1
|
Zupo R, Castellana F, Nawrot TS, Lampignano L, Bortone I, Murgia F, Campobasso G, Gruszecka Kosowska A, Giannico OV, Sardone R. Air pollutants and ovarian reserve: a systematic review of the evidence. Front Public Health 2024; 12:1425876. [PMID: 39376999 PMCID: PMC11457886 DOI: 10.3389/fpubh.2024.1425876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Background Growing evidence indicates an association between ambient air pollution and decreased human reproductive potential. This study aims to systematically review the association between air pollutants and female ovarian reserve. Methods The literature was searched in six electronic databases through June 2024. Screening the 136 articles retrieved for inclusion criteria resulted in the selection of 15 human observational studies that evaluated the effect of environmental pollutants on ovarian reserve markers. The study protocol was registered on the International Prospective Register of Systematic Reviews (PROSPERO, registration code: CRD42023474218). Results The study design of the selected studies was found to be cross-sectional (2 of 15), retrospective cohort (10 of 15), prospective cohort (2 of 15), and case-control (1 of 15). The study population was distributed as follows: Asians (53%, eight studies), Americans (33%, five studies), and Europeans (14%, two studies). The main findings showed a higher body of evidence for the environmental pollutants PM2.5, PM10, and NO2, while a low body of evidence for PM1, O3, SO2, and a very low body of evidence for benzene, formaldehyde, and benzo(a)pyrene, yet consistently showing significant inverse association data. The overall methodological quality of the selected studies was rated moderated across the 14 domains of the National Institutes of Health (NIH) toolkit. Conclusion The data suggest that increased exposure to air pollutants seems to be associated with reduced ovarian reserve, with the most substantial evidence for pollutants such as PM2.5, PM10, and NO2. However, more evidence is needed to draw conclusions about causality.
Collapse
Affiliation(s)
- Roberta Zupo
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare, Bari, Italy
| | - Fabio Castellana
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare, Bari, Italy
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health and Primary Care, Environment and Health Unit, Leuven University, Leuven, Belgium
| | | | - Ilaria Bortone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari "Aldo Moro", Bari, Italy
| | - Ferdinando Murgia
- Department of Obstetrics and Gynecology, "Miulli" General Hospital, Bari, Italy
| | | | - Agnieskza Gruszecka Kosowska
- Department of Environmental Protection, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, Al. Mickiewicza, Krakow, Poland
| | | | - Rodolfo Sardone
- Unit of Statistics and Epidemiology, Local Health Authority of Taranto, Taranto, Italy
- Department of Eye and Vision Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Deng L, Chen G, Duan T, Xie J, Huang G, Li X, Huang S, Zhang J, Luo Z, Liu C, Zhu S, He G, Dong X, Liu T, Ma W, Gong Y, Shen X, Yang P. Mixed effects of ambient air pollutants on oocyte-related outcomes: A novel insight from women undergoing assisted reproductive technology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116525. [PMID: 38852468 DOI: 10.1016/j.ecoenv.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Air pollution is widely acknowledged as a significant risk factor for human health, especially reproductive health. Nevertheless, many studies have disregarded the potentially mixed effects of air pollutants on reproductive outcomes. We performed a retrospective cohort study involving 8048 women with 9445 cycles undergoing In Vitro Fertilization (IVF) and Intracytoplasmic Sperm Injection (ICSI) in China, from 2017 to 2021. A land-use random forest model was applied to estimate daily residential exposure to air pollutants, including sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and fine particulate matter (PM2.5). Individual and joint associations between air pollutants and oocyte-related outcomes of ART were evaluated. In 90 days prior to oocyte pick-up to oocyte pick-up (period A), NO2, O3 and CO was negatively associated with total oocyte yield. In the 90 days prior to oocyte pick-up to start of gonadotropin medication (Gn start, period B), there was a negative dose-dependent association of exposure to five air pollutants with total oocyte yield and mature oocyte yield. In Qgcomp analysis, increasing the multiple air pollutants mixtures by one quartile was related to reducing the number of oocyte pick-ups by -2.00 % (95 %CI: -2.78 %, -1.22 %) in period A, -2.62 % (95 %CI: -3.40 %, -1.84 %) in period B, and -0.98 % (95 %CI: -1.75 %, -0.21 %) in period C. During period B, a 1-unit increase in the WQS index of multiple air pollutants exposure was associated with fewer number of total oocyte (-1.27 %, 95 %CI: -2.16 %, -0.36 %) and mature oocyte (-1.42 %, 95 %CI: -2.41 %, -0.43 %). O3 and NO2 were major contributors with adverse effects on the mixed associations. Additionally, period B appears to be the susceptible window. Our study implies that exposure to air pollution adversely affects oocyte-related outcomes, which raises concerns about the potential adverse impact of air pollution on women's reproductive health.
Collapse
Affiliation(s)
- Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Guimin Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, PR China
| | - Tiantian Duan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Guangtong Huang
- School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Songyi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Jinglei Zhang
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Zicong Luo
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Chaoqun Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Yajie Gong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China.
| | - Xiaoting Shen
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China.
