1
|
Shan T, Wang B, Tu W, Huang F, Yang W, Xiang M, Luo X. Adsorption and biodegradation of butyl xanthate in mine water by Pseudomonas sp. immobilized on yak dung biochar. ENVIRONMENTAL RESEARCH 2025; 264:120300. [PMID: 39515552 DOI: 10.1016/j.envres.2024.120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The butyl xanthate (BX) in mining wastewater poses significant environmental challenges due to its toxicity and persistence. This study aimed to evaluate the effectiveness of Pseudomonas sp. immobilized on yak dung biochar (Ps.@YDBC600) for BX degradation, emphasizing the synergistic effects of biochar adsorption and microbial degradation. BX removal efficiency of free Pseudomonas sp. cells was assessed under various environmental conditions, with optimal degradation observed at 30 °C and an initial pH of 5.0. Yak dung biochar prepared at 600 °C (YDBC600) was selected due to its high surface area, porosity, and favorable adsorption properties, enhancing the immobilization and activity of Pseudomonas sp. The absorption of BX by biochar followed a two-compartment first-order kinetic model and primarily involved hydrogen bonding, hydrophobic interactions, and pore filling. The primary crystalline mineral component of YDBC600 and Ps.@YDBC600 before and after the adsorption and degradation of BX was SiO₂. The Ps.@YDBC600 was shown to significantly enhance BX removal efficiency compared to free Pseudomonas sp. cells or biochar alone. Molecular studies indicated that biochar facilitated BX degradation by providing a stable environment for Pseudomonas sp. and optimizing metabolic resource allocation. The primary by-products, including CS₂, HS-, ROCOS-, ROCSSH and (ROCSS)₂ were effectively minimized (each by-product was reduced more than 80%), reducing secondary pollution. These findings demonstrated the potential of Pseudomonas sp. immobilized on biochar as an effective approach for treating BX-contaminated mining wastewater, offering a sustainable approach to environmental remediation and management.
Collapse
Affiliation(s)
- Tingqian Shan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China.
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China.
| | - Fuyang Huang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Wenguang Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Mengyang Xiang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China
| |
Collapse
|
2
|
Wu WJ, Zheng QJ, Liang JW, Zhao HM, Liu BL, Li YW, Feng NX, Cai QY, Xiang L, Mo CH, Li QX. Mining flotation reagents: Quantitative and robust analysis of metal-xanthate complexes in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134873. [PMID: 38908182 DOI: 10.1016/j.jhazmat.2024.134873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/25/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
Xanthates, common mining flotation reagents, strongly bind thiophilic metals such as copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) and consequentially change their bioavailability and mobility upon their discharge into the environment. However, accurate quantification of the metal-xanthate complexes has remained elusive. This study develops a novel and robust method that realizes the accurate quantification of the metal-xanthate complexes resulted from single and multiple reactions of three typical xanthates (ethyl, isopropyl, and butyl xanthates) and four thiophilic metals (Cu, Pb, Cd, and Zn) in water samples. This method uses sulfur (S2-) dissociation, followed by tandem solid phase extraction of C18 + PWAX and subsequent LC-MS/MS analysis. It has a wide linearity range (1-1000 μg/L, R2 ≥ 0.995), low method detection limits (0.002-0.036 μg/L), and good recoveries (70.6-107.0 %) at 0.01-10 mg/L of xanthates. Applications of this method showed ubiquitous occurrence of the metal-xanthate complexes as the primary species in flotation wastewaters, which the concentrations were 4.6-28.9-fold higher than those previously determined. It is the first quantitative method established for the analysis of metal-xanthate complexes in water samples, which is of great importance to comprehensively understand the fate and risks of xanthates in the environment.
