1
|
He C, Li Y, Zhou Z, Wei Y, Zhu Y, Han Y, Li Y, Yang R, Xu K. The role of neuropeptide prothoracicotropic hormone (PTTH) - Torso in pyriproxyfen-induced larval-pupal abnormal metamorphosis in silkworms. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106139. [PMID: 39477593 DOI: 10.1016/j.pestbp.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024]
Abstract
The neuropeptide prothoracicotropic hormone (PTTH) plays a key role in regulating ecdysone synthesis and promoting insect metamorphosis. Pyriproxyfen is a juvenile hormone analogue. We previously reported that pyriproxyfen disrupts ecdysone secretion and inhibits larval-pupal metamorphosis in silkworms. However, the specific molecular mechanisms by which pyriproxyfen interferes with ecdysone signaling remain to be elucidated. Herein, the RNA-seq analysis on the ecdysone-secretion organ prothoracic gland (PG) was conducted following pyriproxyfen exposure. A total of 3774 differentially expressed genes (DEGs) were identified, with 1667 up-regulated and 2107 down-regulated. KEGG analysis showed that DEGs were enriched in the MAPK signaling pathway, a conserved pathway activated by PTTH binding to Torso, which regulates the ecdysone synthesis. qRT-PCR results indicated a significant up-regulation in PTTH transcription level, while the transcription levels of torso and downstream MAPK pathway genes, Ras2, Raf and ERK, were down-regulated 24 h post-pyriproxyfen treatment. Consistent with these transcriptional changes, PTTH titers in the brain also increased following pyriproxyfen treatment. These results suggest that pyriproxyfen induces abnormal metamorphosis in silkworms by impairing PTTH-Torso signaling. This study enhances our understanding of the molecular mechanisms of pyriproxyfen-induced larval-pupal abnormal metamorphosis in silkworms, and also provides insights for developing detoxification strategies for juvenile hormone analog pesticides to non-target organisms.
Collapse
Affiliation(s)
- Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhe Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Zhenfeng Zhou
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhou Zhu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yirong Han
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yifei Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Rifeng Yang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
2
|
Iqbal N, Sadiq N, Naqqash MN, Usman M, Khan HAA, Abid AD, Shahzad MS. Transgenerational effects of pyriproxyfen in a field strain of Musca domestica L. (Diptera: Muscidae). PLoS One 2024; 19:e0300922. [PMID: 38517921 PMCID: PMC10959378 DOI: 10.1371/journal.pone.0300922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Musca domestica L. (Muscidae: Diptera) is a human and livestock pest especially in tropical and sub-tropical areas. Different insecticides have been used to control this pest that pose serious harmful effects on humans and the environment. The current study was planned to investigate the effects of two concentrations (LC25 and LC50) of pyriproxyfen on biological and population parameters of a field strain of M. domestica. The exposed parents (F0) and their progeny (F1) were studied to examine the transgenerational effects. The results indicated that preadult duration was higher in control (13.68 days) compared to LC50 treated individuals (12.44 days). The male and female longevity was relatively lower in the LC25 treated population i.e. 24.62 and 26.62 days, respectively. The adult pre-oviposition period (APOP) and total pre-oviposition period (TPOP) values were higher in the LC25 treated individuals than those of control. Moreover, oviposition days and fecundity were reduced in the treated individuals as compared to the control treatment. A gradual decrease in the net reproductive rate (R0) was observed (8.46-14.07 per day) while the value of R0 was significantly higher in control. The results suggested that pyriproxyfen can be effectively utilized and incorporated in the management programs of M. domestica.
Collapse
Affiliation(s)
- Naeem Iqbal
- Institute of Plant Protection, MNS University of Agriculture, Multan, Pakistan
| | - Nauman Sadiq
- Institute of Plant Protection, MNS University of Agriculture, Multan, Pakistan
- Department of Plant Protection, Ministry of National Food Security & Research, Pakistan
| | | | - Muhammad Usman
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan
| | | | - Allah Ditta Abid
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan
| | | |
Collapse
|
3
|
Salaro AL, Silva SB, Ferraz RB, Salinas Jiménez LG, Carneiro CLS, Quadros ASG, Machado JP, Freitas MB, Oliveira EE. Acute sublethal exposure to ethiprole impairs physiological and oxidative status in the Neotropical fish Astyanax altiparanae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122152. [PMID: 37414119 DOI: 10.1016/j.envpol.2023.122152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Ethiprole, a phenylpyrazole insecticide, has been increasingly used in the Neotropical region to control stink bug pests in soybean and maize fields. However, such abrupt increases in use may have unintended effects on non-target organisms, including those inhabiting freshwater ecosystems. Here, we evaluated the effects of acute (96 h) sublethal exposure to ethiprole (up to 180 μg/L, which is equivalent to 0.013% of the recommended field dose) on biomarkers of stress in the gills, liver, and muscle of the Neotropical fish Astyanax altiparanae. We further recorded potential ethiprole-induced effects on the structural histology of A. altiparanae gills and liver. Our results showed that ethiprole exposure increased glucose and cortisol levels in a concentration-dependent manner. Ethiprole-exposed fish also exhibited higher levels of malondialdehyde and greater activity of antioxidant enzymes, such as glutathione-S-transferase and catalase, in both gills and liver. Furthermore, ethiprole exposure led to increased catalase activity and carbonylated protein levels in muscle. Morphometric and pathological analyses of the gills revealed that increasing ethiprole concentration resulted in hyperemia and loss of integrity of the secondary lamellae. Similarly, histopathological analysis of the liver demonstrated higher prevalence of necrosis and inflammatory infiltrates with increasing ethiprole concentration. Altogether, our findings demonstrated that sublethal exposure to ethiprole can trigger a stress response in non-target fish species, which may lead to potential ecological and economic imbalances in Neotropical freshwater systems.
