1
|
Guerrero-Limón G, Zappia J, Muller M. A realistic mixture of ubiquitous persistent organic pollutants affects bone and cartilage development in zebrafish by interaction with nuclear receptor signaling. PLoS One 2024; 19:e0298956. [PMID: 38547142 PMCID: PMC10977810 DOI: 10.1371/journal.pone.0298956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/01/2024] [Indexed: 04/02/2024] Open
Abstract
"Persistent organic pollutants (POPs)" have a plethora of deleterious effects on humans and the environment due to their bioaccumulative, persistent, and mimicking properties. Individually, each of these chemicals has been tested and its effects measured, however they are rather found as parts of complex mixtures of which we do not fully grasp the extent of their potential consequences. Here we studied the effects of realistic, environmentally relevant mixtures of 29 POPs on cartilage and bone development using zebrafish as a model species. We observed developmental issues in cartilage, in the form of diverse malformations such as micrognathia, reduced size of the Meckel's and other structures. Also, mineralized bone formation was disrupted, hence impacting the overall development of the larvae at later life stages. Assessment of the transcriptome revealed disruption of nuclear receptor pathways, such as androgen, vitamin D, and retinoic acid, that may explain the mechanisms of action of the compounds within the tested mixtures. In addition, clustering of the compounds using their chemical signatures revealed structural similarities with the model chemicals vitamin D and retinoic acid that can explain the effects and/or enhancing the phenotypes we witnessed. Further mechanistic studies will be required to fully understand this kind of molecular interactions and their repercussions in organisms. Our results contribute to the already existing catalogue of deleterious effects caused by exposure to POPs and help to understand the potential consequences in at risk populations.
Collapse
Affiliation(s)
- Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, Liège, Belgium
| | - Jérémie Zappia
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary Research on Medicines (CIRM) Liège, Institute of Pathology, CHU-Sart Tilman, University of Liège, Liège, Belgium
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Huang W, Shi X, Zhang Q, Chen Y, Zheng S, Wu W, Luo C, Wu K. Transgenerational effects of BDE-47 to zebrafish based on histomorphometry and toxicogenomic analyses. CHEMOSPHERE 2023; 344:140401. [PMID: 37839753 DOI: 10.1016/j.chemosphere.2023.140401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Exposure to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) has been found to have an impact on reproductive output and endocrine function in female zebrafish (Danio rerio). However, the transgenerational effects of BDE-47 have not been fully explored in previous reports. In this study, female zebrafish were exposed to BDE-47 for three consecutive weeks. The oogenesis, sex hormones, reproductive histology, and transcriptional profiles of genes along the hypothalamus-pituitary-gonad (HPG) axis were assessed in the exposed-F0 generation. After mating with unexposed males, the transgenerational effects of BDE-47 were evaluated on the basis of histopathology, morphometry and toxicogenome of the unexposed F1 generations at the larval stage. Results indicated that exposure to BDE-47 impaired reproductive capacity, disrupted endocrine system in F0 zebrafish, and compromised craniofacial skeletons and vertebrae development in F1 generations. In addition, through the use of toxicogenomics approach, immune-responsive pathways were found to be significantly enriched, and the transcript expression profiling of immune-related DEGs (IRDs) were dramatically inhibited in F1 generations following maternal BDE-47 exposure, indicating its immunotoxicity to offspring larvae. These findings advance our understanding of the transgenerational toxicity of BDE-47 and advocate for a more comprehensive assessment of other PBDE congeners through histomorphometry and toxicogenomic approaches.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yuequn Chen
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Wenying Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Dong G, Wang N, Xu T, Liang J, Qiao R, Yin D, Lin S. Deep Learning-Enabled Morphometric Analysis for Toxicity Screening Using Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18127-18138. [PMID: 36971266 DOI: 10.1021/acs.est.3c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Toxicology studies heavily rely on morphometric analysis to detect abnormalities and diagnose disease processes. The emergence of ever-increasing varieties of environmental pollutants makes it difficult to perform timely assessments, especially using in vivo models. Herein, we propose a deep learning-based morphometric analysis (DLMA) to quantitatively identify eight abnormal phenotypes (head hemorrhage, jaw malformation, uninflated swim bladder, pericardial edema, yolk edema, bent spine, dead, unhatched) and eight vital organ features (eye, head, jaw, heart, yolk, swim bladder, body length, and curvature) of zebrafish larvae. A data set composed of 2532 bright-field micrographs of zebrafish larvae at 120 h post fertilization was generated from toxicity screening of three categories of chemicals, i.e., endocrine disruptors (perfluorooctanesulfonate and bisphenol A), heavy metals (CdCl2 and PbI2), and emerging organic pollutants (acetaminophen, 2,7-dibromocarbazole, 3-monobromocarbazo, 3,6-dibromocarbazole, and 1,3,6,8-tetrabromocarbazo). Two typical deep learning models, one-stage and two-stage models (TensorMask, Mask R-CNN), were trained to implement phenotypic feature classification and segmentation. The accuracy was statistically validated with a mean average precision >0.93 in unlabeled data sets and a mean accuracy >0.86 in previously published data sets. Such a method effectively enables subjective morphometric analysis of zebrafish larvae to achieve efficient hazard identification of both chemicals and environmental pollutants.