Collapse
Affiliation(s)
- Wen-Jun Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Jun Zheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing-Wen Liang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Duarte DJ, Hoondert RP, Amato ED, Dingemans MM, Kools SA. Making waves: Xanthates on the radar - Environmental risks and water quality impact. WATER RESEARCH X 2024; 24:100232. [PMID: 39070727 PMCID: PMC11277360 DOI: 10.1016/j.wroa.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Xanthates, derivatives of xanthic acid, are widely utilized across industries such as agrochemicals, rubber processing, pharmaceuticals, metallurgical, paper and mining to help separate metals from ore. Despite their prevalent use, many registered xanthates lack comprehensive information on potential risks to human health and the environment. The mining sector, a significant consumer of xanthates, drives demand. However, emissions into the environment remain poorly understood, especially concerning water quality. A recent EU parliamentary voting on water legislation highlights the urgency to address water pollution and the potential toxicity of xanthates. While limited data exist on xanthate presence in the environment, existing studies indicate their toxicity and contribution to environmental pollution, primarily due to carbon disulfide, a decomposition product. Concerns are mounting over the release of xanthates and carbon disulfide, particularly in mining areas near populated regions and river tributaries, raising questions about downstream impacts and public health risks. Proposed expansions of xanthate-reliant mining activities in Europe, heighten concerns about emissions and water quality impacts. Current databases lack xanthate-related monitoring data, hindering environmental and health risk assessments. Addressing this gap requires water sampling and chemical analysis and investigations into the use, occurrence, and potential impacts of xanthates from industrial activities on water bodies, including those used for drinking water production is imperative.
Collapse
Affiliation(s)
| | | | - Elvio D. Amato
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Milou M.L. Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht Universities, Utrecht, the Netherlands
| | | |
Collapse
|
4
|
Sun J, Yan B, Chen H, Tu S, Zhang J, Chen T, Huang Q, Zhang Y, Xie L. Insight into the mechanisms of combined toxicity of cadmium and flotation agents in luminescent bacteria: Role of micro/nano particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173588. [PMID: 38823693 DOI: 10.1016/j.scitotenv.2024.173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Currently, risk assessment and pollution management in mines primarily focus on toxic metals, with the flotation agents being overlooked. However, the combined effects of metals and flotation agents in mines remain largely unknown. Therefore, this study aimed to evaluate the combined effects of Cd and two organic flotation agents (ethyl xanthate (EX) and diethyldithiocarbamate (DDTC)), and the associated mechanisms. The results showed that Cd + EX and Cd + DDTC exhibited synergistic toxicity. The EC50 values for luminescent bacteria were 1.6 mg/L and 1.0 mg/L at toxicity unit ratios of 0.3 and 1, respectively. The synergistic effects were closely related with the formation of Cd(EX)2 and Cd(DDTC)2 micro/nano particles, with nano-particles exhibiting higher toxicity. We observed severe cell membrane damage and cell shrinkage of the luminescent bacteria, which were probably caused by secondary harm to cells through the released CS2 during their decomposition inside cells. In addition, these particles induced toxicity by altering cellular levels of biochemical markers and the transcriptional levels of transport proteins and lipoproteins, leading to cell membrane impairment and DNA damage. This study has demonstrated that particulates formed by Cd and flotation agents contribute to the majority of the toxicity of the binary mixture. This study helps to better understand the complex ecological risk of inorganic metals and organic flotation agents in realistic mining environments.
Collapse
Affiliation(s)
- Jiacheng Sun
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Bo Yan
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Hongxing Chen
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Shuchen Tu
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Junhao Zhang
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Tao Chen
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Qinzi Huang
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuting Zhang
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Lingtian Xie
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
5
|
Lin J, Liu J, Xing H, Chen S, Nan Y, He J, Hu B, Wei Y, Guo P. Effect of suspended particulate matter on physiological, biochemical and photosynthetic characteristics of Chlorella pyrenoidosa in the Jinjiang Estuary (Fujian, China). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:151-163. [PMID: 38329639 DOI: 10.1007/s10646-024-02734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Suspended particulate matter (SPM), an important component of the natural water environment, can act as a carrier of many pollutants that affect aquatic organisms. In the present study, the effect of SPM obtained from Jinjiang Estuary on the physiological, biochemical, and photosynthetic properties of typical freshwater algae (Chlorella pyrenoidosa) was investigated. The results showed that under different concentrations of SPM treatment, the superoxide dismutase (SOD), catalase (CAT) activities, and malondialdehyde (MDA) content of C. pyrenoidosa increased, but the soluble protein content decreased. SPM with different particle sizes had less effect on SOD of C. pyrenoidosa, but showed a promoting effect on CAT and MDA as well as soluble protein content. In terms of photosynthetic activity, high concentrations (70, 90 mg/L) and small particle sizes (0-75, 75-120 μm) of SPM had a greater effect on the chlorophyll a content of C. pyrenoidosa. In addition, different concentrations of SPM had no significant effect on the potential photosynthetic activity of PS II (Fv/F0) and the maximum quantum yield of PS II (Fv/Fm), but the inhibition of the initial slope (alpha), the maximum photosynthetic rate (ETRmax) and the semi-light saturation point (Ik) increased with the increase of SPM concentration. Fv/F0, ETRmax, and Ik of C. pyrenoidosa showed some degree of recovery after inhibition in the presence of SPM of different particle sizes.