Collapse
Affiliation(s)
- Ana Lúcia Salaro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Stella B Silva
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Renato B Ferraz
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luis G Salinas Jiménez
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Cristiana L S Carneiro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, 4450-208, Portugal
| | - Alessandro S G Quadros
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - João Paulo Machado
- Departamento de Medicina Veterinaria, Centro Universitário de Viçosa (UNIVIÇOSA), Viçosa, Minas Gerais, 36576-340, Brazil
| | - Mariella B Freitas
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
4
|
Borges JCM, Haddi K, Valbon WR, Costa LTM, Ascêncio SD, Santos GR, Soares IM, Barbosa RS, Viana KF, Silva EAP, Moura WS, Andrade BS, Oliveira EE, Aguiar RWS. Methanolic Extracts of Chiococca alba in Aedes aegypti Biorational Management: Larvicidal and Repellent Potential, and Selectivity against Non-Target Organisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:3298. [PMID: 36501335 PMCID: PMC9735851 DOI: 10.3390/plants11233298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The use of formulations containing botanical products for controlling insects that vector human and animal diseases has increased in recent years. Plant extracts seem to offer fewer risks to the environment and to human health without reducing the application strategy's efficacy when compared to synthetic and conventional insecticides and repellents. Here, we evaluated the potential of extracts obtained from caninana, Chiococca alba (L.) Hitchc. (Rubiaceae), plants as a tool to be integrated into the management of Aedes aegypti, one of the principal vectors for the transmission of arborviruses in humans. We assessed the larvicidal and repellence performance against adult mosquitoes and evaluated the potential undesired effects of the extracts on non-target organisms. We assessed the susceptibility and predatory abilities of the nymphs of Belostoma anurum, a naturally occurring mosquito larva predator, and evaluated the C. alba extract's cytotoxic effects in mammalian cell lines. Our chromatographic analysis revealed 18 compounds, including rutin, naringin, myricetin, morin, and quercetin. The methanolic extracts of C. alba showed larvicidal (LC50 = 82 (72-94) mg/mL) activity without killing or affecting the abilities of B. anurum to prey upon mosquito larvae. Our in silico predictions revealed the molecular interactions between rutin and the AeagOBP1 receptor to be one possible mechanism for the repellent potential recorded for formulations containing C. alba extracts. Low cytotoxicity against mammalian cell lines reinforces the selectivity of C. alba extracts. Collectively, our findings highlight the potential of C. alba and one of its constituents (rutin) as alternative tools to be integrated into the management of A. aegypti mosquitoes.