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangdong, Guangzhou 510632, PR China.
| |
Collapse
|
3
|
Tong M, Lu H, Xu H, Fan X, Zhang JJ, Kelly FJ, Gong J, Han Y, Li P, Wang R, Li J, Zhu T, Xue T. Reduced human fecundity attributable to ambient fine particles in low- and middle-income countries. ENVIRONMENT INTERNATIONAL 2024; 189:108784. [PMID: 38852259 DOI: 10.1016/j.envint.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5) has been associated with reduced human fecundity. However, the attributable burden has not been estimated for low- and middle-income countries (LMICs), where the exposure-response function between PM2.5 and the infertility rate has been insufficiently studied. OBJECTIVE This study examined the associations between long-term exposure to PM2.5 and human fecundity indicators, namely the expected time to pregnancy (TTP) and 12-month infertility rate (IR), and then estimated PM2.5-attributable burden of infertility in LMICs. METHODS We analyzed 164,593 eligible women from 100 Demographic and Health Surveys conducted in 49 LMICs between 1999 and 2021. We assessed PM2.5 exposures during the 12 months before a pregnancy attempt using the global satellite-derived PM2.5 estimates produced by Atmospheric Composition Analysis Group (ACAG). First, we created a series of pseudo-populations with balanced covariates, given different levels of PM2.5 exposure, using a matching approach based on the generalized propensity score. For each pseudo-population, we used 2-stage generalized Gamma models to derive TTP or IR from the probability distribution of the questionnaire-based duration time for the pregnancy attempt before the interview. Second, we used spline regressions to generate nonlinear PM2.5 exposure-response functions for each of the two fecundity indicators. Finally, we applied the exposure-response functions to estimate number of infertile couples attributable to PM2.5 exposure in 118 LMICs. RESULTS Based on the Gamma models, each 10 µg/m3 increment in PM2.5 exposure was associated with a TTP increase by 1.7 % (95 % confidence interval [CI]: -2.3 %-6.0 %) and an IR increase by 2.3 % (95 %CI: 0.6 %-3.9 %). The nonlinear exposure-response function suggested a robust effect of an increased IR for high-concentration PM2.5 exposure (>75 µg/m3). Based on the PM2.5-IR function, across the 118 LMICs, the number of infertile couples attributable to PM2.5 exposure exceeding 35 µg/m3 (the first-stage interim target recommended by the World Health Organization global air quality guidelines) was 0.66 million (95 %CI: 0.061-1.43), accounting for 2.25 % (95 %CI: 0.20 %-4.84 %) of all couples affected by infertility. Among the 0.66 million, 66.5 % were within the top 10 % high-exposure infertile couples, mainly from South Asia, East Asia, and West Africa. CONCLUSION PM2.5 contributes significantly to human infertility in places with high levels of air pollution. PM2.5-pollution control is imperative to protect human fecundity in LMICs.
Collapse
Affiliation(s)
- Mingkun Tong
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China
| | - Hong Lu
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China
| | - Huiyu Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xinguang Fan
- Department of Sociology, Peking University, Beijing, China
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Frank J Kelly
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yiqun Han
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Pengfei Li
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang, China
| | - Ruohan Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jiajianghui Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
4
|
Tian T, Li Q, Liu F, Jiang H, Yang R, Zhao Y, Kong F, Wang Y, Long X, Qiao J. Alkali and alkaline earth elements in follicular fluid and the likelihood of diminished ovarian reserve in reproductive-aged women: a case‒control study. J Ovarian Res 2024; 17:108. [PMID: 38762521 PMCID: PMC11102265 DOI: 10.1186/s13048-024-01414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Imbalances in alkali elements (AEs) and alkaline earth elements (AEEs) cause reproductive disorders. However, it remains unclear whether AEs/AEEs in follicular fluid have a relationship with the serious reproductive disorder known as diminished ovarian reserve (DOR). METHODS A nested case‒control study was carried out in China. Follicular fluid samples from 154 DOR patients and 154 controls were collected and assessed for nine AEs/AEE levels. Both the mixed and single effects of the elements on DOR were estimated with a Bayesian kernel machine (BKMR) and logistic regressions. RESULTS The DOR group had higher median concentrations of Li, Na, and K in follicular fluid (all P values < 0.05). The logistic regression showed that compared with their lowest tertile, the high tertiles of K [OR:2.45 (1.67-4.43)], Li [OR: 1.89 (1.06-3.42)], and Cs [OR: 1.97 (1.10-3.54)] were significantly associated with the odds of DOR. The BKMR model reported that the DOR likelihood increased linearly across the 25th through 75th percentiles of the nine-AE/AEE mixture, while the AE group contributed more to the overall effect. CONCLUSION This study revealed an association in which the likelihood of DOR increased with higher overall concentrations of AE/AEEs in follicular fluid. Among the nine detected elements, K, Li, and Cs exhibited significant individual associations with DOR. We provide new clues for the environmental factors on female fertility decline. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Qin Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Fang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Huahua Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Fei Kong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Yuanyuan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
5
|
Namvar Z, Ramezani Tehrani F, Shahsavani A, Khodagholi F, Hashemi SS, Binayi F, Salimi M, Abdollahifar MA, Hopke PK, Mohseni-Bandpei A. Reduction of ovarian reserves and activation of necroptosis to in vivo air pollution exposures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2052-2066. [PMID: 37204020 DOI: 10.1080/09603123.2023.2210109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/30/2023] [Indexed: 05/20/2023]
Abstract
We investigated the association between air pollution and changes in ovarian follicles, anti-mullerian hormone (AMH) levels, the occurrence of necroptosis cell death by activation of receptor-interacting protein kinase 3 (RIPK3) and, the activation of mixed lineage kinase domain-like (MLKL) proteins. Forty-two female Wistar rats were divided into three groups of 14 each, which were exposed to real-ambient air, filtered air and purified air (control) in two periods of 3 and 5 months. The results showed that the number of ovarian follicles decreased in the group exposed to real-ambient air versus the control group (P < 0.0001). The trend of age-related AMH changes with respect to exposure to air pollutants was affected and its levels decreased after 3 months of exposure. The MLKL increased in the group exposed to the real-ambient air compared to the control group (P = 0.033). Apparently long-term exposure to air pollution can reduce ovarian reserves.