Collapse
Affiliation(s)
- Jiahui Lin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Jie Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Hui Xing
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Sijia Chen
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Yiting Nan
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Junming He
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Bo Hu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Yanfang Wei
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Peiyong Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
6
|
Ran Y, Sun D, Liu X, Zhang L, Niu Z, Chai T, Hu Z, Qiao K. Chlorella pyrenoidosa as a potential bioremediator: Its tolerance and molecular responses to cadmium and lead. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168712. [PMID: 38016561 DOI: 10.1016/j.scitotenv.2023.168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Heavy metal contamination negatively affects plants and animals in water as well as soils. Some microalgae can remove heavy metal contaminants from wastewater. The aim of this study was to screen green microalgae (GM) to identify those that tolerate high concentrations of toxic heavy metals in water as possible candidates for phytoremediation. Analyses of the tolerance, physiological parameters, ultrastructure, and transcriptomes of GM under Cd/Pb treatments were conducted. Compared with the other GM, Chlorella pyrenoidosa showed stronger tolerance to high concentrations of Cd/Pb. The reduced glutathione content and peroxidase activity were higher in C. pyrenoidosa than those in the other GM. Ultrastructural observations showed that, compared with other GM, C. pyrenoidosa had less damage to the cell surface and interior under Cd/Pb toxicity. Transcriptome analyses indicated that the "peroxisome" and "sulfur metabolism" pathways were enriched with differentially expressed genes under Cd/Pb treatments, and that CpSAT, CpSBP, CpKAT2, Cp2HPCL, CpACOX, CpACOX2, and CpACOX4, all of which encode antioxidant enzymes, were up-regulated under Cd/Pb treatments. These results show that C. pyrenoidosa has potential applications in the remediation of polluted water, and indicate that antioxidant enzymes contribute to Cd/Pb detoxification. These findings will be useful for producing algal strains for the purpose of bioremediation in water contamination.
Collapse
Affiliation(s)
- Ye Ran
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Dexiang Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Ling Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyong Niu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Tuanyao Chai
- College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhangli Hu
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Chen T, Wen X, Zhou J, Lu Z, Li X, Yan B. A critical review on the migration and transformation processes of heavy metal contamination in lead-zinc tailings of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122667. [PMID: 37783414 DOI: 10.1016/j.envpol.2023.122667] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The health risks of lead-zinc (Pb-Zn) tailings from heavy metal (HMs) contamination have been gaining increasing public concern. The dispersal of HMs from tailings poses a substantial threat to ecosystems. Therefore, studying the mechanisms of migration and transformation of HMs in Pb-Zn tailings has significant ecological and environmental significance. Initially, this study encapsulated the distribution and contamination status of Pb-Zn tailings in China. Subsequently, we comprehensively scrutinized the mechanisms governing the migration and transformation of HMs in the Pb-Zn tailings from a geochemical perspective. This examination reveals the intricate interplay between various biotic and abiotic constituents, including environmental factors (EFs), characteristic minerals, organic flotation reagents (OFRs), and microorganisms within Pb-Zn tailings interact through a series of physical, chemical, and biological processes, leading to the formation of complexes, chelates, and aggregates involving HMs and OFRs. These interactions ultimately influence the migration and transformation of HMs. Finally, we provide an overview of contaminant migration prediction and ecological remediation in Pb-Zn tailings. In this systematic review, we identify several forthcoming research imperatives and methodologies. Specifically, understanding the dynamic mechanisms underlying the migration and transformation of HMs is challenging. These challenges encompass an exploration of the weathering processes of characteristic minerals and their interactions with HMs, the complex interplay between HMs and OFRs in Pb-Zn tailings, the effects of microbial community succession during the storage and remediation of Pb-Zn tailings, and the importance of utilizing process-based models in predicting the fate of HMs, and the potential for microbial remediation of tailings.