Collapse
Affiliation(s)
- Gongqing Dong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Nan Wang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Ting Xu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jingyu Liang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Ruxia Qiao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Balasubramanian S, Rangasamy S, Vivekanandam R, Perumal E. Acute exposure to tenorite nanoparticles induces phenotypic and behavior alterations in zebrafish larvae. CHEMOSPHERE 2023; 339:139681. [PMID: 37524270 DOI: 10.1016/j.chemosphere.2023.139681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Tenorite or copper oxide nanoparticles (CuO NPs) are extensively used in biomedical fields due to their unique physicochemical properties. Increased usage of these NPs leads to release in the environment, affecting varied ecosystems and the biota within them, including humans. The effect of these NPs can be evaluated with zebrafish, an excellent complementary model for nanotoxicity studies. Previous reports focusing on CuO NPs-induced teratogenicity in zebrafish development have not elucidated the phenotypical changes in detail. In most of the studies, embryos at 3 hpf with a protective chorion layer were exposed to CuO NPs, and their effect on the overall developmental process is studied. Hence, in this study, we focused on the effect of acute exposure to CuO NPs (96-120 hpf) and its impact on zebrafish larvae. Larvae were exposed to commercially available CuO NPs (<50 nm) at various concentrations to obtain the LC50 value (52.556 ppm). Based on the LC50, three groups (10, 20, and 40 ppm) were taken for further analysis. Upon treatment, bradycardia, and impaired swim bladder (reduced/absence of inflation) were found in the treated groups along with alterations in the erythrocyte levels. Also, the angles and distance between the cartilages varied in the treated larvae affecting their craniofacial structures. There was a significant behavior change, as evidenced by the reduced touch escape response and locomotion (speed, distance, time mobile, time frozen, and absolute turn angle). Further, the acetylcholinesterase activity was reduced. Overall, our results suggest that acute exposure to CuO NPs elicits morphological defects in zebrafish larvae.
Collapse
Affiliation(s)
| | - Sakthi Rangasamy
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Reethu Vivekanandam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
5
|
Li K, Liu B, Wang Z, Li Y, Li H, Wu S, Li Z. Quantitative characterization of zebrafish development based on multiple classifications using Mueller matrix OCT. BIOMEDICAL OPTICS EXPRESS 2023; 14:2889-2904. [PMID: 37342688 PMCID: PMC10278635 DOI: 10.1364/boe.488614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Organ development analysis plays an important role in assessing an individual' s growth health. In this study, we present a non-invasive method for the quantitative characterization of zebrafish multiple organs during their growth, utilizing Mueller matrix optical coherence tomography (Mueller matrix OCT) in combination with deep learning. Firstly, Mueller matrix OCT was employed to acquire 3D images of zebrafish during development. Subsequently, a deep learning based U-Net network was applied to segment various anatomical structures, including the body, eyes, spine, yolk sac, and swim bladder of the zebrafish. Following segmentation, the volume of each organ was calculated. Finally, the development and proportional trends of zebrafish embryos and organs from day 1 to day 19 were quantitatively analyzed. The obtained quantitative results revealed that the volume development of the fish body and individual organs exhibited a steady growth trend. Additionally, smaller organs, such as the spine and swim bladder, were successfully quantified during the growth process. Our findings demonstrate that the combination of Mueller matrix OCT and deep learning effectively quantify the development of various organs throughout zebrafish embryonic development. This approach offers a more intuitive and efficient monitoring method for clinical medicine and developmental biology studies.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Bin Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Zaifan Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Hui Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Shulian Wu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Zhifang Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
- Bionovel Lab, Guangzhou, Guangdong, 510407, China
| |
Collapse
|
6
|