Collapse
Affiliation(s)
- Zahra Namvar
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Saeed Hashemi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Binayi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Salimi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Anoushiravan Mohseni-Bandpei
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Liu S, Liu L, Ye X, Fu M, Wang W, Zi Y, Zeng X, Yu K. Ambient ozone and ovarian reserve in Chinese women of reproductive age: Identifying susceptible exposure windows. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132579. [PMID: 37738852 DOI: 10.1016/j.jhazmat.2023.132579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Little is known about the association of ambient ozone with ovarian reserve. Based on a retrospective cohort study of 6008 women who attended a fertility center in Hubei, China, during 2018-2021, we estimated ozone exposure levels by calculating averages during the development of follicles (2-month [W1], 4-month [W2], 6-month [W3]) and 1-year before measurement (W4) according to Tracking Air Pollution in China database. We used multivariate logistic regression and linear regression models to investigate association of ozone exposure with anti-müllerian hormone (AMH), the preferred indicator of ovarian reserve. Each 10 μg/m3 increases in ozone were associated with 2.34% (0.68%, 3.97%), 2.08% (0.10%, 4.01%), 4.20% (1.67%, 6.67%), and 8.91% (5.79%, 11.93%) decreased AMH levels during W1-W4; AMH levels decreased by 15.85%, 11.90%, 16.92% in the fourth quartile during W1, W3, and W4 when comparing the extreme quartile, with significant exposure-response relationships during W4 (P < 0.05). Ozone exposure during W1 was positively associated with low AMH. Additionally, we detected significant effect modification by age, body mass index, and temperature in ozone-associated decreased AMH levels. Our findings highlight the potential adverse impact of ozone pollution on female ovarian reserve, especially during the secondary to small antral follicle stage and 1-year before measurement.
Collapse
Affiliation(s)
- Shuangyan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lin Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Ye
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingjian Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunhua Zi
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinliu Zeng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kuai Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Wieczorek K, Szczęsna D, Radwan M, Radwan P, Polańska K, Kilanowicz A, Jurewicz J. Exposure to air pollution and ovarian reserve parameters. Sci Rep 2024; 14:461. [PMID: 38172170 PMCID: PMC10764889 DOI: 10.1038/s41598-023-50753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Exposure to air pollution is associated with many different health effects, especially cardiovascular and respiratory diseases. Additionally, highly significant links between exposure to air pollution and fertility, particularly male fertility was observed, however the studies regarding exposure to selected air pollutants and female fertility assessed by ovarian reserve are rare. Hence, the main aim of the study was to analyze relationship between exposure to ambient air pollution and ovarian reserve parameters among Polish women. The study population consisted of 511 women, who attended to infertility clinic because of diagnostic purposes. Participants filled in the questionnaire about social-demographic, lifestyle and health factors. Infertility specialists assessed ovarian parameters such as: antral follicle count (AFC) and concentration of hormones: Anti-Müllerian hormone (AMH), follicle stimulating hormone (FSH) and estradiol (E2). The air pollutants level (sulfur dioxide, nitrogen dioxide, carbon monoxide, ozone, particulate matters) were obtained via National Environmental Protection Inspectorate database. Significant negative association between PM2,5 and AHM (p = 0.032) as well as AFC (p = 0.044) was observed. Moreover, SO2 concentrations decrease AFC (p = 0.038). The results also suggest that PM10, PM2.5, SO2 exposure on antral follicle count may be more pronounced among women with a female factor infertility diagnosis. Additionally, exposure to PM2.5 and NOx on AFC and AMH was stronger among older women (> 35 years of age). To conclude, the present study found that air pollution could lead to decrease in follicle antral count and Anti-Müllerian hormone level, especially exposure to PM2,5 and SO2 thus the evidence suggest negative impact to ovarian reserve.