Collapse
Affiliation(s)
- Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Xiaocui Wen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zheng Lu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xueying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| |
Collapse
|
8
|
Chen G, Wang F, Zhang X, Shang Y, Zhao Y. Living microecological hydrogels for wound healing. SCIENCE ADVANCES 2023; 9:eadg3478. [PMID: 37224242 DOI: 10.1126/sciadv.adg3478] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Chronic hard-to-heal wounds draw great attention worldwide, as their treatments are limited by infections and hypoxia. Inspired by the natural oxygen production capacity of algae and the competitive advantage of beneficial bacteria over other microbes, we presented a living microecological hydrogel (LMH) with functionalized Chlorella and Bacillus subtilis encapsulation to realize continuous oxygen delivery and anti-infections for promoting chronic wound healing. As the hydrogel consisted of thermosensitive Pluronic F-127 and wet-adhesive polydopamine, the LMH could keep liquid at a low temperature while quickly solidifying and tightly adhering to the wound bed. It was demonstrated that by optimizing the proportion of the encapsulated microorganism, the Chlorella could continuously produce oxygen to relieve hypoxia and support the proliferation of B. subtilis, while B. subtilis could eliminate the colonized pathogenic bacteria. Thus, the LMH substantially promoted the healing of infected diabetic wounds. These features make the LMH valuable for practical clinical applications.
Collapse
Affiliation(s)
- Guopu Chen
- Department of Burns and Plastic Surgery, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Fengyuan Wang
- Department of Dermatology, Zhongda Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoxuan Zhang
- Department of Dermatology, Zhongda Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yixuan Shang
- Department of Burns and Plastic Surgery, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Yuanjin Zhao
- Department of Burns and Plastic Surgery, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- Department of Dermatology, Zhongda Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
9
|
Zeng S, Liu Y, Wang Y, Wang Y, Zhou Y, Li L, Li S, Zhou X, Wang M, Zhao X, Ren L. Photo-Fenton self-cleaning carbon fibers membrane supported with Zr-MOF@Fe 2O 3 for effective phosphate removal from algae-rich water. CHEMOSPHERE 2023; 323:138175. [PMID: 36863624 DOI: 10.1016/j.chemosphere.2023.138175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Adsorbents featuring abundant binding sites and high affinity to phosphate have been used to resolve water eutrophication. However, most of the developed adsorbents were focused on improving the adsorption ability of phosphate but ignored the effect of biofouling on the adsorption process especially used in the eutrophic water body. Herein, a novel MOF-supported carbon fibers (CFs) membrane with high regeneration and antifouling capability, was prepared by in-situ synthesis of well-dispersed MOF on CFs membrane, to remove phosphate from algae-rich water. The hybrid UiO-66-(OH)2@Fe2O3@CFs membrane exhibits a maximum adsorption capacity of 333.3 mg g-1 (pH 7.0) and excellent selectivity for phosphate sorption over coexisting ions. Moreover, the Fe2O3 nanoparticles anchored on the surface of UiO-66-(OH)2 through 'phenol-Fe(III)' reaction can endow the membrane with the robust photo-Fenton catalytic activity, which improves long-term reusability even under algae-rich condition. After 4 times photo-Fenton regenerations, the regeneration efficiency of the membrane could remain 92.2%, higher than that of hydraulic cleaning (52.6%). Moreover, the growth of C. pyrenoidosa was significantly reduced by 45.8% within 20 days via metabolism inhibition due to membrane-induced P-deficient conditions. Hence, the developed UiO-66-(OH)2@Fe2O3@CFs membrane holds significant prospects for large-scale application in phosphate sequestration of eutrophic water bodies.