Damiani E, Sella F, Astolfi P, Galeazzi R, Carnevali O, Maradonna F. First In Vivo Insights on the Effects of Tempol-Methoxycinnamate, a New UV Filter, as Alternative to Octyl Methoxycinnamate, on Zebrafish Early Development. Int J Mol Sci 2023; 24:ijms24076767. [PMID: 37047738 PMCID: PMC10094805 DOI: 10.3390/ijms24076767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The demand for organic UV filters as active components in sunscreen products has rapidly risen over the last century, as people have gradually realized the hazards of overexposure to UV radiation. Their extensive usage has resulted in their ubiquitous presence in different aquatic matrices, representing a potential threat to living organisms. In this context, the need to replace classic UV filters such as octyl methoxycinnamate (OMC), one of the most popular UV filters reported to be a potential pollutant of aquatic ecosystems, with more environmentally friendly ones has emerged. In this study, using zebrafish, the first in vivo results regarding the effect of exposure to tempol-methoxycinnamate (TMC), a derivative of OMC, are reported. A comparative study between TMC and OMC was performed, analyzing embryos exposed to similar TMC and OMC concentrations, focusing on morphological and molecular changes. While both compounds seemed not to affect hatching and embryogenesis, OMC exposure caused an increase in endoplasmic reticulum (ER) stress response genes, according to increased eif2ak3, ddit3, nrf2, and nkap mRNA levels and in oxidative stress genes, as observed from modulation of the sod1, sod2, gpr, and trx mRNA levels. On the contrary, exposure to TMC led to reduced toxicity, probably due to the presence of the nitroxide group in the compound's molecular structure responsible for antioxidant activity. In addition, both UV filters were docked with estrogen and androgen receptors where they acted differently, in agreement with the molecular analysis that showed a hormone-like activity for OMC but not for TMC. Overall, the results indicate the suitability of TMC as an alternative, environmentally safer UV filter.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Fiorenza Sella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Paola Astolfi
- Department of Science and Engineering of Materials, Environment and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
7
|
Priya PS, Guru A, Meenatchi R, Haridevamuthu B, Velayutham M, Seenivasan B, Pachaiappan R, Rajagopal R, Kuppusamy P, Juliet A, Arockiaraj J. Syringol, a wildfire residual methoxyphenol causes cytotoxicity and teratogenicity in zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160968. [PMID: 36549541 DOI: 10.1016/j.scitotenv.2022.160968] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Natural toxicants, particularly methoxy phenols (MPs) generated by wildfire lignin, can accumulate in the environment, and cause serious health hazards in living organisms. Although the toxicity of MPs such as guaiacol and catechol has recently been described, there is minimal evidence of ecotoxicological effects of syringol. As a result, this study focuses on determining the toxicity by evaluating the cytotoxic and teratogenic effects of syringol in vitro and in vivo in human embryonic kidney (HEK-293) cells and zebrafish embryos, respectively. The ecotoxicity of syringol was predicted to be 63.8 mg/L using the ECOSAR (ECOlogical Structure Activity Relationship) prediction tool, and molecular docking analysis was used to determine the interaction and binding affinities of syringol with human apoptotic proteins in silico. In HEK-293 cells, exposure of syringol (0.5-2 mg/L) has induced cytotoxicity in a concentration-dependent manner. In zebrafish larvae, exposure of syringol (0.5-2 mg/L) has induced dose-dependent embryo toxic effects (or growth abnormalities such as yolk sac edema, pericardial edema, skeletal abnormality, and hyperemia), and changes in growth morphometrics (head height, eye, yolk sac, and pericardial area, heart rate) in particular, the heart rate of larvae was found to be significantly decreased (p<0.001). After a 4-day experimental trial, the accumulated concentration of syringol in zebrafish larvae was confirmed both qualitatively (HPLC-MS - High Performance Liquid Chromatography-Mass spectrometry) and quantitatively (LC-QTOF-HRMS - Liquid Chromatography-Quadrupolar Time of Flight-High Resolution Mass spectrometry). The craniofacial abnormalities induced by syringol exposure (0.5-2 mg/L) were detected as anomalies in cartilaginous development and locomotor deficits using alcian blue staining and locomotor analyses, respectively. Significant increase in oxidative stress parameters (including reactive oxygen species generation, lipid peroxidation, superoxide dismutase, catalase, lactate dehydrogenase and nitric oxide production) (p<0.001) and substantial decrease in glutathione levels were observed (p<0.05) in syringol exposed zebrafish larvae through enzymatic analysis. Additionally, through acridine orange staining and gene expression analyses, syringol (2 mg/L) was found to activate apoptosis in zebrafish larvae. Considering the cytotoxic, embryotoxic (teratogenicity), and oxidative stress-related apoptotic effects of syringol in the zebrafish model, syringol has the potential to emerge as a potent environmental toxicant posing serious health hazards in many living systems; however, further research on its toxicological effects on the actual ecosystem and in higher animal models is required to confirm its consequences.