Collapse
Affiliation(s)
- Katarzyna Wieczorek
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St; 91-348, Łódź, Poland.
| | - Dorota Szczęsna
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St; 91-348, Łódź, Poland
| | - Michał Radwan
- Department of Gynecology and Reproduction, "Gameta" Hospital, 34/36 Rudzka St; 95-030, Rzgów, Poland
- Faculty of Health Sciences, Mazovian State University in Płock, 2 Dabrowskiego Sq; 09-402, Plock, Poland
| | - Paweł Radwan
- Department of Gynecology and Reproduction, "Gameta" Hospital, 34/36 Rudzka St; 95-030, Rzgów, Poland
- Department of Gynecology and Reproduction, "Gameta" Health Centre, 7 Cybernetyki St; 02-677, Warsaw, Poland
- Department of Gynecology and Reproduction, "Gameta" Clinic, Kielce-Regional Science -Technology Centre, 45 Podzamcze St; 26-060, Chęciny, Poland
| | - Kinga Polańska
- Department of Paediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Lodz, Piłsudskiego 71; 90-329, Lodz, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1; 90-151, Łódź, Poland
| | - Joanna Jurewicz
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St; 91-348, Łódź, Poland.
| |
Collapse
|
8
|
Wang X, Zhang S, Yan H, Ma Z, Zhang Y, Luo H, Yang X. Association of exposure to ozone and fine particulate matter with ovarian reserve among women with infertility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122845. [PMID: 37926414 DOI: 10.1016/j.envpol.2023.122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Evidence linking diminished ovarian reserve, a significant cause of female infertility, and exposure to particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) or O3 exposure remains a critical knowledge gap in female fertility. This study investigated the association between ambient PM2.5, O3 pollution, and anti-Müllerian hormone (AMH), a sensitive marker of ovarian reserve, in reproductive-aged Chinese women. We enrolled 2212 women with spontaneous menstrual cycles who underwent AMH measurements at a reproductive medicine center between 2018 and 2021. The daily mean concentrations of outdoor PM2.5 and O3 were estimated using a validated spatiotemporal model, followed by matching the participants' residential addresses. Three exposure periods were designed according to AMH expression patterns during follicle development. A generalized linear model was used to investigate changes in AMH associated with air pollution. The results showed a mean AMH level of 3.47 ± 2.61 ng/mL. During the six months from primary to early antral follicle stage (Period 1), each 10 μg/m3 increase in PM2.5 and O3 exposure was associated with AMH changes of -0.21 (95% confidence interval [CI]: -0.48, 0.06) ng/mL and -0.31 (95% CI: -0.50, -0.12) ng/mL, respectively. Further analyses indicated that the reduced ovarian reserve measured by AMH level was only significantly associated with PM2.5 exposure during follicle development from the primary to preantral follicle stage (Period 2) but was significantly associated with O3 exposure during Periods 1, 2, and 3. These observations were robust in the dual-pollutant model considering co-exposure to PM2.5 and O3. The results indicated an inverse association between ovarian reserve and ambient O3 exposure and suggested distinct susceptibility windows for O3 and PM2.5 for reduced ovarian reserve. These findings highlight the need to control ambient air pollution to reduce invisible risks to women's fertility, especially at high O3 concentrations.
Collapse
Affiliation(s)
- Xinyan Wang
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Maternal Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, No. 156 Nankai Third Road, Tianjin 300100, China
| | - Shuai Zhang
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Maternal Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, No. 156 Nankai Third Road, Tianjin 300100, China
| | - Huihui Yan
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Maternal Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, No. 156 Nankai Third Road, Tianjin 300100, China
| | - Zhao Ma
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yunshan Zhang
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Maternal Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, No. 156 Nankai Third Road, Tianjin 300100, China
| | - Haining Luo
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Maternal Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, No. 156 Nankai Third Road, Tianjin 300100, China.
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
9
|
LaPointe S, Lee JC, Nagy ZP, Shapiro DB, Chang HH, Wang Y, Russell AG, Hipp HS, Gaskins AJ. Ambient traffic related air pollution in relation to ovarian reserve and oocyte quality in young, healthy oocyte donors. ENVIRONMENT INTERNATIONAL 2024; 183:108382. [PMID: 38103346 PMCID: PMC10871039 DOI: 10.1016/j.envint.2023.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Studies in mice and older, subfertile women have found that air pollution exposure may compromise female reproduction. Our objective was to evaluate the effects of air pollution on ovarian reserve and outcomes of ovarian stimulation among young, healthy females. We included 472 oocyte donors who underwent 781 ovarian stimulation cycles at a fertility clinic in Atlanta, Georgia, USA (2008-2019). Antral follicle count (AFC) was assessed with transvaginal ultrasonography and total and mature oocyte count was assessed following oocyte retrieval. Ovarian sensitivity index (OSI) was calculated as the total number of oocytes divided by total gonadotrophin dose × 1000. Daily ambient exposure to nitric oxide (NOx), carbon monoxide (CO), and particulate matter ≤ 2.5 (PM2.5) was estimated using a fused regional + line-source model for near-surface releases at a 250 m resolution based on residential address. Generalized estimating equations were used to evaluate the associations of an interquartile range (IQR) increase in pollutant exposure with outcomes adjusted for donor characteristics, census-level poverty, and meteorological factors. The median (IQR) age among oocyte donors was 25.0 (5.0) years, and 31% of the donors were racial/ethnic minorities. The median (IQR) exposure to NOx, CO, and PM2.5 in the 3 months prior to stimulation was 37.7 (32.0) ppb, 612 (317) ppb, and 9.8 (2.9) µg/m3, respectively. Ambient air pollution exposure in the 3 months before AFC was not associated with AFC. An IQR increase in PM2.5 in the 3 months before AFC and during stimulation was associated with -7.5% (95% CI -14.1, -0.4) and -6.4% (95% CI -11.0, -1.6) fewer mature oocytes, and a -1.9 (95% CI -3.2, -0.5) and -1.0 (95% CI -1.8, -0.2) lower OSI, respectively. Our results suggest that lowering the current 24-h PM2.5 standard in the US to 25 µg/m3 may still not adequately protect against the reprotoxic effects of short-term PM2.5 exposure.