Collapse
Affiliation(s)
- Jaqueline C. M. Borges
- Department of Biotechnology Biodiversity, Graduate School of Biotechnology of Amazônia (Bionorte), Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Khalid Haddi
- Departmento de Entomologia, Universidade Federal de Lavras (UFLA), Lavras 37200-000, MG, Brazil
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Wilson R. Valbon
- Departmento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Lara T. M. Costa
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Sérgio D. Ascêncio
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Gil R. Santos
- Department of Biotechnology Biodiversity, Graduate School of Biotechnology of Amazônia (Bionorte), Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Ilsamar M. Soares
- Natural Products Research Laboratory, Federal University of Tocantins (UFT), Palmas 77001-090, TO, Brazil
| | - Robson S. Barbosa
- Natural Products Research Laboratory, Federal University of Tocantins (UFT), Palmas 77001-090, TO, Brazil
| | - Kelvinson F. Viana
- Interdisciplinary Center for Life Sciences and Nature, Federal University of Latin American Integration (UNILA), Foz do Iguaçu 85870-901, PR, Brazil
| | - Eder A. P. Silva
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Wellington S. Moura
- Department of Biotechnology Biodiversity, Graduate School of Biotechnology of Amazônia (Bionorte), Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Bruno S. Andrade
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
- Department of Biological Sciences, State University of Southwest Bahia, Jequié 45206-190, BA, Brazil
| | - Eugenio E. Oliveira
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
- Departmento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Raimundo W. S. Aguiar
- Department of Biotechnology Biodiversity, Graduate School of Biotechnology of Amazônia (Bionorte), Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| |
Collapse
|
5
|
Valbon W, Araújo SHC, Nery RS, Barbosa JF, Newland PL, Oliveira EE. Sublethal exposure to pyriproxyfen does not impair the abilities of the backswimmer Buenoa amnigenus to prey upon Aedes aegypti larvae. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:998-1008. [PMID: 35779162 DOI: 10.1007/s10646-022-02562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Pyriproxyfen is a juvenile hormone analogue that is commonly used to control the immature stages of mosquitoes in both artificial and natural water reservoirs. Recently, concerns have been raised regarding the community effectiveness of pyriproxyfen in preventing vector-transmitted diseases. Such concerns have been based on the unintended effects on non-target organisms and the selection of resistant mosquito populations. This investigation was, therefore, conducted to evaluate the toxicity of pyriproxyfen to Aedes aegypti (Diptera: Culicidae) larvae and the backswimmer Buenoa amnigenus (Hemiptera: Notonectidae), a naturally occurring mosquito larvae predator. We also assessed the abilities of backswimmers exposed to sublethal levels of pyriproxyfen to prey upon mosquito larvae (L2) under three larval densities (3, 6, or 9 larvae/100 mL of water) using artificial containers. Our results revealed that pyriproxyfen killed backswimmers only at concentrations higher than 100 μg active ingredient [a.i.]/L, which is 10 times higher than that recommended for larvicidal field application (i.e, 10 μg a.i./L). The abilities of backswimmers exposed to sublethal levels of pyriproxyfen (100 μg a.i./L) to prey upon mosquito larvae were not affected. Harmful effects on the backswimmer predatory abilities were detected only at concentrations of 150 μg a.i./L and when there was a higher prey availability (i.e., 9 larvae/100 mL of water). Together, our findings indicate that the reduced community effectiveness of this insecticide derives from factors other than its detrimental effects on non-target organisms such as backswimmers.
Collapse
Affiliation(s)
- Wilson Valbon
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
- Department of Biology, Duke University, Durham, NC, USA.
| | | | - Ritanne S Nery
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Julianna F Barbosa
- Department of Zoology, Institute of Biology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Philip L Newland
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
| | - Eugênio E Oliveira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
6
|
Su Y, Ren X, Ma X, Wang D, Hu H, Song X, Cui J, Ma Y, Yao Y. Evaluation of the Toxicity and Sublethal Effects of Acetamiprid and Dinotefuran on the Predator Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae). TOXICS 2022; 10:toxics10060309. [PMID: 35736917 PMCID: PMC9228657 DOI: 10.3390/toxics10060309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023]
Abstract
Neonicotinoid insecticides affect the physiology or behavior of insects, posing risks to non-target organisms. In this study, the effects of sublethal doses of two neonicotinoid insecticides, acetamiprid and dinotefuran, against Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) were determined and compared. The results showed that acetamiprid and dinotefuran at LD10 (8.18 ng a.i. per insect and 9.36 ng a.i. per insect, respectively) and LD30 (16.84 ng a.i. per insect and 15.01 ng a.i. per insect, respectively) significantly prolonged the larval stages and pupal stages (except acetamiprid LD10), compared to control. In addition, acetamiprid and dinotefuran at LD30 significantly prolonged the adult preoviposition period (APOP) and total preoviposition period (TPOP). In contrast, the two insecticides at LD10 and LD30 had no significant effect on the longevity, fecundity, reproductive days, preadult survival rate (%), intrinsic rate of increase (r), net reproductive rate (R0), and finite rate of increase (λ). These results provide a theoretical basis for the rational use of these two insecticides and the utilization and protection of C. pallens.
Collapse
Affiliation(s)
- Yue Su
- Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, College of Agriculture, Tarim University, Aral 843300, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Y.M.); (Y.Y.)
| | - Yongsheng Yao
- Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, College of Agriculture, Tarim University, Aral 843300, China;
- Correspondence: (Y.M.); (Y.Y.)