Collapse
Affiliation(s)
- P Snega Priya
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, 600 077 Chennai, Tamil Nadu, India
| | - Ramu Meenatchi
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - Manikandan Velayutham
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, SIMATS, 600 077, Chennai, Tamil Nadu, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Palaniselvam Kuppusamy
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, South Korea
| | - Annie Juliet
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Thoraipakkam, Chennai 600 097, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Stewart MK, Hoehne L, Dudczig S, Mattiske DM, Pask AJ, Jusuf PR. Exposure to an environmentally relevant concentration of 17α-ethinylestradiol disrupts craniofacial development of juvenile zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114541. [PMID: 36657377 DOI: 10.1016/j.ecoenv.2023.114541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can interact with native hormone receptors to interfere with and disrupt hormone signalling that is necessary for a broad range of developmental pathways. EDCs are pervasive in our environment, in particular in our waterways, making aquatic wildlife especially vulnerable to their effects. Many of these EDCs are able to bind to and activate oestrogen receptors, causing aberrant oestrogen signalling. Craniofacial development is an oestrogen-sensitive process, with oestrogen receptors expressed in chondrocytes during critical periods of development. Previous studies have demonstrated a negative effect of high concentrations of oestrogen on early craniofacial patterning in the aquatic model organism, the zebrafish (Danio rerio). In order to determine the impacts of exposure to an oestrogenic EDC, we exposed zebrafish larvae and juveniles to either a high concentration to replicate previous studies, or a low, environmentally relevant concentration of the oestrogenic contaminant, 17α-ethinylestradiol. The prolonged / chronic exposure regimen was used to replicate that seen by many animals in natural waterways. We observed changes to craniofacial morphology in all treatments, and most strikingly in the larvae-juveniles exposed to a low concentration of EE2. In the present study, we have demonstrated that the developmental stage at which exposure occurs can greatly impact phenotypic outcomes, and these results allow us to understand the widespread impact of oestrogenic endocrine disruptors. Given the conservation of key craniofacial development pathways across vertebrates, our model can further be applied in defining the risks of EDCs on mammalian organisms.
Collapse
Affiliation(s)
- Melanie K Stewart
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luca Hoehne
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefanie Dudczig
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Deidre M Mattiske
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew J Pask
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Patricia R Jusuf
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
9
|
Battistoni M, Metruccio F, Di Renzo F, Bacchetta R, Menegola E. Predictive assays for craniofacial malformations: evaluation in Xenopus laevis embryos exposed to triadimefon. Arch Toxicol 2022; 96:2815-2824. [PMID: 35748892 PMCID: PMC9352603 DOI: 10.1007/s00204-022-03327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022]
Abstract
Craniofacial defects are one of the most frequent abnormalities at birth, but their experimental evaluation in animal models requires complex procedures. The aim of the present work is the comparison of different methodologies to identify dose- and stage-related craniofacial malformations in Xenopus laevis assay (R-FETAX, where the full cartilage evaluation, including flat mount technique, is the gold standard for skeletal defect detection). Different methods (external morphological evaluation of fresh samples, deglutition test, whole mount cartilage evaluation and Meckel-palatoquadrate angle measurements) were applied. Triadimefon (FON) was selected as the causative molecule as it is known to induce craniofacial defects in different animal models, including the amphibian X. laevis.FON exposure (0-31.25 μM) was scheduled to cover the whole 6-day test (from gastrula to free swimming tadpole stage) or each crucial developmental phases: gastrula, neurula, early morphogenesis, late morphogenesis, tadpole. Dose-dependent effects (fusions among craniofacial cartilages) were evident for groups exposed during the morphogenetic periods (neurula, early morphogenesis, late morphogenesis); gastrula was insensitive to the tested concentrations, tadpole group showed malformations only at 31.25 μM. The overall NOAEL was set at 3.9 μM. Results were evaluated applying benchmark dose (BMD) approach. The comparison of relative potencies from different methods showed deglutition as the only assay comparable with the gold standard (cartilage full evaluation).In conclusion, we suggest deglutition test as a reliable method for a rapid screening of craniofacial abnormalities in the alternative model X. laevis. This is a rapid, inexpensive and vital test allowing to preserve samples for the application of further morphological or molecular investigations.
