR and practices associated with their release.
Collapse
Affiliation(s)
- T J Arciszewski
- Resource Stewardship Division, Alberta Environment and Parks, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Horb EC, Wentworth GR, Makar PA, Liggio J, Hayden K, Boutzis EI, Beausoleil DL, Hazewinkel RO, Mahaffey AC, Sayanda D, Wyatt F, Dubé MG. A decadal synthesis of atmospheric emissions, ambient air quality, and deposition in the oil sands region. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:333-360. [PMID: 34676977 PMCID: PMC9299045 DOI: 10.1002/ieam.4539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 05/20/2023]
Abstract
This review is part of a series synthesizing peer-reviewed literature from the past decade on environmental monitoring in the oil sands region (OSR) of northeastern Alberta. It focuses on atmospheric emissions, air quality, and deposition in and downwind of the OSR. Most published monitoring and research activities were concentrated in the surface-mineable region in the Athabasca OSR. Substantial progress has been made in understanding oil sands (OS)-related emission sources using multiple approaches: airborne measurements, satellite measurements, source emission testing, deterministic modeling, and source apportionment modeling. These approaches generally yield consistent results, indicating OS-related sources are regional contributors to nearly all air pollutants. Most pollutants exhibit enhanced air concentrations within ~20 km of surface-mining activities, with some enhanced >100 km downwind. Some pollutants (e.g., sulfur dioxide, nitrogen oxides) undergo transformations as they are transported through the atmosphere. Deposition rates of OS-related substances primarily emitted as fugitive dust are enhanced within ~30 km of surface-mining activities, whereas gaseous and fine particulate emissions have a more diffuse deposition enhancement pattern extending hundreds of kilometers downwind. In general, air quality guidelines are not exceeded, although these single-pollutant thresholds are not comprehensive indicators of air quality. Odor events have occurred in communities near OS industrial activities, although it can be difficult to attribute events to specific pollutants or sources. Nitrogen, sulfur, polycyclic aromatic compounds (PACs), and base cations from OS sources occur in the environment, but explicit and deleterious responses of organisms to these pollutants are not as apparent across all study environments; details of biological monitoring are discussed further in other papers in this special series. However, modeling of critical load exceedances suggests that, at continued emission levels, ecological change may occur in future. Knowledge gaps and recommendations for future work to address these gaps are also presented. Integr Environ Assess Manag 2022;18:333-360. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Erin C. Horb
- Resource Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | - Gregory R. Wentworth
- Resource Stewardship DivisionAlberta Environment and ParksEdmontonAlbertaCanada
- Present address: Environmental Protection BranchEnvironment and Climate Change CanadaEdmontonAlbertaCanada
| | - Paul A. Makar
- Air Quality Research DivisionEnvironment and Climate Change CanadaTorontoOntarioCanada
| | - John Liggio
- Air Quality Research DivisionEnvironment and Climate Change CanadaTorontoOntarioCanada
| | - Katherine Hayden
- Air Quality Research DivisionEnvironment and Climate Change CanadaTorontoOntarioCanada
| | | | | | | | - Ashley C. Mahaffey
- Resource Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | - Diogo Sayanda
- Resource Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | | | | |
Collapse
|
8
|
Moradi M, Hung H, Li J, Park R, Shin C, Alexandrou N, Iqbal MA, Takhar M, Chan A, Brook JR. Assessment of Alkylated and Unsubstituted Polycyclic Aromatic Hydrocarbons in Air in Urban and Semi-Urban Areas in Toronto, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2959-2967. [PMID: 35148085 DOI: 10.1021/acs.est.1c04299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
22 alkylated polycyclic aromatic hydrocarbons (alk-PAHs) were characterized in ambient air individually for the first time in urban and semi-urban locations in Toronto, Canada. Five unsubstituted PAHs were included for comparison. Results from the measurements were used to estimate benzo[a]pyrene equivalent toxicity (BaPeq) of individual compounds in order to investigate the significance of a single compound in contributing to the overall toxic equivalency (TEQ) of air mixtures. To determine which compounds merit further investigation, BaPeq values of individual compounds were compared to the measured BaP toxicity. Our results showed that both unsubstituted and alkylated PAHs were more abundant in the urban area (38 and 30%, respectively). Benzo[a]pyrene levels at the urban location exceeded Ontario's 24 h guideline (40% of the events), and on average, it was 5 times higher than that at the semi-urban area. Gas-phase two- and three-ring compounds contributed up to 39% (urban) and 76% (semi-urban) of the TEQ of all compounds analyzed. Some alk-PAHs such as 7,12-dimethylbenzo[a]anthracene had a huge impact on the toxicity of urban air, and its BaPeq was on average 8 times higher than that of BaP. We emphasize that the toxic impact of alkylated and gaseous PAHs, which is not routinely included in many air monitoring programs, is significant and should not be neglected.