Collapse
Affiliation(s)
- Sarah LaPointe
- Department of Epidemiology, Emory University Rollins School of Public Heath, Atlanta, GA, United States
| | - Jaqueline C Lee
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Zsolt P Nagy
- Reproductive Biology Associates, Sandy Springs, GA, United States
| | - Daniel B Shapiro
- Reproductive Biology Associates, Sandy Springs, GA, United States
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Yifeng Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Heather S Hipp
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Heath, Atlanta, GA, United States.
| |
Collapse
|
10
|
Fang L, Ma C, Ma Y, Zhao H, Peng Y, Wang G, Chen Y, Zhang T, Xu S, Cai G, Cao Y, Pan F. Associations of long-term exposure to air pollution and green space with reproductive hormones among women undergoing assisted reproductive technology: A longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166941. [PMID: 37716676 DOI: 10.1016/j.scitotenv.2023.166941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Studies investigating the association between long-term exposure to air pollution (AP)/green space and female reproductive hormones are still limited. Furthermore, their interactive effects remain unclear. Our study sought to explore the separate and interactive impacts of AP/green space on reproductive hormones among women undergoing assisted reproductive technology. We measured estradiol (E2), progesterone (P), testosterone (T), and follicle-stimulating hormone (FSH) from the longitudinal assisted reproduction cohort in Anhui, China. The annual mean concentrations of air pollutants were calculated at the residential level. Normalized Difference Vegetation Index (NDVI) within 500-m represented green space exposure. To assess the effect of AP/green space on hormones, we employed multivariable linear mixed-effect models. Our results showed that each one-interquartile range (IQR) increment in particulate matter (PM2.5 and PM10) and sulfur dioxide (SO2) was associated with -0.03[-0.05, -0.01], -0.03[-0.05, -0.02], and -0.03[-0.05, -0.01] decrease in P. An IQR increase in PM2.5, PM10, SO2, and carbon monoxide (CO) was associated with a -0.16[-0.17, -0.15], -0.15[-0.16, -0.14], -0.15[-0.16, -0.14], and -0.12[-0.13, -0.11] decrease in T and a -0.31[-0.35, -0.27], -0.30[-0.34, -0.26], -0.26[-0.30, -0.22], and -0.21[-0.25, -0.17] decrease in FSH. Conversely, NDVI500-m was associated with higher levels of P, T, and FSH, with β of 0.05[0.02, 0.08], 0.06[0.04, 0.08], and 0.07[0.00, 0.14]. Moreover, we observed the "U" or "J" exposure-response curves between PM2.5, PM10, and SO2 concentrations and E2 and P levels, as well as "inverted-J" curves between NDVI500-m and T and FSH levels. Furthermore, we found statistically significant interactions of SO2 and NDVI500-m on E2 and P as well as CO and NDVI500-m on E2. These findings indicated that green space might mitigate the negative effects of SO2 on E2 and P, as well as the effect of CO on E2. Future research is needed to determine these findings and underlying mechanisms.
Collapse
Affiliation(s)
- Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Cong Ma
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yongzheng Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Guosheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
11
|
Liu S, Zhao J, Ye X, Fu M, Zhang K, Wang H, Zou Y, Yu K. Fine particulate matter and its constituent on ovarian reserve: Identifying susceptible windows of exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166744. [PMID: 37659528 DOI: 10.1016/j.scitotenv.2023.166744] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Little is known about the associations of exposure to fine particulate matter (PM2.5) and its constituents with ovarian reserve, and the potential susceptible window of exposure remains unclear. METHODS We performed a retrospective cohort study of 5189 women who attended a fertility center in Hubei, China, during 2019-2022, and estimated concentrations of PM2.5 and its major constituents during the development of follicles (4th-6th month [W1], 0-4th month [W2], 0-6th month [W3]) and 1-year before measurement (W4) based on Tracking Air Pollution in China database. We used multivariable linear regression and logistic regression models to examine the associations of PM2.5 and its constituent exposures with anti-Müllerian hormone (AMH), the preferred indicator of ovarian reserve. RESULTS We observed significantly decreased AMH levels associated with increasing PM2.5 concentrations, with the percent changes (95 % confidence intervals [CIs]) of 1.99 % (0.24 %-3.71 %) during W1 and 3.99 % (0.74 %-7.15 %) during W4 for per 10 μg/m3 increases in PM2.5.When PM2.5 exposure levels were equal to 50th percentile (32.6-42.3 μg/m3) or more, monotonically decreased AMH levels and increased risks of low AMH were seen with increasing PM2.5 concentrations during W1 and W4 (P < 0.05). Black carbon (BC), ammonium (NH4+), nitrate (NO3-), and organic matter (OM) during W1, and NH4+, NO3-, as well as sulfate (SO42-) during W4 were significantly associated with decreased AMH. Moreover, PM2.5 and SO42- exposures during W4 were positively associated with low AMH. Additionally, the associations were stronger among women aged <35 years, lived in urban regions, or measured AMH in cold-season (P for interaction <0.05). CONCLUSION PM2.5 and specific chemical components (particularly NH4+, NO3-, and SO42-) exposure during the secondary to antral follicle stage and 1-year before measurement were associated with diminished ovarian reserve (DOR), indicating the adverse impact of PM2.5 and its constituent exposures on female reproductive potential.