| |
Collapse
|
7
|
Montaño-Campaz ML, Dias LG, Bacca T, Toro-Restrepo B, Oliveira EE. Exposures to deltamethrin on immature Chironomus columbiensis drive sublethal and transgenerational effects on their reproduction and wing morphology. CHEMOSPHERE 2022; 296:134042. [PMID: 35202668 DOI: 10.1016/j.chemosphere.2022.134042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Sublethal exposure to insecticides can trigger unintended responses in non-target insects that may disrupt reproductive and developmental performances of these organisms. Here, we assessed whether sublethal exposure to the pyrethroid insecticide deltamethrin in early life had sublethal and transgenerational effects on the reproduction (i.e., fecundity and fertility) and wing morphology of Chironomus columbiensis, an aquatic insect used as a water quality indicator. We first conducted concentration-response bioassays to evaluate the susceptibility of C. columbiensis larvae to deltamethrin. Our results revealed that deltamethrin toxicity was approximately 7-fold higher when C. columbiensis larvae where exposed to 96 h (LC50 = 0.17 [0.15-0.20] μg/L) than to 24 h (LC50 = 1.17 [0.97-1.43] μg/L). Furthermore, the sublethal exposures (at LC1 = 0.02 μg/L or LC10 = 0.05 μg/L) of immature C. columbiensis resulted in lower fecundity (e.g., reduced eggs production) and morphometric variation wing shapes. Further reduction in fertility rates (quantity of viable eggs) occurred at deltamethrin LC10 (0.05 μg/L). Almost 80% of the fecundity was recovered with only a single recovery generation; however, two subsequent recovery generations were not sufficient to fully recover fecundity in C. columbiensis. Specimens recovered from 98.5% of wing morphometric variation after two consecutive generations without deltamethrin exposure. Collectively, our findings demonstrates that sublethal exposure to synthetic pyrethroids such as deltamethrin detrimentally affect the reproduction and wing shape of C. columbiensis, but also indicate that proper management of these compounds (e.g., concentration and frequency of application) would suffice for these insects' population recovery.
Collapse
Affiliation(s)
- Milton L Montaño-Campaz
- Programa de Doctorado, Facultad de Ciencias Agropecuarias, Grupo de Investigación Bionat, Universidad de Caldas, Caldas, Colombia; Programa de Pós-Graduação Em Ecologia, Universidade Federal do Viçosa (UFV), 36570-900, Viçosa, MG, Brazil
| | - Lucimar G Dias
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas Y Naturales, Grupo de Investigación Bionat, Universidad de Caldas, Caldas, Colombia
| | - Tito Bacca
- Facultad de Ingeniería Agronómica, Universidad del Tolima., Tolima, Colombia
| | - Beatriz Toro-Restrepo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas Y Naturales, Grupo de Investigación Bionat, Universidad de Caldas, Caldas, Colombia
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
8
|
Bakonyi G, Vásárhelyi T, Szabó B. Pollution impacts on water bugs (Nepomorpha, Gerromorpha): state of the art and their biomonitoring potential. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:301. [PMID: 35344112 PMCID: PMC8960648 DOI: 10.1007/s10661-022-09961-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
As water pollution poses an increasing risk worldwide, it is timely to assess the achievements of the aquatic macroinvertebrate ecotoxicology to provide a sound basis for the discipline's future and support the development of biomonitoring. Aquatic and semi-aquatic bugs (Hemiptera: Nepomorpha, Gerromorpha) are ubiquitous in almost all water types, sometimes in high densities, and play a significant role in organic material turnover and energy flow. Nevertheless, they are ignored in the water pollution biomonitoring schemes. Here, based on 300 papers, we review and evaluate the effects of chemical pesticides, microorganism-derived pesticides, insecticides of plant origin, heavy metals, eutrophication, salinisation and light pollution which are summarised for the first time. Our review encompasses the results of 100 laboratory and 39 semi-field/field experiments with 47 pesticides and 70 active ingredients. Pyrethroids were found to be more toxic than organochlorine, organophosphate and neonicotinoid insecticides to water bugs, like other macroinvertebrate groups. Additionally, in 10 out of 17 cases, the recommended field concentration of the pesticide was higher than the LC50 values, indicating potential hazards to water bugs. The recommended field concentrations of pesticides used in mosquito larvae control were found non-toxic to water bugs. As very few replicated studies are available, other findings on the effects of pesticides cannot be generalised. The microorganism-derived pesticide Bti appears to be safe when used at the recommended field concentration. Data indicates that plant-derived pesticides are safe with a high degree of certainty. We have identified three research areas where water bugs could be better involved in water biomonitoring. First, some Halobates spp. are excellent, and Gerris spp. are promising sentinels for Cd contamination. Second, Micronecta and, to a certain extent, Corixidae species composition is connected to and the indicator of eutrophication. Third, the species composition of the Corixidae is related to salinisation, and a preliminary method to quantify the relationship is already available. Our review highlights the potential of water bugs in water pollution monitoring.
Collapse
Affiliation(s)
- Gábor Bakonyi
- Department of Zoology and Ecology, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary.
| | | | - Borbála Szabó
- Centre for Ecological Research, Institute of Ecology and Botany, "Lendület" Landscape and Conservation Ecology, 2163, Vácrátót, Hungary
| |
Collapse
|