Collapse
Affiliation(s)
- Sen Zeng
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China; College of Materials Science and Engineering, Fujian University of Technology, Fujian, Fuzhou, 350118, China
| | - Yuanshang Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Yanmin Wang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Yunhua Wang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Yaming Zhou
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Lihuang Li
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Shuo Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xi Zhou
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Miao Wang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Lei Ren
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
10
|
Qiao Z, Guo P, Yang D, Pei Z, Wang M, Liu J, Wang Q. Evaluation of acute toxicity response to the algae Chlorella pyrenoidosa of biosynthetic silver nanoparticles catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10955-10968. [PMID: 36087185 DOI: 10.1007/s11356-022-22879-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Biosynthetic of silver nanoparticles (AgNPs) by using fungi has attracted much attention due to its high catalytic efficiency and environmentally friendly characteristic. However, a few studies have focused on the ecological toxicity effects of biogenic AgNPs on algae. Here, we first investigated the catalytic reduction of 4-nitrophenol (4-NP) by WZ07-AgNPs biosynthesized by Letendraea sp. WZ07. WZ07-AgNPs had significant catalytic activity with 97.08% degradation of 4-NP in 3.5 min. Then, the toxic effects of WZ07-AgNPs and commercial-AgNPs were compared by Chlorella pyrenoidosa growth, chlorophyll content, protein content, physiological, and biochemical indexes. The results demonstrated that the algal cell biomass of C. pyrenoidosa was differentially inhibited after exposure to different concentrations of AgNPs, which showed concentration dependence and time dependence. The 96h-EC50 values of WZ07-AgNPs and commercial-AgNPs on C. pyrenoidosa were 15.99 mg/mL and 12.69 mg/mL, respectively. With the increase concentration of AgNPs, the chlorophyll content was gradually decreased, the protein content was first increased and then decreased, the activities of superoxide dismutase (SOD) and catalase (CAT) were decreased, and the level of malondialdehyde (MDA) was increased significantly of C. pyrenoidosa. In general, AgNPs affect the growth of algae to some extent. However, compared with commercial-AgNPs, WZ07-AgNPs is less toxic to C. pyrenoidosa, which could be used as a potential and an eco-friendly catalyst. This study provides a basis for the safe application of biosynthetic AgNPs.
Collapse
Affiliation(s)
- Zipeng Qiao
- Department of Bioengineering and Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Peiyong Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Daomao Yang
- Department of Bioengineering and Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Zhenqiao Pei
- Department of Bioengineering and Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Mingyuan Wang
- Department of Bioengineering and Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Jianfu Liu
- Department of Bioengineering and Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Qizhi Wang
- Department of Bioengineering and Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China.
| |
Collapse
|
11
|
Liu Q, Gao K, Li L, Yang M, Gao Z, Deng X. Salinity fluctuation influences the toxicity of 1-octyl-3-methylimidazolium chloride ([C 8mim]Cl) to a marine diatom Phaeodactylum tricornutum. MARINE POLLUTION BULLETIN 2022; 185:114379. [PMID: 36435022 DOI: 10.1016/j.marpolbul.2022.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/29/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
In this work, a marine diatom (Phaeodactylum tricornutum) was exposed to 1-octyl-3-methylimidazolium chloride ([C8mim]Cl) for 96 h at three different salinities (25, 35, and 45 ‰) for investigating their interactive effects. Results showed that values of EC10 and EC50 at 96 h of exposure were 0.29, 1.06, 2.01 μg L-1 and 7.21, 7.71, 7.25 mg L-1 when the salinities were 25, 35, and 45 ‰, respectively, meaning that salinity fluctuation affected the toxicity of [C8mim]Cl to this diatom. Changes in chlorophyll a contents and chlorophyll fluorescence parameters suggested that [C8mim]Cl and salinity fluctuation had a significant interactive effect on the algal photosynthesis. In addition, soluble protein content and activities of antioxidant enzymes in algal cells changed significantly. Increased malondialdehyde contents indicated that the combined stresses could induce excessive production of reactive oxygen species leading to oxidative damage to the algal cells.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Kun Gao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Linqing Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Mengting Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Zheng Gao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Xiangyuan Deng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| |
Collapse
|
12
|
Qu M, Wang L, Xu Q, An J, Mei Y, Liu G. Influence of glyphosate and its metabolite aminomethylphosphonic acid on aquatic plants in different ecological niches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114155. [PMID: 36206639 DOI: 10.1016/j.ecoenv.2022.114155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) draw great concern due to their potential threat to aquatic ecosystems. The individual and combined effects of glyphosate and AMPA on aquatic plants in different ecological niches need to be explored. This study aimed to investigate the ecotoxicity of glyphosate and AMPA on the emergent macrophyte Acorus calamus, phytoplankton Chlorella vulgaris, and submerged macrophyte Vallisneria natans after their exposure to glyphosate and AMPA alone and to their mixture. Medium and low concentrations of glyphosate (≤ 0.5 mg L-1) significantly inhibited the growth of V. natans and promoted the growth of C. vulgaris (P < 0.05) but had no significant effect on the growth of A. calamus (P > 0.05). AMPA (≤ 5.0 mg L-1) did not significantly influence the relative growth rate (except C. vulgaris) or malonaldehyde levels but significantly altered the expression levels of chlorophyll-related genes and superoxide dismutase [Cu-Zn] genes in the aquatic plants examined. AMPA mainly affected the oxidative phosphorylation pathway in V. natans and not those in other two plants, indicating that V. natans was more sensitive to AMPA-induced oxidative damage. Moreover, antagonistic effects on plant growth were observed when plants were exposed to low concentrations of glyphosate + AMPA (≤ 0.1 + 0.1 mg L-1). When the concentration of glyphosate + AMPA reached 0.5 + 0.5 and 5.0 + 5.0 mg L-1, the growth of the submerged macrophyte was additively or synergistically inhibited, but the growth of the emergent macrophyte and phytoplankton was antagonistically inhibited. Our results indicated that both the individual and combined effects of glyphosate and AMPA might alter the vertical structure of shallow lakes and accelerate the conversion of shallow lakes from grass-based to algal-based lakes.