Collapse
Affiliation(s)
- Maria Battistoni
- Department of Physics Aldo Pontremoli, Università Degli Studi Di Milano, via Celoria, 16-20133 Milan, Italy
| | - Francesca Metruccio
- Department of Biomedical and Clinical Sciences, ICPS, ASST Fatebenefratelli Sacco, Università degli studi di Milano, Via GB Grassi, 74- 20159 Milan, Italy
| | - Francesca Di Renzo
- Department of Environmental Science and Policy, Università Degli Studi Di Milano, via Celoria, 26-20133 Milan, Italy
| | - Renato Bacchetta
- Department of Environmental Science and Policy, Università Degli Studi Di Milano, via Celoria, 26-20133 Milan, Italy
| | - Elena Menegola
- Department of Environmental Science and Policy, Università Degli Studi Di Milano, via Celoria, 26-20133 Milan, Italy
| |
Collapse
|
10
|
Zhong L, Peng W, Liu C, Gao L, Chen D, Duan X. IPPD-induced growth inhibition and its mechanism in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113614. [PMID: 35567929 DOI: 10.1016/j.ecoenv.2022.113614] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
N-isopropyl-N-phenyl-1,4-phenylenediamine (IPPD) is used as a ubiquitous antioxidant worldwide, it is an additive in tire rubber easily discharged into the surrounding environment. At present, there is no study concerning the subacute toxicity of IPPD on fish. We used zebrafish embryos (2 h post-fertilization) exposed to IPPD for 5 days at concentrations of 0, 0.0012, 0.0120 and 0.1200 mg/L to investigate its toxic effects of embryonic development, disruption of growth hormone/insulin-like growth factor (GH/IGF) and hypothalamic-pituitary-thyroid (HPT) axis. The results showed that IPPD exposure decreased hatchability, weakened movement ability, reduced body length, and caused multiple types of deformities in zebrafish embryos. The expression of genes involved to GH/IGF and HPT axis were altered after exposure to IPPD in zebrafish larvae. Meanwhile, exposure to IPPD significantly decreased thyroxine (T4) and 3,5,3'-triiodothyronine (T3) contents in larvae, which indicated that HPT axis was in a disturbed state. Moreover, treatment of IPPD decreased the enzymatic activities of superoxide dismutase (SOD) and catalase (CAT) as well as levels of glutathione (GSH). While the contents of malondialdehyde (MDA) were elevated after exposure to IPPD. The present study thus demonstrated that IPPD induced oxidative stress, caused developmental toxicity and disrupted the GH/IGF and HPT axis of zebrafish, which could be responsible for developmental impairment and growth inhibition.
Collapse
Affiliation(s)
- Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Weijuan Peng
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lei Gao
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Daqing Chen
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Xinbin Duan
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| |
Collapse
|
11
|
Chen J, Chen H, Wu Y, Meng J, Jin L. Parental exposure to CdSe/ZnS QDs affects cartilage development in rare minnow (Gobiocypris rarus) offspring. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109304. [PMID: 35257888 DOI: 10.1016/j.cbpc.2022.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 11/03/2022]
Abstract
Cartilage development is a sensitive process that is easily disturbed by environmental toxins. In this study, the toxicity of CdSe/ZnS quantum dots on the skeleton of the next generation (F1) was evaluated using rare minnows (Gobiocypris rarus) as model animals. Four-month-old sexually mature parental rare minnows (F0) were selected and treated with 0, 100, 200, 400 and 800 nmol/L CdSe/ZnS quantum dots for 4 days. Embryos of F1 generation rare minnows were obtained by artificial insemination. The results showed that with increasing maternal quantum dots exposure, the body length of F1 embryos decreased, the overall calcium content decreased, and the deformity and mortality rates increased. Alcian blue staining results showed that the lengths of the craniofacial mandible, mandibular arch length, mandibular width, and CH-CH and CH-PQ angles of larvae of rare minnows increased; histological hematoxylin-eosin staining further indicated that quantum dots affected the development of chondrocytes. Furthermore, high concentrations of CdSe/ZnS quantum dots inhibited the transcript expression of the bmp2b, bmp4, bmp6, runx2b, sox9a, lox1 and col2α1 genes. In conclusion, CdSe/ZnS quantum dots can affect the skeletal development of F1 generation embryos of rare minnows at both the individual and molecular levels, the damage to the craniofacial bone is more obvious, and the toxic effect of high concentrations of quantum dots (400 nmol/L and 800 nmol/L) is more significant.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Hang Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yingyi Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Juanzhu Meng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