Collapse
Affiliation(s)
- Shuangyan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Zhao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Ye
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingjian Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kexin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Zou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Kuai Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Barrett ES, Sharghi S, Thurston SW, Sobolewski Terry M, Loftus CT, Karr CJ, Nguyen RH, Swan SH, Sathyanarayana S. Associations of Exposure to Air Pollution during the Male Programming Window and Mini-Puberty with Anogenital Distance and Penile Width at Birth and at 1 Year of Age in the Multicenter U.S. TIDES Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117001. [PMID: 37966231 PMCID: PMC10648757 DOI: 10.1289/ehp12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Ambient air pollution may be a developmental endocrine disruptor. In animal models, gestational and perinatal exposure to diesel exhaust and concentrated particulate matter alters anogenital distance (AGD), a marker of prenatal androgen activity, in both sexes. Little is known in humans. OBJECTIVES We examined exposure to fine particulate matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) in relation to human AGD at birth and at 1 year of age, focusing on exposures during critical windows of reproductive development: the male programming window (MPW; gestational weeks 8-14) and mini-puberty (postnatal months 1-3). METHODS The Infant Development and Environment Study (TIDES) recruited first trimester pregnant women (n = 687 ) at four U.S. sites (Minneapolis, Minnesota; Rochester, New York; San Francisco, California; and Seattle, Washington) from 2010 to 2012. We measured anus to clitoris (AGD-AC) and anus to fourchette (AGD-AF) in female infants at birth; in males, we measured anus to penis (AGD-AP), anus to scrotum (AGD-AS), and penile width at birth and at 1 year of age. Using advanced spatiotemporal models, we estimated maternal exposure to PM 2.5 and NO 2 in the MPW and mini-puberty. Covariate-adjusted, sex-stratified linear regression models examined associations between PM 2.5 and NO 2 and AGD. RESULTS In males, a 1 - μ g / m 3 increase in PM 2.5 exposure during the MPW was associated with shorter AGD at birth, but a longer AGD at 1 year of age (e.g., birth AGD-AP: β = - 0.35 mm ; 95% CI: - 0.62 , - 0.07 ; AGD-AS: β = 0.37 mm ; 95% CI: 0.02, 0.73). Mini-pubertal PM 2.5 exposure was also associated with shorter male AGD-AP (β = - 0.50 mm ; 95% CI: - 0.89 , - 0.11 ) at 1 year of age. Although not associated with male AGD measures, 1 -ppb increases in NO 2 exposure during the MPW (β = - 0.07 mm ; 95% CI: - 0.02 , - 0.12 ) and mini-puberty (β = - 0.04 mm ; 95% CI: - 0.08 , 0.01) were both associated with smaller penile width at 1 year of age. Results were similar in multipollutant models, where we also observed that in females AGD-AC was inversely associated with PM 2.5 exposure, but positively associated with NO 2 exposure. DISCUSSION PM 2.5 and NO 2 exposures during critical pre- and postnatal windows may disrupt reproductive development. More work is needed to confirm these novel results and clarify mechanisms. https://doi.org/10.1289/EHP12627.
Collapse
Affiliation(s)
- Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Sima Sharghi
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sally W. Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Marissa Sobolewski Terry
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Ruby H.N. Nguyen
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shanna H. Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Zhu Q, Li Y, Ma J, Ma H, Liang X. Potential factors result in diminished ovarian reserve: a comprehensive review. J Ovarian Res 2023; 16:208. [PMID: 37880734 PMCID: PMC10598941 DOI: 10.1186/s13048-023-01296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
The ovarian reserve is defined as the quantity of oocytes stored in the ovary or the number of oocytes that can be recruited. Ovarian reserve can be affected by many factors, including hormones, metabolites, initial ovarian reserve, environmental problems, diseases, and medications, among others. With the trend of postponing of pregnancy in modern society, diminished ovarian reserve (DOR) has become one of the most common challenges in current clinical reproductive medicine. Attributed to its unclear mechanism and complex clinical features, it is difficult for physicians to administer targeted treatment. This review focuses on the factors associated with ovarian reserve and discusses the potential influences and pathogenic factors that may explain the possible mechanisms of DOR, which can be improved or built upon by subsequent researchers to verify, replicate, and establish further study findings, as well as for scientists to find new treatments.