Collapse
Affiliation(s)
- Mengjie Qu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Laboratory of Eco-Environmental Engineering Research, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Longtao Wang
- CCCC Second Harbor Engineering Company LTD, Wuhan 430040, China
| | - Qiang Xu
- BOE Environmental Energy Technology Company LTD, Beijing 100176, China
| | - Jiaqi An
- Laboratory of Eco-Environmental Engineering Research, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Guanglong Liu
- Laboratory of Eco-Environmental Engineering Research, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Xin Z, Wang S, He Q, Han X, Fu Z, Xu X, Zhao X. Preparation of a novel photocatalytic catalyst PW 9@ZnO/Ag and the photocatalytic degradation of butyl xanthate under visible light. ENVIRONMENTAL RESEARCH 2022; 214:113776. [PMID: 35780848 DOI: 10.1016/j.envres.2022.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Photocatalytic technology is attracting considerable attention for the advantages of low cost and environmentally friendly properties. In this study, a novel photocatalyst PW9@ZnO/Ag (PZA) was synthesized hydrothermally and characterized by a variety of means. The results indicated that ZnO and Ag NPs were successfully decorated and uniformly dispersed on PW9 to form the composites. The prepared PZA was applied in the degradation of simulated butyl xanthate (BX) beneficiation wastewater both under the UV light and the xenon lamp, and a maximum degradation of 99.83% was obtained under the visible light with 10% ZnO loading, 1 g/L PZA, initial BX concentration of 20 mg/L, and pH 5.5. The PZA was recovered and reused for 5 times, and the degradation rates remained above 70%. Superoxide radical (·O2-) was the main active species for the photocatalytic degradation of BX. The experimental results demonstrate that PZA is a promising photocatalyst, making it a prospective strategy to overcome current challengers in the use of xanthate degradation and beneficiation wastewater treatment under visible light.
Collapse
Affiliation(s)
- Ziming Xin
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Shuangao Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Qianqian He
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xiaoyu Han
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Zhongtian Fu
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xinxin Xu
- Department of Chemistry, School of Science, Northeastern University, Shenyang, 110819, China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
14
|
Lin H, Qin K, Dong Y, Li B. A newly-constructed bifunctional bacterial consortium for removing butyl xanthate and cadmium simultaneously from mineral processing wastewater: Experimental evaluation, degradation and biomineralization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115304. [PMID: 35588671 DOI: 10.1016/j.jenvman.2022.115304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Due to the technological limitations associated with beneficiation technology, large amounts of flotation reagents and heavy metals remain in mineral processing wastewater. Unfortunately, however, no treatment methods are available to mitigate the resulting pollution by them. In this study, a bacterial consortium SDMC (simultaneously degrade butyl xanthate and biomineralize cadmium) was constructed in an effort to simultaneously degrade butyl xanthate (BX) and biomineralize cadmium (Cd) by screening and domesticating two different bacterial species including Hypomicrobium and Sporosarcina. SDMC is efficient in removing the combined pollution due to BX and Cd with a 100% degradation rate for BX and 99% biomineralization rate for Cd within 4 h. Besides, SDMC can tolerate high concentrations of Fe(III) (0-40 mg/L). It has an excellent ability to utilize Fe(III) for enhanced removal of the combined pollutants. SDMC can effectively remove pollutants with a pH range of 6-9. Further, we discussed pathways for potential degradation and biomineralization: Cd(BX)2-Cd2+, BX-; BX--CS2, butyl perxanthate (BPX); Cd2+-(Ca0.67,Cd0.33)CO3. The removal of the combined pollutants primarily entails decomposition, degradation, and biomineralization, C-O bond cleavage, and microbially induced carbonate precipitation (MICP). SDMC is a simple, efficient, and eco-friendly bifunctional bacterial consortium for effective treatment of BX-Cd combined pollution in mineral processing wastewater.