12
|
Heat/PMS Degradation of Atrazine: Theory and Kinetic Studies. Processes (Basel) 2022. [DOI: 10.3390/pr10050941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The degradation effect of heat/peroxymonosulfate (PMS) on atrazine (ATZ) is studied. The results show that the heat/PMS degradation for ATZ is 96.28% at the moment that the phosphate buffer (PB) pH, temperature, PMS dosage, ATZ concentration, and reaction time are 7, 50 °C, 400 μmol/L, 2.5 μmol/L, and 60 min. A more alkaline PB is more likely to promote the breakdown of ATZ through heat/PMS, while the PB alone has a more acidic effect on the PMS than the partially alkaline solution. HO• and SO4−• coexisted within the heat/PMS scheme, and ATZ quantity degraded by HO• and SO4−• in PB with pH = 7, pH = 1.7~1. HCO3− makes it difficult for heat/PMS to degrade ATZ according to inorganic anion studies, while Cl− and NO3− accelerate the degradation and the acceleration effect of NO3− is more obvious. The kinetics of ATZ degradation via heat/PMS is quasi-first-order. Ethanol (ETA) with the identical concentration inhibited ATZ degradation slightly more than HCO3−, and both of them reduced the degradation rates of heat/PMS to 7.06% and 11.56%. The addition of Cl− and NO3− increased the maximum rate of ATZ degradation by heat/PMS by 62.94% and 189.31%.
Collapse
|
13
|
Li K, Fan L, Tian Y, Lou S, Li D, Ma L, Wang L, Pan Y. Application of zebrafish in the study of craniomaxillofacial developmental anomalies. Birth Defects Res 2022; 114:583-595. [PMID: 35437950 DOI: 10.1002/bdr2.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
Abstract
Craniomaxillofacial developmental anomalies are one of the most prevalent congenital defects worldwide and could result from any disruption of normal development processes, which is generally influenced by interactions between genes and the environment. Currently, with the advances in genetic screening strategies, an increasing number of novel variants and their roles in orofacial diseases have been explored. Zebrafish is recognized as a powerful animal model, and its homologous genes and similar oral structure and development process provide an ideal platform for studying the contributions of genetic and environmental factors to human craniofacial malformations. Here, we reviewed zebrafish models for the study of craniomaxillofacial developmental anomalies, such as human nonsyndromic cleft lip with or without an affected palate and jaw and tooth developmental anomalies. Due to its potential for gene expression and regulation research, zebrafish may provide new perspectives for understanding craniomaxillofacial diseaseand its treatment.
Collapse
Affiliation(s)
- Kang Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Liwen Fan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Tian
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Shu Lou
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Dandan Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Huang W, Wu T, Wu K. Zebrafish (Danio rerio): A potential model to assess developmental toxicity of ketamine. CHEMOSPHERE 2022; 291:133033. [PMID: 34822872 DOI: 10.1016/j.chemosphere.2021.133033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 02/05/2023]
Abstract
Ketamine is a non-competitive antagonist of NMDA glutamate receptor. It is used as an anesthetic, analgesic, sedative, and anti-depressive agent in clinical practice and also an illegal recreational drug. The increasing use has contributed to the measurable levels of ketamine in both wastewaters and hospital effluents, thereby classified as an emergent contaminant. Lately, the potential toxicity of ketamine has raised serious concerns about its iatrogenic or illicit use during pregnancy, neonatal and childhood stages. However, to assess its long-term toxicity potentially by the use of early life stages in human and rodents is limited. In this regard, the zebrafish has been considered as excellent model organism for biosafety assessments of ketamine due to it boasts an in vivo model with the advantages of an in vitro assay. In this review, we summarize the current understanding of the reported toxicity studies with ketamine in early life stage of zebrafish. The adverse effects of ketamine are known to cause overall developmental and multi-organ toxicity, including cardio-, neuro-, and skeletal toxicity. Furthermore, multiple mechanisms are found to be responsible for perpetrating toxicity of ketamine. The current findings confluence to emphasize the zebrafish embryo as an appealing model system for developmental toxicity testing in higher vertebrates.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, PR China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, PR China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou, 515041, Guangdong, PR China
| |
Collapse
|