Collapse
Affiliation(s)
- Qinying Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jianhong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hao Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, 730000, Lanzhou, China.
| |
Collapse
|
14
|
Génard-Walton M, Warembourg C, Duros S, Ropert-Bouchet M, Lefebvre T, Guivarc'h-Levêque A, Le Martelot MT, Jacquemin B, Cordier S, Costet N, Multigner L, Garlantézec R. Heavy metals and diminished ovarian reserve: single-exposure and mixture analyses amongst women consulting in French fertility centres. Reprod Biomed Online 2023; 47:103241. [PMID: 37451971 DOI: 10.1016/j.rbmo.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023]
Abstract
RESEARCH QUESTION Do heavy metals affect the risk of diminished ovarian reserve (DOR) in women of reproductive age? DESIGN A total of 139 cases and 153 controls were included between 2016 and 2020. The participants were aged between 18 and 40 years and attended consultations for couple infertility in one of four fertility centres in western France. Cases of DOR were defined as women with an antral follicle count less than 7, anti-Müllerian hormone levels 1.1 ng/ml or less, or both. Controls were frequency matched on age groups and centres, and were women with normal ovarian reserve evaluations, no malformations and menstrual cycles between 26 and 35 days. Heavy metals (lead, mercury, cadmium and chromium) were measured in whole blood at inclusion. Single-exposure associations were examined with multivariable logistic regressions adjusted on potential confounders. Mixture effects were investigated with quantile g-computation and Bayesian kernel machine regression (BKMR). RESULTS Chromium as a continuous exposure was significantly associated with DOR in unadjusted models (OR 2.07, 95% CI 1.04 to 4.13) but the association was no longer significant when confounders were controlled for (adjusted OR 2.75, 95% CI 0.88 to 8.60). Similarly, a statistically significant association was observed for the unadjusted second tercile of cadmium exposure (OR 1.87, 95% CI 1.06 to 3.30); however, this association was no longer statistically significant after adjustment. None of the other associations tested were statistically significant. Quantile g-computation and BKMR both yielded no significant change of risk of DOR for the mixture of metals, with no evidence of interaction. CONCLUSIONS Weak signals that some heavy metals could be associated with DOR were detected. These findings should be replicated in other studies.
Collapse
Affiliation(s)
- Maximilien Génard-Walton
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Charline Warembourg
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Solène Duros
- Reproductive Medicine, CHU Rennes, 35200 Rennes, France
| | | | | | | | | | - Bénédicte Jacquemin
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Sylvaine Cordier
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Nathalie Costet
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Luc Multigner
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Ronan Garlantézec
- Université de Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
15
|
Tian T, Hao Y, Wang Y, Xu X, Long X, Yan L, Zhao Y, Qiao J. Mixed and single effects of endocrine disrupting chemicals in follicular fluid on likelihood of diminished ovarian reserve: A case-control study. CHEMOSPHERE 2023; 330:138727. [PMID: 37086983 DOI: 10.1016/j.chemosphere.2023.138727] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/10/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are a group of the most widely spread pollutants. Their impacts on reproductive health have become public concerns. Diminished ovarian reserve (DOR) is a disorder of ovarian function. Associations between EDC and DOR have been inconsistent. Very little research investigated the joint effects of multiple EDCs. Here, we performed a case-control study among 64 DOR women and 86 controls. Twenty-one EDC chemicals were assessed in follicular fluid, including parabens, phenols, phthalates and poly-fluoroalkyl substances. Both mixed and single effects of EDCs on DOR were evaluated and validated with a Bayesian kernel machine and logistic regressions. We found that the likelihood of DOR significantly increased with rising levels of the 21-EDC mixture, with an odds ratio (OR) and 95% confidence interval (CI) of 2.12 (1.17-3.83) for the 75th percentile compared to its median level. The overall effect was higher than effects of each subgroup. BP4, MECPP, and PFHxA were driving the association to the mixture, and their single effects were validated, with individual ORs of 8.25 (95%CI:3.45-12.21), 1.92 (95%CI:1.02-4.09), and 1.84 (95%CI:1.08-3.86), respectively. In conclusion, we provided new pollutant markers for DOR and emphasized the importance of the effects of EDC mixtures on female reproductive health.
Collapse
Affiliation(s)
- Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Yongxiu Hao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Yuanyuan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China; Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China; Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China; Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, 100191, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinery Studies Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Guo L, Lin H, Li H, Jin X, Zhao L, Li P, Xu N, Xu S, Fang J, Wu S, Liu Q. Exposure of ambient PM 2.5 during gametogenesis period affects the birth outcome: Results from the project ELEFANT. ENVIRONMENTAL RESEARCH 2023; 220:115204. [PMID: 36592810 DOI: 10.1016/j.envres.2022.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/02/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Various environmental and behavioural factors influence neonatal health. Gamete formation (gametogenesis) is a crucial period which affects embryo development and neonatal health and ambient air pollution exposure at this stage may lead to an adverse birth outcome. Previous epidemiological and toxicological research demonstrated a strong association between maternal ambient air pollution exposure and adverse birth outcomes. However, the joint exposure-outcome of paternal exposure (76 days before the last menstruation and 14 days after the last menstruation) and maternal exposure (14 days after the last menstruation) when exploring the mechanism of the influence of air pollutants on pregnancy outcome and neonatal health remains unexplored. Here, in the Project Environmental and LifEstyle FActors iN metabolic health throughout life-course Trajectories (ELEFANT), we collected the data of 10,960 singleton pregnant women with 24-42 completed gestational weeks and included them in this study. A multinominal logistic regression model was applied to investigate the association between adverse birth outcomes and ambient PM2.5 exposure levels during spermatogenesis and oogenesis. Results from the binary classification of ambient PM2.5 exposure showed that the risk of abnormal birthweight was significantly greater when ambient PM2.5 exposure was both higher during spermatogenesis and oogenesis, with RRs of 1.86 (95% CI: 1.02, 3.39). The risk of macrosomia (RR: 1.88 (95% CI: 1.13, 3.12)) increased significantly when ambient PM2.5 levels were higher during spermatogenesis. Primiparity and primigravity are more likely to be influenced by higher ambient PM2.5 levels during spermatogenesis. In conclusion, more attention should be paid to higher exposure level of ambient PM2.5 during spermatogenesis.