Collapse
Affiliation(s)
- Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Kangjia Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
15
|
Wang H, Zhu R, Dong K, Zhang S, Zhao R, Jiang Z, Lan X. An experimental comparison: Horizontal evaluation of valuable metal extraction and arsenic emission characteristics of tailings from different copper smelting slag recovery processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128493. [PMID: 35739674 DOI: 10.1016/j.jhazmat.2022.128493] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
This study comprehensively investigated arsenic's enrichment, distribution, and characteristics in tailings. XRD and SEM-EDS characterized the phase and morphology of tailings from various smelting processes. At the same time, the embedding characteristics of arsenic in the ore phase were analyzed by EPMA. The differences between arsenic's leading ore phase carriers in different recovery processes were found. It was discussed that this phenomenon would be related to the element-binding ability and the precipitation priority of the ore phase. The occurrence state of arsenic was discussed by sequential chemical extraction experiments. The proportion of leachable arsenic is higher than the low-risk limit, whatever which smelting method is adopted, which leads to high environmental risk. In the experiment of comparing the leaching toxicity of tailings by different leaching methods, the arsenic concentration in the leaching solution of tailings recovered by the flotation method exceeds the specified safety range. Although the tailings after reduction smelting did not show high leaching toxicity, a large number of accumulations also would not represent absolute safety.
Collapse
Affiliation(s)
- Hongyang Wang
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China
| | - Rong Zhu
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China
| | - Kai Dong
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China.
| | - Siqi Zhang
- Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China; University of Science and Technology Beijing, School of Civil and Resources Engineering, Beijing 100083, China
| | - Ruimin Zhao
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China
| | - Zhenqiang Jiang
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China
| | - Xinyi Lan
- Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China; University of Science and Technology Beijing, School of Automation and Electrical Engineering, Beijing 100083, China
| |
Collapse
|
16
|
Zeeshan QM, Qiu S, Gu J, Abbew AW, Wu Z, Chen Z, Xu S, Ge S. Unravelling multiple removal pathways of oseltamivir in wastewater by microalgae through experimentation and computation. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128139. [PMID: 34983009 PMCID: PMC8713958 DOI: 10.1016/j.jhazmat.2021.128139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 05/03/2023]
Abstract
Increased worldwide consumption of antiviral drugs (AVDs) amid COVID-19 has induced enormous burdens to the existing wastewater treatment systems. Microalgae-based bioremediation is a competitive alternative technology due to its simultaneous nutrient recovery and sustainable biomass production. However, knowledge about the fate, distribution, and interaction of AVDs with microalgae is yet to be determined. In this study, a concentration-determined influence of AVD oseltamivir (OT) was observed on the biochemical pathway of Chlorella sorkiniana (C.S-N1) in synthetic municipal wastewater. The results showed that high OT concentration inhibited biomass growth through increased oxidative stress and restrained photosynthesis. Nevertheless, complete OT removal was achieved at its optimized concentration of 10 mg/L by various biotic (82%) and abiotic processes (18.0%). The chemical alterations in three subtypes of extracellular polymeric substances (EPS) were primarily investigated by electrostatic (OT +8.22 mV vs. C.S-N1 -18.31 mV) and hydrophobic interactions between EPS-OT complexes supported by secondary structure protein analysis. Besides, six biodegradation-catalyzed transformation products were identified by quadrupole-time-of-flight mass spectrometer and by density functional theory. Moreover, all the TPs exhibited log Kow ≤ 5 and bioconcentration factor values of < 5000 L/kg, meeting the practical demands of environmental sustainability. This study broadens our understanding of microalgal bioadsorption and biodegradation, promoting microalgae bioremediation for nutrient recovery and AVDs removal.