Collapse
Affiliation(s)
- Maryam Moradi
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
- Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - James Li
- Civil Engineering Department, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Richard Park
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Cecilia Shin
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Nick Alexandrou
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Mohammed Asif Iqbal
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Manpreet Takhar
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Arthur Chan
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, Ontario M5T 1P8, Canada
| |
Collapse
|
9
|
Exploring the Influence of Industrial and Climatic Variables on Communities of Benthic Macroinvertebrates Collected in Streams and Lakes in Canada’s Oil Sands Region. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying and tracking the influence of industrial activities on streams and lakes is a priority for monitoring in Canada’s oil sands region (OSR). While differences in indicators are often found in waterbodies adjacent to mining facilities, the confounding influence of natural exposures to bitumen and other stressors can affect the identification of industrial effects. However, recent work suggests metrics of industrial activity at individual facilities, including production and fuel consumption, may be used in site-specific analyses to identify influence of the industry as a whole as well as individual operations. This study further examined the potential relationships between industrial and climatic variables on benthic communities from 13 streams and 4 lakes using publicly available data from the minable region and the Elastic Net (EN) variable selection technique. From the full set of possible industrial and climate variables, the EN commonly identified the negative influence of plant and fuel use of petroleum coke at the Suncor Basemine on benthic communities in streams and lakes. The fuel/plant use of petroleum coke at Suncor likely reflects the emission and regional deposition of delayed coke fly ash. Among the other industrial variables, crude bitumen production at Syncrude Mildred Lake and other facilities, steam injection rates, and petroleum coke stockpiling were also selected for some benthic invertebrate indices at some sites. Land disturbance metrics were also occasionally selected, but the analyses largely support the predominant influence of industrial facilities via (inferred) atmospheric pathways. While climate variables were also commonly selected by EN and follow-up work is needed, this study suggests that integrating industrial performance data into analyses of biota using a site-specific approach may have broad applicability in environmental monitoring in the OSR. More specifically, the approach used here may both resolve the long-standing challenge of natural confounding influences on monitoring the status of streams in the OSR and track the influence of industrial activities in biota below critical effect sizes.
Collapse
|
10
|
Moussa SG, Staebler RM, You Y, Leithead A, Yousif MA, Brickell P, Beck J, Jiang Z, Liggio J, Li SM, Wren SN, Brook JR, Darlington A, Cober SG. Fugitive Emissions of Volatile Organic Compounds from a Tailings Pond in the Oil Sands Region of Alberta. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12831-12840. [PMID: 34524801 DOI: 10.1021/acs.est.1c02325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tailings ponds in the oil sands (OS) region in Alberta, Canada, have been associated with fugitive emissions of volatile organic compounds (VOCs) and other pollutants to the atmosphere. However, the contribution of tailings ponds to the total fugitive emissions of VOCs from OS operations remains uncertain. To address this knowledge gap, a field study was conducted in the summer of 2017 at Suncor's Pond 2/3 to estimate emissions of a suite of pollutants including 68 VOCs using a combination of micrometeorological methods and measurements from a flux tower. The results indicate that in 2017, Pond 2/3 was an emission source of 3322 ± 727 tons of VOCs including alkanes, aromatics, and oxygenated and sulfur-containing organics. While the total VOC emissions were approximately a factor of 2 higher than those reported by Suncor, the individual VOC species emissions varied by up to a factor of 12. A chemical mass balance (CMB) receptor model was used to estimate the contribution of the tailings pond to VOC pollution events in a nearby First Nations and Metis community in Fort McKay. CMB results indicate that Suncor Pond 2/3 contributed up to 57% to the total mass of VOCs measured at Fort McKay, reinforcing the importance of accurate VOC emission estimation methods for tailings ponds.
Collapse
Affiliation(s)
- Samar G Moussa
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Ralf M Staebler
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Yuan You
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Amy Leithead
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Meguel A Yousif
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Peter Brickell
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - James Beck
- Suncor Energy Inc., Calgary, Alberta T2P 3Y7, Canada
| | - Zhimei Jiang
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - John Liggio
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Shao-Meng Li
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
- College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Sumi N Wren
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Jeffrey R Brook
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
- Dalla Lana School of Public Health and Department of Chemical Engineering and Applied Chemistry, University of Toronto, 223 College Street, Toronto, Ontario M5T 1R4, Canada
| | - Andrea Darlington
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Stewart G Cober
- Air Quality Processes Research Section, Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| |
Collapse
|