Collapse
Affiliation(s)
- Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Huishu Lin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Hongyu Li
- Office for National Clinical Research Center for Geriatric Diseases, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Xiaobin Jin
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Penghui Li
- Department of Environmental Science, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Naiwei Xu
- Department of Operation Management, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Song Xu
- Department of Operation Management, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junkai Fang
- Tianjin Healthcare Affair Center, Tianjin, 300041, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shanxi, China.
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
17
|
Pang L, Yu W, Lv J, Dou Y, Zhao H, Li S, Guo Y, Chen G, Cui L, Hu J, Zhao Y, Zhao Q, Chen ZJ. Air pollution exposure and ovarian reserve impairment in Shandong province, China: The effects of particulate matter size and exposure window. ENVIRONMENTAL RESEARCH 2023; 218:115056. [PMID: 36521537 DOI: 10.1016/j.envres.2022.115056] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lack of evidence exists on whether air pollution exposure may affect ovarian reserve, especially for Chinese women. OBJECTIVES To explore the association between exposure to various air pollutants and anti-Müllerian hormone (AMH), a predictor of ovarian reserve, over different exposure windows in Shandong Province, China. METHODS We enrolled 18,878 women who had AMH measurements in the Center for Reproductive Medicine, Shandong University during 2010-2019. Daily average concentrations of ambient particulate matter with diameters ≤1 μm/2.5 μm/10 μm (PM1, PM2.5, and PM10), nitrogen dioxide (NO2) and ozone (O3) were developed at a spatial resolution of 0.01° × 0.01°, and assigned to the residential addresses. Three exposure windows were considered, i.e., the process from primary to small antral follicle stage (W1), from primary to secondary follicle stage (W2), and from secondary to small antral follicle stage (W3). The air pollution-AMH association was fitted using the multivariable linear mixed effect model with adjustment for potential confounders. Stratified analyses were performed by age group, overweight status, residential region, and educational level. RESULTS The level of AMH changed by -8.8% (95% confidence interval (CI): -12.1%, -5.3%), -2.1% (95% CI: -3.5%, -0.6%), -1.9% (95% CI: -3.3%, -0.5%), and -4.5% (95% CI: -7.1%, -1.9%) per 10 μg/m3 increase in PM1, PM2.5, PM10, and NO2, respectively, during W1. The effect estimates were significant during W2 for PM1, PM2.5 and NO2 while minimal association was observed in W3. Greater vulnerability for certain air pollutants were observed for women who lived in inland areas and were less educated. CONCLUSIONS We found that ovarian reserve was negatively associated with air pollution exposure for women, particularly from the primary to secondary follicle stage. The effect estimate increased by the reduction in the diameter of PMs, which also varied across population sub-groups.
Collapse
Affiliation(s)
- Lihong Pang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Wenhao Yu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiale Lv
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Yunde Dou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Linlin Cui
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Jingmei Hu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Yueran Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
| |
Collapse
|
18
|
Gutvirtz G, Sheiner E. Airway pollution and smoking in reproductive health. Best Pract Res Clin Obstet Gynaecol 2022; 85:81-93. [PMID: 36333255 DOI: 10.1016/j.bpobgyn.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/04/2022] [Indexed: 12/14/2022]
Abstract
Environmental exposure refers to contact with chemical, biological, or physical substances found in air, water, food, or soil that may have a harmful effect on a person's health. Almost all of the global population (99%) breathe air that contains high levels of pollutants. Smoking is one of the most common forms of recreational drug use and is the leading preventable cause of morbidity and mortality worldwide. The small particles from either ambient (outdoor) pollution or cigarette smoke are inhaled to the lungs and quickly absorbed into the bloodstream. These substances can affect virtually every organ in our body and have been associated with various respiratory, cardiovascular, endocrine, and also reproductive morbidities, including decreased fertility, adverse pregnancy outcomes, and offspring long-term morbidity. This review summarizes the latest literature reporting the reproductive consequences of women exposed to ambient (outdoor) air pollution and cigarette smoking.
Collapse
Affiliation(s)
- Gil Gutvirtz
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Soroka University Medical Center (SUMC), Department of Obstetrics and Gynecology B, Beer-Sheva, Israel.
| | - Eyal Sheiner
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Soroka University Medical Center (SUMC), Department of Obstetrics and Gynecology B, Beer-Sheva, Israel
| |
Collapse
|