Collapse
Affiliation(s)
- Qasim M Zeeshan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Jia Gu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhengshuai Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Sai Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
17
|
Zheng X, Liu X, Zhang L, Wang Z, Yuan Y, Li J, Li Y, Huang H, Cao X, Fan Z. Toxicity mechanism of Nylon microplastics on Microcystis aeruginosa through three pathways: Photosynthesis, oxidative stress and energy metabolism. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128094. [PMID: 34952496 DOI: 10.1016/j.jhazmat.2021.128094] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Nylon has been widely used all over the world, and most of it eventually enters the aquatic environment in the form of microplastics (MPs). However, the impact of Nylon MPs on aquatic ecosystem remains largely unknown. Thus, the long-term biological effects and toxicity mechanism of Nylon MPs on Microcystis aeruginosa (M. aeruginosa) were explored in this study. Results demonstrated that Nylon MPs had a dose-dependent growth inhibition of M. aeruginosa at the initial stage, and the maximum inhibition rate reached to 47.62% at the concentration of 100 mg/L. Meanwhile, Nylon MPs could obstruct photosynthesis electron transfer, reduce phycobiliproteins synthesis, destroy algal cell membrane, enhance the release of extracellular polymeric substances, and induce oxidative stress. Furthermore, transcriptomic analysis indicated that Nylon MPs dysregulated the expression of genes involved in tricarboxylic acid cycle, photosynthesis, photosynthesis-antenna proteins, oxidative phosphorylation, carbon fixation in photosynthetic organisms, and porphyrin and chlorophyll metabolism. According to the results of transcriptomic and biochemical analysis, the growth inhibition of M. aeruginosa is inferred to be regulated by three pathways: photosynthesis, oxidative stress, and energy metabolism. Our findings provide new insights into the toxicity mechanism of Nylon MPs on freshwater microalgae and valuable data for risk assessment of MPs.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xianglin Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Liangliang Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zeming Wang
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Yuan Yuan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jue Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yanyao Li
- Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University, 8500 Kortrijk, Belgium
| | - Honghui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Xin Cao
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
18
|
Nowicka B. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16860-16911. [PMID: 35006558 PMCID: PMC8873139 DOI: 10.1007/s11356-021-18419-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 04/15/2023]
Abstract
Heavy metals is a collective term describing metals and metalloids with a density higher than 5 g/cm3. Some of them are essential micronutrients; others do not play a positive role in living organisms. Increased anthropogenic emissions of heavy metal ions pose a serious threat to water and land ecosystems. The mechanism of heavy metal toxicity predominantly depends on (1) their high affinity to thiol groups, (2) spatial similarity to biochemical functional groups, (3) competition with essential metal cations, (4) and induction of oxidative stress. The antioxidant response is therefore crucial for providing tolerance to heavy metal-induced stress. This review aims to summarize the knowledge of heavy metal toxicity, oxidative stress and antioxidant response in eukaryotic algae. Types of ROS, their formation sites in photosynthetic cells, and the damage they cause to the cellular components are described at the beginning. Furthermore, heavy metals are characterized in more detail, including their chemical properties, roles they play in living cells, sources of contamination, biochemical mechanisms of toxicity, and stress symptoms. The following subchapters contain the description of low-molecular-weight antioxidants and ROS-detoxifying enzymes, their properties, cellular localization, and the occurrence in algae belonging to different clades, as well as the summary of the results of the experiments concerning antioxidant response in heavy metal-treated eukaryotic algae. Other mechanisms providing tolerance to metal ions are briefly outlined at the end.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
19
|
Effects of Suspended Particles on Exopolysaccharide Secretion of Two Microalgae in Jinjiang Estuary (Fujian, China). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of suspended particles (SP) of different concentrations and sizes on the secretion of exopolysaccharide (EPS) by Chlorella pyrenoidosa (C. pyrenoidosa) and Microcystis flos-aquae (M. flos-aquae) in Jinjiang Estuary, Fujian Province, China were studied in co-cultures of microalgae and SP. The results show that the SP concentration has an “inhibit–promote–inhibit” effect on the secretion of EPS by C. pyrenoidosa, whereby there is an optimal concentration of SP corresponding to the largest amount of EPS secreted by C. pyrenoidosa. Low concentrations had no significant effect on the secretion of EPS from M. flos-aquae (p > 0.05), whereas higher concentrations had an inhibitory effect. The C. pyrenoidosa EPS content was found to be significantly decreased in response to SP of small particle sizes (0–75 and 75–120 μm) and significantly increased for SP of large particle sizes (120–150 and 150–500 μm). Small particle sizes (0–75 and 75–120 μm) were found to be beneficial to the secretion of EPS from M. flos-aquae, and the promotion of EPS secretion gradually decreased with the increase in SP particle size. However, when the particle size was too large (120–150 and 150–500 μm), SP had no significant effect on EPS secretion. This study is helpful for understanding the microalgae EPS secretion response to SP and provides a scientific basis for studying the mechanism of EPS secretion by algae and the effect of SP on eutrophication of the estuary.
Collapse
|